Dual-Mode Bluetooth[®] Stack on STM32F4 MCUs

User's Guide

Literature Number: SWRU428 September 2015

Contents

1	Trademarks	٨
-		
2	Features	. 4
3	Bluetooth Profiles	5
4	Sample Application Overview	6
5	CC256XSTBTBLESW Hardware and Software Requirements	
6	Setting Up the Hardware	8
7	Setting Up the Software	10
8	Building and Flashing the Bluetooth Code (STM3240G-EVAL)	
	8.1 Flashing the <i>Bluetooth</i> Code	15
9	Applications	18
10	Classic Bluetooth Sample Applications	19
11	Classic Bluetooth + Bluetooth low energy Applications	20
12	Bluetooth low energy Applications	20
Revis	ion History	22

List of Figures

1	Overview of Demonstration	6
2	Hardware Combination	7
3	STM32 General Setup	8
4	STM3240G-EVAL, CC256X-STADAPT, and QFNEM Combination	9
5	STM32F4DISCOVERY, CC256X-STADAPT, and QFNEM Combination	9
6	IAR Drop-down Menu	11
7	Download and Debug	11
8	Debugging Screen	12
9	The GO Button	12
10	Debug Dropdown Menu	13
11	Building Target	13
12	Build Output	14
13	Debug Mode	14
14	Release and Debug Mode	15
15	Program and Verify	16
16	Start Download	17
17	VerificationOK	17

Dual-Mode Bluetooth[®] Stack on STM32F4 MCUs

TI's dual-mode *Bluetooth*[®] stack on STM32F4 MCUs (CC256XSTBTBLESW) software for *Bluetooth* + *Bluetooth* low energy enables the STM32 ARM[®] Cortex[®]-M4 processor and includes single mode and dual mode, while implementing the *Bluetooth* 4.0 specification. The *Bluetooth* stack is fully qualified (QDID 69887 and QDID 69886) and provides simple command-line applications to help speed development and can be MFI capable.

For a complete evaluation solution, the CC256XSTBTBLESW works directly with the STM3240G-EVAL hardware development kit. The stack for the STM32 MCU is certified and royalty-free (CC256XSTBTBLESW).

The software works with all CC256x EM boards (CC256XQFNEM, CC2564MODNEM, and CC2564MODAEM) to provide a complete *Bluetooth* BR/EDR/LE HCI solution, reducing design effort and enabling a faster time to market. The CC256x EM boards include TI's seventh-generation *Bluetooth* core and provide a product-proven, *Bluetooth* 4.1-compliant solution. The devices provide best-in-class RF performance with a transmit power and receive RX sensitivity that provide approximately two times the range of other BLE-only solutions. TI's power-management hardware and software algorithms help save a significant amount of power in common *Bluetooth* BR/EDR/LE modes of operation.

1 Trademarks

Cortex, KEIL, μ Vision are registered trademarks of ARM Limited. ARM is a registered trademark of Arm Limited. Bluetooth is a registered trademark of Bluetooth SIG.

2 Features

- Supports dual-mode *Bluetooth* 4.0 *Bluetooth* certified and royalty free
- Offers a fully-qualified *Bluetooth* Stack (QDID 69887 and QDID 69886)
- Offers thread-safe operation
- Supports both threaded (RTOS) and non-threaded (No OS) environments (sample applications use FreeRTOS)
- Offers a fully-documented API interface
- Works with any STM32F4 MCU
- Offers sample applications for the STM3240G-EVAL MCU Development Kit supported by CC256XEM-STADAPT
- Offers the capability to disable or enable protocols and profiles
- Supports KEIL® and IAR IDEs

3 Bluetooth **Profiles**

Classic Profiles:

- Advanced Audio Distribution Profile (A2DP): A3DP implementation
- Audio/Video Remote Control Profile (AVRCP)
- Generic Access Profile (GAP)
- Generic Audio and Video Distribution Profile (GAVDP)
- Headset Profile (HSP)
- Hands-Free Profile (HFP)
- Human Interface Device Profile (HID)
- Message Access Profile (MAP)
- Phonebook Access Profile (PBAP)
- Serial Port Profile (SPP)

Low Energy Profiles:

- Alert Notification Service (ANS)
- Alert Notification Profile (ANP)
- Battery Service (BAS)
- Device Information Service (DIS)
- Find Me Profile (FMP)
- Generic Access Profile Service (GAPS)
- Generic Attribute Profile (GATT)
- Health Thermometer Service (HTS)
- Health Thermometer Profile (HTP)
- Heart Rate Service (HRS)
- Heart Rate Profile (HRP)
- Human Interface Device Service (HIDS)
- HID over GATT Profile (HOGP)
- Immediate Alert Service (IAS)
- Link Loss Service (LLS)
- Phone Alert State Service (PASS)
- Phone Alert State Profile (PASP)
- Proximity Profile (PXP)
- TX Power Service (TPS)

4 Sample Application Overview

This demonstration lets you to evaluate TI's CC256x *Bluetooth* device with the STM3240G-EVAL platform. The CC256x+ STM3240G-EVAL *Bluetooth* applications offer a rich out-of-box experience. These applications let you use a console to send *Bluetooth* commands, set up a *Bluetooth* device to accept connections, connect to a remote *Bluetooth* device, and communicate through *Bluetooth*. This demonstration includes one sample application for each profile with simple command-line sample applications to speed development. See Figure 1 for an overview of the demonstration.

Figure 1. Overview of Demonstration

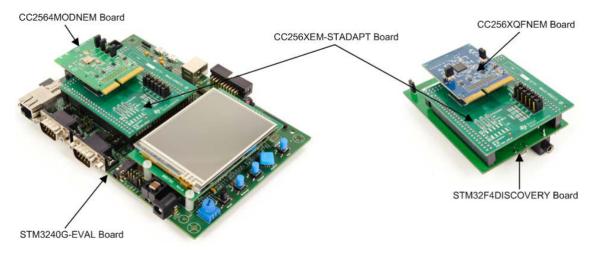
TEXAS INSTRUMENTS

www.ti.com

5 CC256XSTBTBLESW Hardware and Software Requirements

A complete evaluation requires the following hardware and software tools from the following list:

Hardware


- One dual-mode *Bluetooth* CC2564 evaluation board
 - CC256XQFNEM or CC2564MODNEM or CC2564MODAEM
- One CC256xEM Bluetooth adapter kit
 - CC256XEM-STADAPT
- One STM32 experimenter board
 - A STM3240G-EVAL board or STM32F4DISCOVERY board

Software

- Dual-mode *Bluetooth* stack
 - On STM32F4 MCUs: CC256XSTBTBLESW
- IDE versions

- IAR 7.2 or 7.3 for ARM or KEIL µVision® 4.70.0.0 or STSW-LINK004 (optional)

Figure 2 shows the hardware combination.

Figure 2. Hardware Combination

Setting Up the Hardware

6 Setting Up the Hardware

Using TI's dual-mode *Bluetooth* CC256x solution (CC256XQFNEM or CC2564MODNEM), the STM32 MCU evaluation board (STM3240G-EVAL or STM32F4DISCOVERY), with the support of the CC256xEM *Bluetooth* adapter kit (CC256XEM-STADAPT), developers canevaluate both classic and *Bluetooth* low energy capabilities with the TI Dual-Mode *Bluetooth* stack on STM32F4 MCUs.

To set up the hardware, perform the following steps:

- Fit the jumpers onto the adaptor board. (Ensure the jumpers are set to the correct position. For more information on the jumper positions and connections to the specific STM32 boards, see the CC256xEM Bluetooth Adapter Kit User's Guide [SWRU417] and the CC256xEM Bluetooth Adapter Kit Quick Start Guide [SWRU416].)
- 2. Fit the adaptor board on top of the STM32 board. (See Figure 4 for an example using the STM3240G-EVAL board. See Figure 5 for an example using the STM32F4DISCOVERY board.)
- 3. Install the CC256X module board on the adaptor board.

Figure 3 shows the setup for the STM32 board.

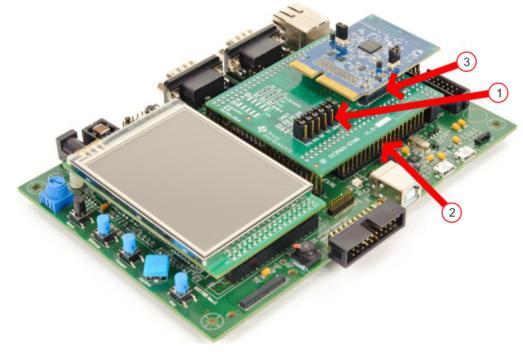


Figure 3. STM32 General Setup

Figure 4 shows an example of the STM3240G-EVAL, the CC256X-STADAPT, and QFNEM boards combined.

Figure 4. STM3240G-EVAL, CC256X-STADAPT, and QFNEM Combination

Figure 5 shows an example of the STM32F4DISCOVERY, the CC256X-STADAPT, and QFNEM boards combined.

Figure 5. STM32F4DISCOVERY, CC256X-STADAPT, and QFNEM Combination

Setting Up the Software

7 Setting Up the Software

Do the following to set up the software for the demonstration:

- 1. Navigate to *Bluetooth* SDK.
 - **NOTE:** When you try to download the SDK, you will be prompted for a TI login. If you do not have a TI login, you must create one.
- 2. Create a TI login (if necessary).
- 3. Complete and submit the export approval form.
 - **NOTE:** Wait for TI to approve the request. After approving the request, TI provides you with a link to download the software.
- 4. Click *Download* to download the software.
 - **NOTE:** TI intends the *Bluetooth* SDK for use only with the STM3240G-EVAL board. Software modifications are required for the SDK to work with the STM32F4DISCOVERY board.
- 5. Run CC256XSTMNoOSBTBLESW-v4.0.2.1-Setup.exe after the download completes.
- 6. Accept the TI Bluetooth Stack Clickwrap License Agreement.
 - **NOTE:** After accepting the license agreement, the SDK installs to C:\T/\Connectivity\CC256X BT\CC256xSTM32BluetopiaSDK\v4.0.2.1\.
- 7. Access the SDK through Start/Programs/TexasInstruments/CC256XBT/CC256xSTM32BluetopiaSDKv4.0.2.1.

8 Building and Flashing the Bluetooth Code (STM3240G-EVAL)

Sample applications for FreeRTOS and NoOS are available for IAR and KEIL.

Perform the following instructions to set up applications on each IDE version.

IAR

- 1. Navigate to C:\TI\Connectivity\CC256XBT\CC256xSTM32BluetopiaSDK\v4.0.2.1 to open the workspace.
- 2. Select one of the following samples:
 - For NoOS, navigate to WoOS\STM3240G-EVAL\Samples\ for a list of samples.
 - For FreeRTOS, navigate to \FreeRTOS\STM3240G-EVAL\Samples\ for a list of samples.
- 3. Select the demonstration to load onto the device. (This example uses SPPDemo.)
- 4. Navigate to NoOS.
- 5. Navigate to EWARM.
- 6. Select SPPDemo.eww.

NOTE: The IAR IDE opens.

7. Select *Debug*. (See Figure 6.) or *Release Configuration* from the drop-down menu. (For this example, select *Debug*.)

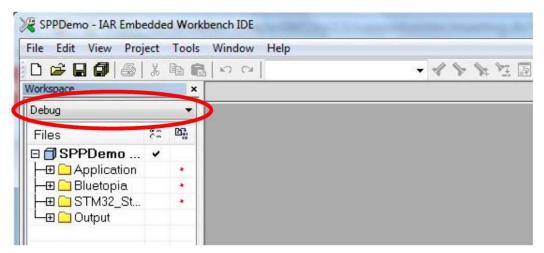
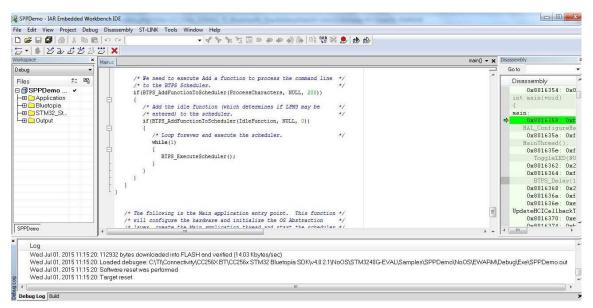


Figure 6. IAR Drop-down Menu

8. Select Download and Debug from the Project drop-down menu or click the Play icon. (See Figure 7.)

SPPDemo - IAR Em	bedded Workbench IDE	-	the last
File Edit View Pr	oject Tools Window Help		
0 🛩 🖬 🕼	Add Files		
Workspace	Add Group		
Release	Import File List		
Files	Add Project Connection		
🗆 🗊 SPPDem	Edit Configurations		
⊢⊞ 🗀 Applica ⊢⊞ 🗀 Bluetop	Remove		
HE STM32	Create New Project		
L 🖸 🗀 Output	Add Existing Project		
	Options	Alt+F7	
	Version Control System	۲	
	Make	F7	
	Compile	Ctrl+F7	
	Rebuild All		
	Clean		
	Batch build	F8	
SPPDemo	C-STAT Static Analysis	•	
* Log	Stop Build	Ctrl+Break	
<	Download and Debug	Ctrl+D	>
	Debug without Dewnloading		E S
	Make & Restart Debugger	Ctrl+R	
	Restart Debugger	Ctrl+Shift+R	
8	Download	•	
Build Debug Lo	SFR Setup		
	Open Device Description File	•	
Download the appli	Save List of Registers		

Figure 7. Download and Debug


NOTE: The IDE debugs and loads the software onto the device. This may take 5 to 10 minutes.

Building and Flashing the Bluetooth Code (STM3240G-EVAL)

www.ti.com

9. Click the red X in the IDE to stop debugging. (See Figure 8.)

Figure 8. Debugging Screen

- 10. Disconnect the STM3240G-EVAL.
- 11. Reconnect the STM3240G-EVAL.
- 12. Press Reset on the STM3240G-EVAL device.
- 13. Press the GO button in the IAR.

Figure 9. The GO Button

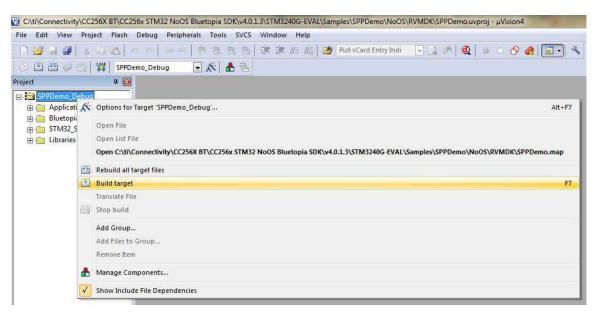
KEIL

- 1. Navigate to C:\TI\Connectivity\CC256XBT\CC256xSTM32BluetopiaSDK\v4.0.2.1 to open the workspace.
- 2. Select one of the following samples:
 - For NoOS, navigate to WoOS\STM3240G-EVAL\Samples\ for a list of samples.
 - For FreeRTOS, navigate to \FreeRTOS\STM3240G-EVAL\Samples\ for a list of samples.
- 3. Select the demonstration to load onto the device. (This example uses SPPDemo.)
- 4. Navigate to NoOS.

NOTE: For RTOS, navigate to FreeRTOS.

- 5. Navigate to RVMDK in the list.
- 6. Click SPPDemo.uvproj.

NOTE: Keil µVision4 opens.


7. Select *Debug* or *Release Configuration* from the drop-down menu. (For this example, select *Debug* [See Figure 10].)

File Edit	View Proje	ect Flash	Debug	Peripheral	s Tools	SVCS	Window	Help	p		
n 🗳 🕫	101 16	60	0 02	(a); [ha Wa	12 12	谭津	11= 1	14	Pull vCard Entry Indi	
i 🗇 🖽 🖽		SPPD	emo_Deb	ug la	1	66					
Project		4 🔝	-	-							
🖃 🔁 SPPD	emo_Debug										
🖶 💼 A	pplication										
🕀 🧰 BI	luetopia										
🕀 🧰 ST	TM32_StdPeri	iph_Lib									
m (m 1)	braries										

Figure 10. Debug Dropdown Menu

- 8. Right-click SPPDemo_Debug in the project sidebar.
- 9. Select Build target to build the code. (See Figure 11.)

NOTE: Figure 12 shows the output when built correctly.

Figure 11. Building Target

NOTE: After a few minutes, the build process finishes and builds an .axf file. Each time you change the configuration, you must build a new .axf file.

Build target 'SPPDemo_Debug' linking Program Size: Code=107948 RO-data=9972 RW-data=416 ZI-data=28752	Build Output	
		'SPPDemo_Debug'
FramFIF: anasting hav file		Code=107948 RO-data=9972 RW-data=416 ZI-data=28752 ting hex file

Figure 12. Build Output

- 10. Choose Debug mode or Release and Debug modes.
 - For Debug mode only:
 - 1. Select *Start/Stop Debug Session* to start loading the profile on the STM32 device and to work in *Debug* mode. (See Figure 13.)

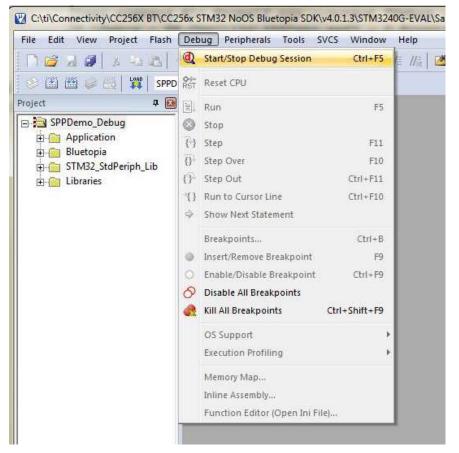


Figure 13. Debug Mode

NOTE: The loading process completes in a few minutes.

2. Stop the debugging session from the Debug drop-down menu.

NOTE: The profile loads on the STM3240G-EVAL board.

- 3. Unplug the device.
- 4. Plug the device in again to start working with it.

- For Release and Debug modes:
 - 1. Click LOAD to start loading the profile on the STM32 device. (See Figure 14.)

NOTE: It should complete in a few minutes.

The profile loads on the STM3240G-EVAL board.

- 2. Unplug the device.
- 3. Plug the device in again to start working with it.

Figure 14. Release and Debug Mode

8.1 Flashing the Bluetooth Code

STSW-LINK004

You can use the STSW-LINK004 utility to flash the software when you have created the binary file through IAR or KEIL.

To flash the software, do the following:

- 1. Open the file from the File drop-down menu.
- 2. Select the demonstration to load on the device. (This example uses SPPDemo.)
 - For NoOS, navigate to C:\TI\Connectivity\CC256XBT\CC256xSTM32BluetopiaSDK\v4.0.2.1\WoOS\STM3240G-EVAL\Samples\SPPDemo\WoOS\EWARM\Debug\Exe.
 - For FreeRTOS, navigate to C:\TI\Connectivity\CC256XBT\CC256xSTM32BluetopiaSDK\v4.0.2.1\FreeRTOS\STM3240G-EVAL\Samples\SPPDemo\FreeRTOS\EWARM\Debug\Exe.
- 3. Select a bin file. (This example uses SPPDemo.bin.)

Building and Flashing the Bluetooth Code (STM3240G-EVAL)

www.ti.com

4. Click Program & Verify... from the Target drop-down menu. (See Figure 15.)

Memory display Disconnect Critic P Address: 0x000 Device Memory, F Erase Bank1 Device Memory, F Erase Bank2 SPPDemo.bin], File Address 0x0000000 Program Program 0x0000000 Program & Verify CTRL+P 0x0000000 Program & Verify CTRL+P 0x0000000 Blank Check Compare device memory with [SPPDemo.bin] 0x0000000 Option Bytes CTRL+B MCU Core MCU Core	
Dx0000000 Program E c Q ⁻ U ⁻ 0x0000000 Program & Verify CTRL+P (⁻] ⁻ a ⁻ 0x00000000 Blank Check	
0x00000000 Program & Verify CTRL+P [c Q ⁻ U ⁻ 0x00000000 Program & Verify CTRL+P (⁻] ⁻ a ⁻ 0x00000000 Blank Check 0x00000000 Compare device memory with [SPPDemo.bin]	
0x0000000 Blank Check	L.
0x0000020 Blank Check e ⁺ 0x0000030 Compare device memory with [SPPDemo.bin] e ⁺ 0x00000040 Option Bytes CTRL+B	
Ox00000040 Option Bytes CTRL+B a ¬u¬y¬}¬ 0x00000050 MCU Core ¬u¬v□ ¬u¬v□	
0x00000050 MCU Core CTKL+B	
0x00000050 0x00000060 MCU Core	
0x0000060	
0x00000070 Automatic Mode	
0x00000080 Settings CTRL+S	
	*

Figure 15. Program and Verify

NOTE: The information for your device shows.

5. Ensure the values in Device Information changed to your device information.

6. Press Start. (See Figure 16.)

Memory display Address: 0x08	000000 ▼ Siz ile : SPPDemo,bi	n		dth: 3	2 bits →	Device STM32F40xx/F41xx Device ID 0x413 Revision ID Rev Z Flash size 1MBytes			
Address	0	4	8	С		ASCII			
0x00000000	20008CA8	0801B475	0801B6B1	080	18685	"Œ. u'±1μ1			
0x00000010	0801B6B9	0801B6BD	0801B6C1	0000	00000	¹ 1½1Á1			
					LB6C5	Å1			
					03DAD	É1Í1=			
0x00000040	0801B6D1	0801B6D5	0801B6D9	080	01B6DD Ň1Õ1Ù1Ý1				
x00000050	0801B6E1	0801B6E5	0801B6E9	080	1B6ED	á11å11é1í11			
x00000060	0801B6F1	0801B6F5	0801B6F9	080		an an An An			
x00000070	0801B701	0801B705	0801B709	080	Downloa	oad [SPPDemo.bin]			
0800000x	0801B711	0801B715	0801B719	080	Charles	t address - 0x08000000			
1:05:03 : Connect 1:05:03 : Connect 1:05:03 : Debug in 1:05:03 : Device I 1:05:03 : Device I	Firmware versio INK firmware de pgrade it from S ed via SWD. ion mode : Norm Low Power mod D:0x413	n : V231750 (Nee tected) T-LINK->'Firmwar al. je enabled. tes			Click "S	path : C:\TI\Connectivity\CC256X BT\CC256x STM32 Bluetopia Brows iffication			

Figure 16. Start Download

NOTE: The command window displays Verification...OK. (See Figure 17.)

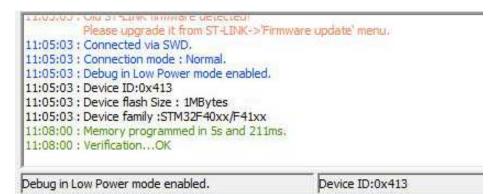


Figure 17. Verification...OK

9 Applications

The dual-mode *Bluetooth* stack on STM32F4 MCUs includes a sample application directory for NoOS and FreeRTOS with source code that demonstrates TI's dual-mode *Bluetooth* stack. These simple, command-line sample applications display a list of available commands. Table 1 lists the available profiles for *Bluetooth* SDK.

Profile	Role	FreeRTOS	NoOS	EM Platform
A3DP Demo_SNK Sink Controller		IAR KEIL	IAR KEIL	STM3240G-EVAL
		IAR KEIL	IAR KEIL	STM3240G-EVAL
ANP demo	Client KEIL		IAR KEIL	STM3240G-EVAL
AUD demo	Source Sink	IAR KEIL	IAR KEIL	STM3240G-EVAL
FMP demo	Target Locator	IAR KEIL	IAR KEIL	STM3240G-EVAL
HFP demo	Audio gateway Hands-free unit	IAR KEIL	IAR KEIL	STM3240G-EVAL
HFPAG demo	Audio gateway Hands-free unit	IAR KEIL	IAR KEIL	STM3240G-EVAL
HID demo	Host Device	IAR KEIL	IAR KEIL	STM3240G-EVAL
HOGP demo	Host Device	IAR KEIL	IAR KEIL	STM3240G-EVAL
HRP demo	Collector Sensor	IAR KEIL	IAR KEIL	STM3240G-EVAL
HSP demo	Audio gateway Headset	IAR KEIL	IAR KEIL	STM3240G-EVAL
HTP demo	Collector Thermometer	IAR KEIL	IAR KEIL	STM3240G-EVAL
iBEACON demo	Server Client	IAR KEIL	IAR KEIL	STM3240G-EVAL
MAP demo	Server Client	IAR KEIL	IAR KEIL	STM3240G-EVAL
		IAR KEIL	IAR KEIL	STM3240G-EVAL
PBAP demo Server Client		IAR KEIL	IAR KEIL	STM3240G-EVAL
PXP demo	Monitor Reporter	IAR KEIL	IAR KEIL	STM3240G-EVAL
SPP demo	Device A Device B	IAR KEIL	IAR KEIL	STM3240G-EVAL
SPPLE demo	Server Client	IAR KEIL	IAR KEIL	STM3240G-EVAL

Table 1. Table of Available Profiles for Bluetooth SDK

10 Classic *Bluetooth* **Sample Applications**

AUD Demo

- Lets you use the advanced audio distribution profile (A2DP) to stream high-quality audio over *Bluetooth*.
- Supports the sink role only.
- Visit the AUD demonstration application wiki for instructions for this demonstration.

A3DP Sink Demo

- Lets you use the assisted advanced audio distribution profile (A3DP) to send stereo audio over *Bluetooth*.
- Visit the A3DP demonstration sink wiki for instructions for this demonstration for the sink role.

A3DP Source Demo

- Lets you use the assisted advanced audio distribution profile (A3DP) to send stereo audio over *Bluetooth*.
- Visit the A3DP demonstration source wiki for a instructions for this demonstration for the source role.

HFP Demo

- Lets you use hands-free profile (HFP) to provide remote control and voice connections over *Bluetooth* to a mobile device.
- Supports the hands-free role.
- Visit the HFP demonstration wiki for instructions for this demonstration.

HFPAG Demo

- Lets you use the hands-free profile on an embedded device.
- Connects a headset or speaker phone with a mobile device to provide remote control and voice connections.
- · Supports the hands-free and audio-gateway roles.
- Provides two applications that demonstrate the audio-gateway and hands-free roles of the profile, respectively.
- Offers audio routing to the STM3240G-EVAL board DAC for the hands-free application and audiogateway role application.
- Visit the HFPAG demonstration application wiki for instructions for this demonstration.

HID Demo

- Offers a demonstration of the human-interface device (HID) profile that enables a host to connect and control a HID device.
- Visit the HID demonstration wiki for instructions for this demonstration.

HSP Demo

- · Lets you demonstrate the headset profile (HSP) on an embedded device.
- Connects a headset or speaker phone with a mobile device.
- Connects an audio gateway with a headset device to provide basic control and voice connections.
- Visit the HSP demonstration wiki for instructions for this demonstration.

MAP Demo

- Lets you exchange message objects over Bluetooth.
- Visit the MAP demonstration application wiki for instructions for this demonstration.

PBAP Demo

- Lets you exchange phone book objects over *Bluetooth*.
- Visit the PBAP demonstration application wiki.

SPP Demo

- Shows how to use the serial port profile (SPP) module.
- Shows how to handle the different callback events.
- Lets you interface with a remote SPP client or server.)
- Visit the SPP demonstration application wiki for instructions for this demonstration.

11 Classic Bluetooth + Bluetooth low energy Applications

SPP + SPPLE Demo

- Shows how to use Low Energy (LE) and the GATT profile.
- Emulates using SPP over LE using the GATT profile.
- Acts as a LE Master and LE Slave.
- Shows how to use the SPP module.
- Shows how to handle the different SPP callback events.
- Acts as either a SPP server or SPP client
- Uses the same command for SPP as the SPP demonstration.
- Visit the SPP + SPPLE demonstration wiki for instructions for this demonstration.

12 Bluetooth low energy Applications

ANP Demo

- · Shows how to use low energy (LE) and the GATT profile.
- Implements the alert notification profile (ANP) using the GATT profile.
- Acts as an LE master and LE slave.
- Visit the ANP demonstration wiki for instructions for this demonstration.

iBEACON Demo

- Provides location-based information and services for iOS devices.
- Has server and client roles.
- Allows the user to use a console to use *Bluetooth* Low Energy (BLE) to advertise specific data that can be read by the client..

HRP Demo

- Shows how to use low energy (LE) and the GATT profile.
- Implements the heart rate profile (HRP) using the GATT profile.
- Acts as an LE Master and LE Slave.
- Visit the HRP demonstration wiki for instructions for this demonstration.

HTP Demo

- Shows how to use low energy (LE) and the GATT profile.
- Implements the health thermometer profile (HTP) using the GATT profile.
- Acts as an LE master and LE slave.
- Visit the HTP demonstration wiki for instructions for this demonstration.

PASP Demo

- Shows how to use low energy (LE) and the GATT profile.
- Implements the phone alert status profile (PASP) using the GATT profile.
- Acts as an LE master and LE slave.
- Visit the PASP demonstration wiki for instructions for this demonstration.

HOGP Demo

- Shows how to use low energy (LE) and the GATT profile.
- Implements the human interface device (HID) using the GATT profile.
- Visit the HOGP demonstration wiki for instructions for this demonstration.

PXP Demo

- Shows how to use low energy (LE) and the GATT profile.
- Implements the proximity profile (PXP) using the GATT profile.
- Visit the PXP demonstration wiki for instructions for this demonstration.

FMP Demo

- Shows how to use low energy (LE) and the GATT profile.
- Implements the find me profile (FMP) using the GATT profile.
- Acts as an LE master and slave.
- Visit the FMP demonstration wiki for instructions for this demonstration.

Revision History

Revision History

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/stdterms.htm), evaluation

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated