# Test Report: PMP22083 Single Stage AC/DC LCC Resonant Converter Reference Design

# **TEXAS INSTRUMENTS**

# Description

This reference design provides up to 265-W constant voltage and constant current output from an 120- $V_{AC}$  input with a single-stage LCC resonant converter stage. The BOM cost of this design is highly optimized with the single-stage structure and the use of UCC256403 driver integrated LLC Resonant Controller. A UCC28910 primary-side regulated Flyback is applied as a bias coverter and allows the main power stage to be turned on and off. This design is able to achieve 88% peak efficiency with over 200-kHz switching frequency at 120  $V_{AC}$ .



Top and Bottom of Board

## **1 Test Prerequisites**

## **1.1 Voltage and Current Requirements**

 Table 1-1. Voltage and Current Requirements

| Parameter              | Specifications               |
|------------------------|------------------------------|
|                        | Specifications               |
| Input Voltage Range    | 102 $V_{AC}$ to 132 $V_{AC}$ |
| Input Frequency        | 50 Hz to 60 Hz               |
| Output Voltage Range   | 6 V to 22 V                  |
| Maximum Output Current | 12 A                         |

#### **1.2 Required Equipment**

- An AC source with > 500-W power capability
- A DC electronic load with > 25-V voltage rating and >300-W power level
- Two low-voltage DC sources to provide CCset and CVset voltages.
- One 5-V DC source to provide PSON signal.

#### **1.3 Considerations**

When testing the board, apply < 2.5 V on current PWM port (CCset) and < 5 V on voltage PWM port (CVset) before apply AC and PSON high signal.

## 1.4 Dimensions

Board length×width = 6.2 in × 4.2 in



## 2 Testing and Results

## 2.1 Efficiency Graphs

The following graph and table illustrate the efficiency data with directly-supply DC voltage across input capacitors C100 and C108 (that is,  $V_{BUS}$  to PGND). 5 V is applied to PSON, voltage PWM, and 5.4 V is applied to current PWM.

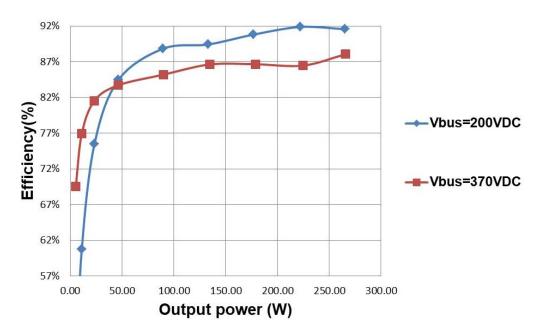



Figure 2-1. DC/DC Efficiency

|                     |                     | I able .            | 2-1. DC/DC Effi      | ciency               |                      |                |
|---------------------|---------------------|---------------------|----------------------|----------------------|----------------------|----------------|
| V <sub>IN</sub> (V) | I <sub>IN</sub> (A) | P <sub>IN</sub> (W) | V <sub>OUT</sub> (V) | I <sub>OUT</sub> (A) | P <sub>OUT</sub> (W) | Efficiency (%) |
| 204.75              | 1.415               | 289.79              | 22.079               | 12.0208              | 265.40               | 91.59          |
| 204.79              | 1.181               | 241.90              | 22.091               | 10.0630              | 222.30               | 91.90          |
| 204.85              | 0.951               | 194.87              | 22.095               | 8.0108               | 177.00               | 90.83          |
| 204.97              | 0.726               | 148.81              | 22.106               | 6.0207               | 133.09               | 89.44          |
| 205.09              | 0.493               | 101.09              | 22.108               | 4.0630               | 89.82                | 88.86          |
| 205.12              | 0.269               | 55.12               | 22.104               | 2.1065               | 46.56                | 84.47          |
| 205.13              | 0.152               | 31.08               | 22.107               | 1.0614               | 23.46                | 75.50          |
| 205.13              | 0.090               | 18.46               | 22.104               | 0.5075               | 11.22                | 60.77          |
| 205.13              | 0.067               | 12.57               | 22.101               | 0.2466               | 5.45                 | 43.36          |
| 371.72              | 0.812               | 301.95              | 22.129               | 12.0192              | 265.97               | 88.09          |
| 371.75              | 0.700               | 260.06              | 22.140               | 10.1595              | 224.93               | 86.49          |
| 371.84              | 0.555               | 206.25              | 22.138               | 8.0751               | 178.77               | 86.67          |
| 372.02              | 0.418               | 155.57              | 22.148               | 6.0861               | 134.79               | 86.64          |

Table 2-1. DC/DC Efficiency



| V <sub>IN</sub> (V) | I <sub>IN</sub> (A) | P <sub>IN</sub> (W) | V <sub>OUT</sub> (V) | I <sub>OUT</sub> (A) | P <sub>OUT</sub> (W) | Efficiency (%) |
|---------------------|---------------------|---------------------|----------------------|----------------------|----------------------|----------------|
| 372.10              | 0.284               | 105.56              | 22.141               | 4.0626               | 89.95                | 85.21          |
| 372.13              | 0.150               | 55.62               | 22.111               | 2.1064               | 46.57                | 83.74          |
| 372.13              | 0.078               | 28.76               | 22.092               | 1.0618               | 23.46                | 81.56          |
| 372.15              | 0.042               | 14.58               | 22.071               | 0.5083               | 11.22                | 76.94          |
| 372.15              | 0.023               | 7.85                | 22.065               | 0.2475               | 5.46                 | 69.56          |

 Table 2-1. DC/DC Efficiency (continued)

The following graph and table illustrate the efficiency data with 5 V applied to PSON, voltage PWM, and 5.4 V applied to current PWM. The input frequency is 60 Hz.

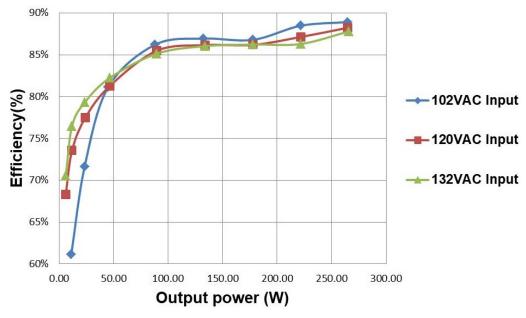


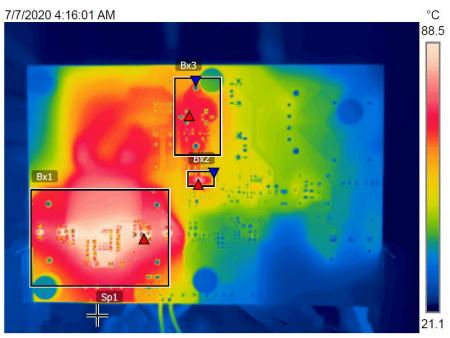

Figure 2-2. AC/DC Efficiency

5

|                     |                     | -                   | Table 2-2. AC | DC Efficiency        | /                    |                      |                |
|---------------------|---------------------|---------------------|---------------|----------------------|----------------------|----------------------|----------------|
| V <sub>IN</sub> (V) | I <sub>IN</sub> (A) | P <sub>IN</sub> (W) | P.F.          | V <sub>OUT</sub> (V) | I <sub>OUT</sub> (A) | P <sub>OUT</sub> (W) | Efficiency (%) |
| 102.10              | 3.941               | 297.70              | 0.740         | 22.018               | 12.0224              | 264.71               | 88.92          |
| 102.06              | 3.371               | 250.50              | 0.728         | 22.024               | 10.0634              | 221.64               | 88.48          |
| 102.02              | 2.804               | 205.00              | 0.716         | 22.030               | 8.0766               | 177.93               | 86.79          |
| 102.06              | 2.156               | 152.63              | 0.694         | 22.037               | 6.0214               | 132.70               | 86.94          |
| 101.96              | 1.502               | 102.20              | 0.667         | 22.037               | 3.9981               | 88.11                | 86.21          |
| 102.06              | 0.872               | 55.47               | 0.623         | 22.043               | 2.0415               | 45.00                | 81.13          |
| 102.07              | 0.544               | 32.68               | 0.588         | 22.042               | 1.0615               | 23.40                | 71.60          |
| 102.03              | 0.327               | 18.30               | 0.548         | 22.040               | 0.5076               | 11.19                | 61.13          |
| 120.06              | 3.472               | 300.20              | 0.720         | 22.037               | 12.0204              | 264.89               | 88.24          |
| 120.05              | 2.991               | 254.50              | 0.709         | 22.039               | 10.0623              | 221.76               | 87.14          |
| 120.04              | 2.484               | 206.60              | 0.693         | 22.050               | 8.0759               | 178.08               | 86.19          |
| 120.01              | 1.932               | 155.71              | 0.672         | 22.044               | 6.0863               | 134.16               | 86.16          |
| 120.06              | 1.356               | 104.79              | 0.644         | 22.053               | 4.0622               | 89.58                | 85.49          |
| 120.04              | 0.793               | 57.15               | 0.600         | 22.052               | 2.1059               | 46.44                | 81.26          |
| 120.01              | 0.464               | 31.13               | 0.559         | 22.048               | 1.0942               | 24.12                | 77.50          |
| 120.02              | 0.261               | 16.17               | 0.516         | 22.044               | 0.5394               | 11.89                | 73.55          |
| 119.98              | 0.157               | 8.98                | 0.478         | 22.041               | 0.2783               | 6.13                 | 68.31          |
| 13.97               | 3.240               | 302.50              | 0.707         | 22.031               | 12.0537              | 265.56               | 87.79          |
| 131.96              | 2.800               | 257.00              | 0.695         | 22.041               | 10.0628              | 221.79               | 86.30          |
| 132.07              | 2.305               | 206.50              | 0.679         | 22.047               | 8.0765               | 178.06               | 86.23          |
| 132.06              | 1.795               | 155.94              | 0.658         | 22.044               | 6.0867               | 134.18               | 86.04          |
| 132.04              | 1.263               | 105.21              | 0.631         | 22.048               | 4.0626               | 89.57                | 85.14          |
| 132.05              | 0.727               | 56.47               | 0.588         | 22.046               | 2.1062               | 46.43                | 82.23          |
| 132.04              | 0.410               | 29.51               | 0.544         | 22.045               | 1.0613               | 23.40                | 79.28          |
| 132.09              | 0.234               | 15.55               | 0.502         | 22.042               | 0.5394               | 11.89                | 76.47          |
| 132.01              | 0.142               | 8.70                | 0.465         | 22.039               | 0.2785               | 6.14                 | 70.53          |



## 2.2 Thermal Images


The following thermal images show a top view and bottom view of the board. The ambient temperature is 20°C with no forced air flow. The input is at 120  $V_{AC}$  and the output is at 22-V, 12-A loads.



| Measu | rements |         |
|-------|---------|---------|
| Bx1   | Max     | 90.3 °C |
| Bx2   | Max     | 67.1 °C |
|       | Min     | 59.5 °C |
|       | Average | 64.0 °C |
| Bx3   | Max     | 81.5 °C |
|       | Min     | 60.5 °C |
|       | Average | 72.2 °C |
| Bx4   | Max     | 93.5 °C |
|       | Min     | 44.6 °C |
|       | Average | 74.7 °C |
| Bx5   | Max     | 97.4 °C |
|       | Min     | 58.9 °C |
|       | Average | 73.3 °C |
| Sp1   |         | 24.7 °C |

Figure 2-3. Top-Side Thermal Image





| Measu | rements |          |
|-------|---------|----------|
| Bx1   | Max     | 100.0 °C |
| Bx2   | Max     | 82.5 °C  |
|       | Min     | 44.5 °C  |
|       | Average | 67.1 °C  |
| Bx3   | Max     | 75.9 °C  |
|       | Min     | 28.7 °C  |
|       | Average | 65.1 °C  |
| Sp1   |         | 23.8 °C  |



## 2.3 Frequency Response

Frequency responses are taken with directly-supplied DC voltage across input capacitors C100 and C108 (that is, V<sub>BUS</sub> to PGND). 5 V is applied to PSON, *Current PWM* and *Voltage PWM* voltage applied differently for different current and voltage regulation settings.

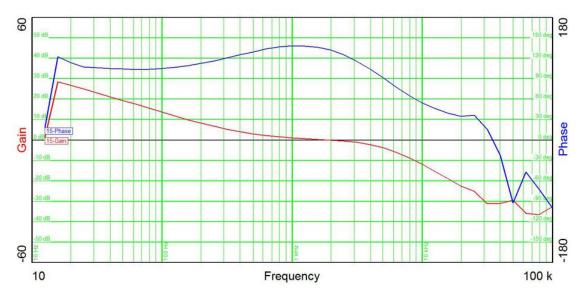



Figure 2-5. Constant Voltage Loop at 200-V<sub>DC</sub> Input and 24-V, 12-A Output

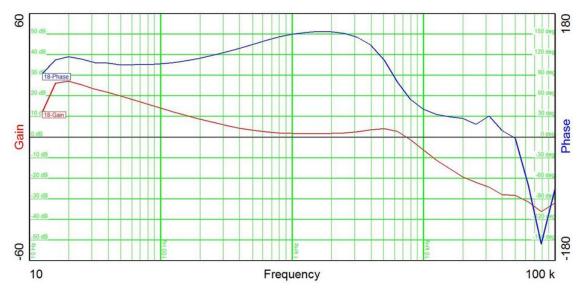



Figure 2-6. Constant Voltage Loop at 370-V<sub>DC</sub> Input and 24-V, 12-A Output



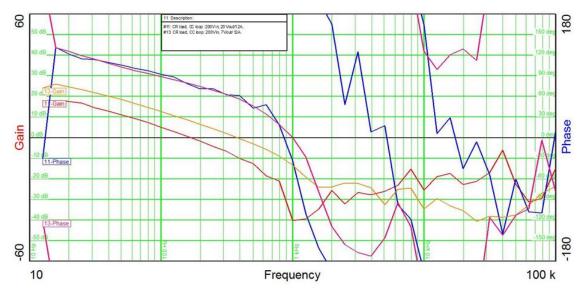



Figure 2-7. Constant Current Loop at 200-V<sub>DC</sub> Input With Constant Resistor Load

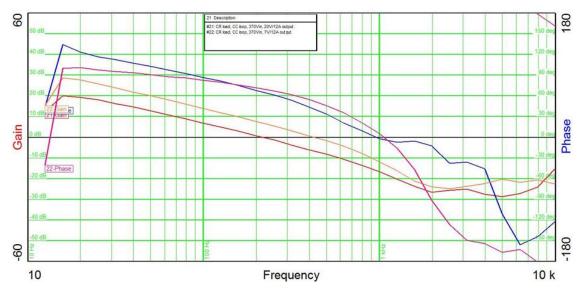



Figure 2-8. Constant Current Loop at 370-V $_{\rm DC}$  Input With Constant Resistor Load



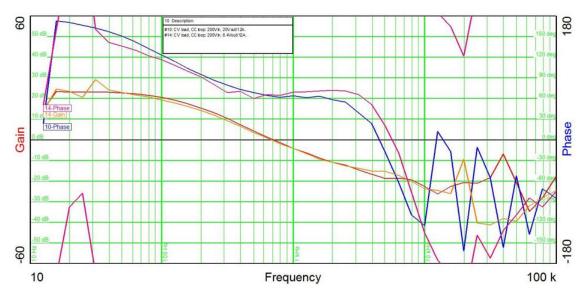



Figure 2-9. Constant Current Loop at 200-V  $_{\mbox{DC}}$  Input With Constant Voltage Load

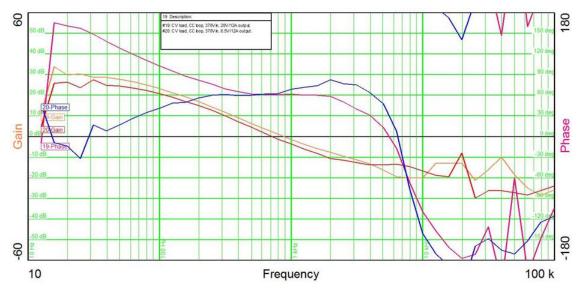



Figure 2-10. Constant Current Loop at 370-V<sub>DC</sub> Input With Constant Voltage Load



## 3 Waveforms

## 3.1 Start-up

The following images illustrate the output voltages at start-up. 5 V is given to PSON. *Current PWM* and *Voltage PWM* voltage are applied differently for different current and voltage regulation settings.

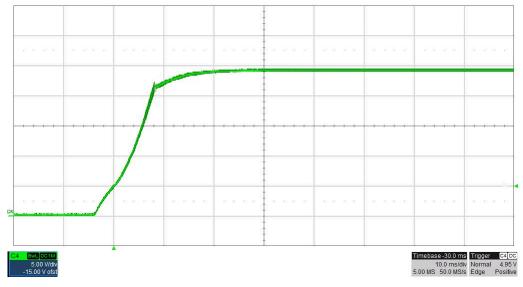



Figure 3-1. Start-up at 102-V<sub>AC</sub>, 60-Hz Input, 24-V Output With no Load

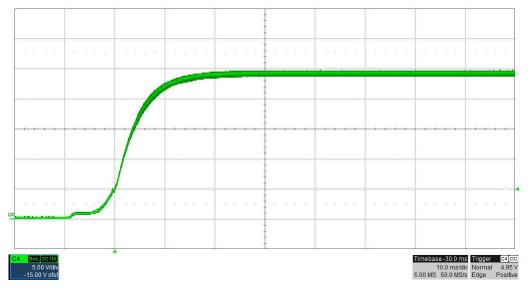



Figure 3-2. Start-up at 102-V<sub>AC</sub>, 60-Hz Input, 24-V, 4-A Output



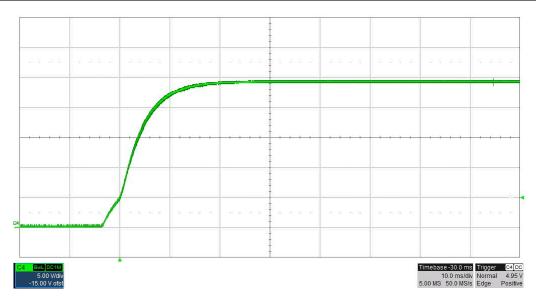



Figure 3-3. Start-up at 120-V<sub>AC</sub>, 60-Hz Input, 24-V Output With no Load

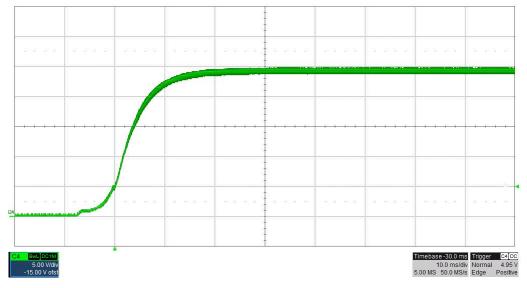



Figure 3-4. Start-up at 120-V<sub>AC</sub>, 60-Hz Input, 24-V, 4-A Output

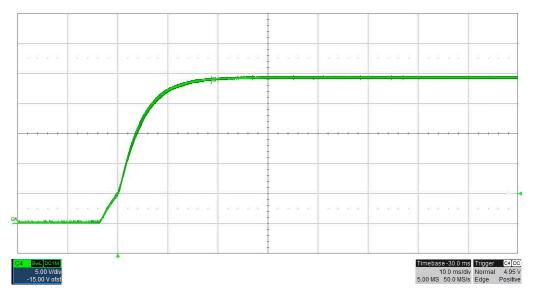



Figure 3-5. Start-up at 132-V<sub>AC</sub>, 60-Hz Input, 24-V Output With no Load

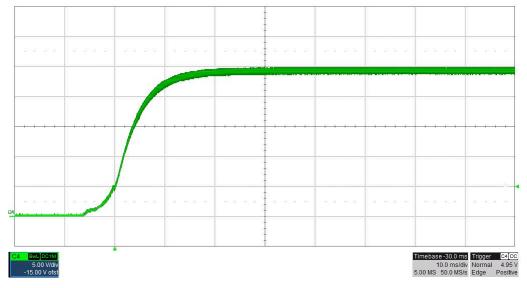



Figure 3-6. Start-up at 132-V<sub>AC</sub>, 60-Hz Input, 24-V, 4-A Output



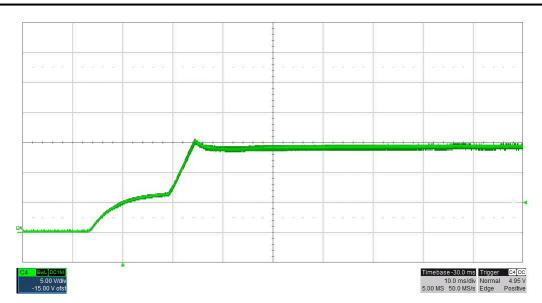



Figure 3-7. Start-up at 102-V<sub>AC</sub>, 60-Hz Input, Constant Resistor Load, 14-V, 5-A Output

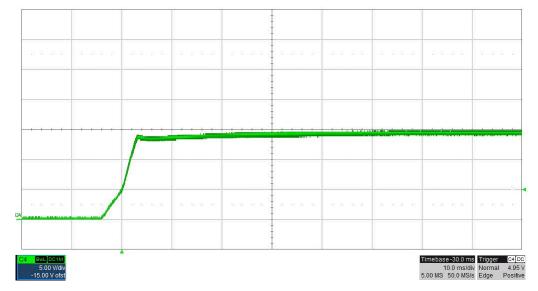



Figure 3-8. Start-up at 120-V<sub>AC</sub>, 60-Hz Input, Constant Resistor Load, 14-V, 5-A Output



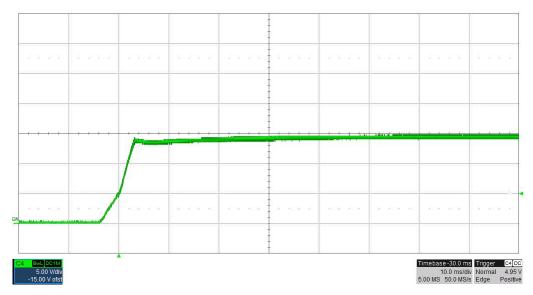



Figure 3-9. Start-up at 132-V<sub>AC</sub>, 60-Hz Input, Constant Resistor Load, 14-V, 5-A Output

#### 3.2 Switching Waveforms



The following figures show the switching behavior of the PMP22083.

C1: Q103\_V<sub>GS</sub>, C2: D102, C4: V<sub>OUT</sub>



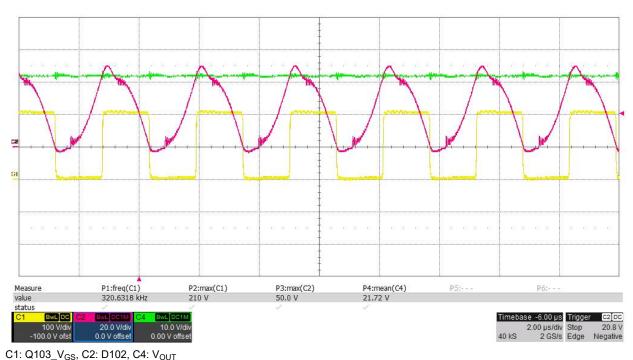
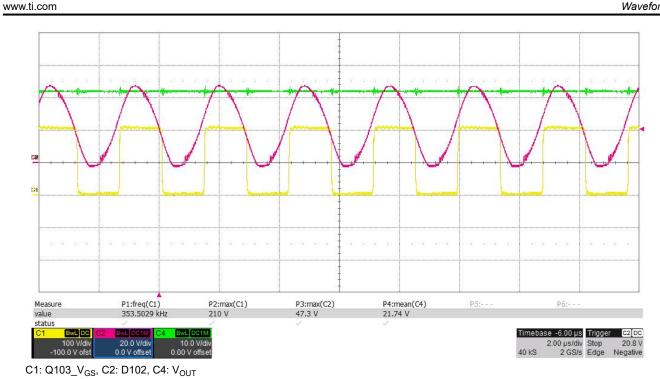
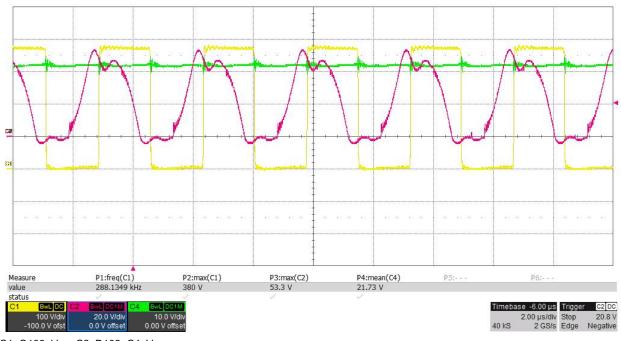
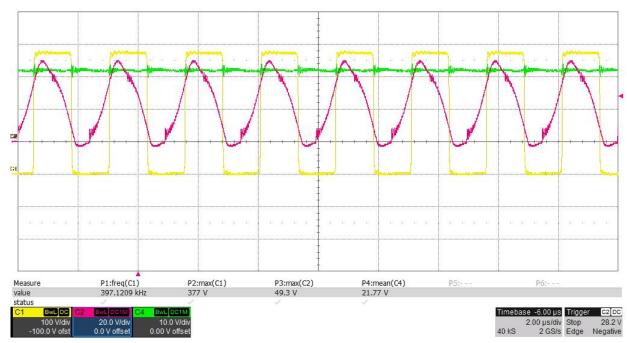





Figure 3-11. 200-V<sub>DC</sub> Input, 22-V, 4-A Output

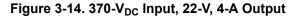


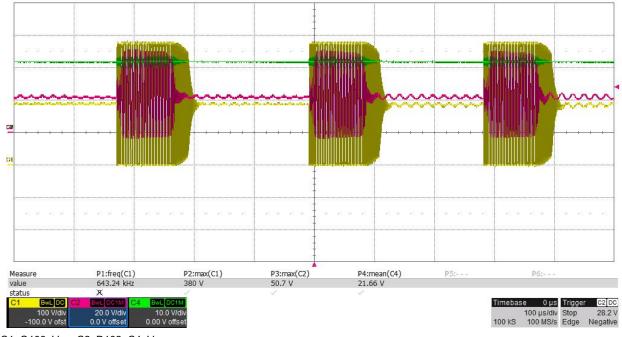







C1: Q103\_V<sub>GS</sub>, C2: D102, C4: V<sub>OUT</sub>


Figure 3-13. 370 V<sub>DC</sub> Input, 22-V, 12-A Output






C1: Q103\_V\_{GS}, C2: D102, C4: V\_{OUT}

Waveforms





C1: Q103\_V<sub>GS</sub>, C2: D102, C4: V<sub>OUT</sub>

Figure 3-15. 370-V<sub>DC</sub> Input, 22-V, 1-A Output

## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated