Test Report: PMP23420 Dual-Phase Interleaved Synchronous Buck Converter Reference Design for 48V Automotive Applications

Description

This reference design utilizes two LM5148-Q1 singlephase synchronous buck controllers configured as a dual-phase, interleaved, synchronous buck converter, The converter generates a regulated 5V output capable of delivering a nominal 30A of current to the load, with a peak current capability of 60A, accepting an input voltage of between 24V_{IN} to 60V_{IN} (48V_{IN} nominal). The design is built on a 6-layer PCB with 2oz copper for each of the six layers. The evaluation board measures 5.2in × 3.4in (132.08mm × 86.36mm); however, the actual converter design size measures approximately 55mm × 53mm. This board is optimized for high efficiency across the entire load current range, which is achieved by configuring the converter to run in Pulse Frequency Modulation (PFM) mode at light loads.

Features

- High efficiency
- Cost-effective
- Spread-spectrum switching reduces EMI
- Interleaved two-phase operation reduces ripple voltages and RMS currents

Applications

- Surround view system ECU
- ADAS domain controller
- Conditionally automated drive controller

Top of Board

Bottom of Board

1

1 Test Prerequisites

1.1 Voltage and Current Requirements

Parameter	Specifications
V _{IN}	48V _{DC} Nominal
	(24 V _{IN} minimum; 60 V _{IN} maximum)
V _{OUT}	5V _{DC}
I _{OUT}	30A nominal (60A peak)
F _{sw}	150kHz per phase (300kHz effective interleaved)

1.2 Required Equipment

- Power Supply
- Electronic Load
- DMMs
- Oscilloscope

1.3 Considerations

Unless stated otherwise, the tests performed in this test report are taken at the nominal 48V input voltage and 30A load current and the device is configured to PFM mode.

2 Testing and Results

2.1 Efficiency, Power Loss, and Load Regulation Graphs

Figure 2-1 through Figure 2-12 show the buck converter efficiency, power loss, and load regulation, at 24V, 48V, and 60V input voltages.

Figure 2-4. Efficiency (20A to 60A)

Figure 2-6. Power Loss (0A to 5A Load)

Figure 2-7. Power Loss (5A to 60A Load)

Figure 2-8. Power Loss (20A to 60A Load)

Texas Instruments

www.ti.com

Dual-Phase Interleaved Synchronous Buck Converter Reference Design for

6

48V Automotive Applications

Figure 2-9. Load Regulation (0A to 60A Load)

Figure 2-10. Load Regulation (0A to 5A Load)

Figure 2-11. Load Regulation (5A to 60A Load)

Figure 2-12. Load Regulation (20A to 60A Load)

Dual-Phase Interleaved Synchronous Buck Converter Reference Design for

48V Automotive Applications

2.2 Thermal Images

Figure 2-13 shows the buck converter thermal performance operating at 48V input and 30A load. The thermal test was conducted at room temperature with no airflow (natural convection), and the image was captured after thermal equilibrium was reached.

Natural convection (that is, no airflow); ambient at room temperature; thermal equilibrium reached

2.3 Dimensions

Figure 2-14 and Figure 2-15 present the top and bottom photos of the PMP23420 board, respectively. The board dimensions are 5.2in × 3.4in (132.08mm × 86.36mm). Remember that this is an evaluation board and has plenty of unutilized space, for ease of testing. The final design size can be significantly reduced to approximately 55mm × 53mm (or smaller), when omitting the low-side Schottky diodes, which are not absolutely necessary, and pushing the controller circuitry closer to the FETs.

Figure 2-14. Top of PMP23420 Board

Figure 2-15. Bottom of PMP23420 Board

3 Waveforms

3.1 Switching

Figure 3-1 through Figure 3-9 show the switch node voltages of the buck converter at various test conditions.

Figure 3-1. Switch Node Voltages, 24V Input, No Load, PFM Mode

Figure 3-2. Switch Node Voltages, 24V Input, No Load, FPWM Mode

Figure 3-3. Switch Node Voltages, 24V Input, 30A Load

Figure 3-4. Switch Node Voltages, 48V Input, No Load, PFM Mode

Figure 3-5. Switch Node Voltages, 48V Input, No Load, FPWM Mode

Figure 3-6. Switch Node Voltages, 48V Input, 30A Load

Figure 3-8. Switch Node Voltages, 60V Input, No Load, FPWM Mode

Figure 3-9. Switch Node Voltages, 60V Input, 30A Load

3.2 Output Voltage Ripple

Figure 3-10 through Figure 3-18 show the output voltage ripple at various test conditions

Figure 3-10. Output Voltage Ripple, 24V Input, No Figure 3-10. Output Voltage Ripple, 24V Input,

Figure 3-11. Output Voltage Ripple, 24V Input, No Load, FPWM Mode

Figure 3-12. Output Voltage Ripple, 24V Input, 30A Load

Figure 3-13. Output Voltage Ripple, 48V Input, No Load, PFM Mode

Figure 3-15. Output Voltage Ripple, 48V Input, 30A Load

Figure 3-16. Output Voltage Ripple, 60V Input, No Load, PFM Mode

Figure 3-18. Output Voltage Ripple, 60V Input, 30A Load

660

3.3 Load Transient Response

Figure 3-19 through Figure 3-21 show the load transient waveforms at various input voltages with the output undergoing a 20A-to-50A load step, with the device configured in FPWM mode.

Vout

P1:base(C4) 20.31 A

Figure 3-20. Load Transient Response, 48V Input, 20A-to-50A Load Step, FPWM Mode

P3.-

P4:-

P2:top(C4) 51.56 A

Figure 3-21. Load Transient Response, 60V Input, 20A-to-50A Load Step, FPWM Mode

3.4 Start-Up

Figure 3-22 through Figure 3-27 show the start-up waveforms of the converter at various test conditions.

Figure 3-22. Start-Up Into No Load, 24V Input

Figure 3-26. Start-Up Into No Load, 60V Input

18

48V Automotive Applications

Texas

INSTRUMENTS

www.ti.com

Figure 3-23. Start-Up Into 30A Constant-Resistance Load, 24V Input

Figure 3-25. Start-Up Into 30A Constant-Resistance Load, 48V Input

Figure 3-27. Start-Up Into 30A Constant-Resistance Load, 60V Input

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated