
�������� 	���
���������
����� ��� 	�	��
������� ����

Getting Started
Guide

1998 Microcontroller Products

Printed in U.S.A., January 1998
SDS

SPNU177

TMS470R1x
Code Generation Tools for C/C++

Getting Started Guide

Release 1.00

Literature Number: SPNU177
January 1998

Printed on Recycled Paper

Running Title—Attribute Reference

ii

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 1998, Texas Instruments Incorporated

iii

Preface

Read This First

About This Manual

The TMS470R1x Code Generation Tools for C/C++ Getting Started Guide tells
you how to install release 1.00 of the TMS470R1x C/C++ code generation
tools on your system. It also provides the following:

� The information you need to set environment variables for parameters that
you use often

� The information you need to get started using the compiler, linker, and
assembler

� A list of the media contents for your toolset, so you will know what
information is associated with each file you have installed

Notational Conventions

In this document, the following notational conventions are used:

� Program listings, program examples, and interactive displays are shown
in a special typeface . Examples use a bold version of the
special typeface for emphasis. Interactive displays use bold to
distinguish commands that you enter from items that the system displays
(such as prompts, command output, error messages, etc.). Some
interactive displays use italics to describe the type of information that
should be entered.

Here is a program example:

 .global inclw

start: MOV r6, #0
 MOV r7, #0

loop: BL inclw
 BCC loop

 .end

Notational Conventions / Related Documentation From Texas Instruments

iv

Here is an example of a command that you might enter:

set PATH=c:\ tool_dir ;%PATH%

To change your path statement to use the tools, enter the command text as
shown in bold and replace tool_dir with the name of your tools
directory.

� In syntax descriptions, the instruction, command, or directive is in a bold
typeface font and parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered.

Here is an example of a command that you might use:

mkdir tool_dir

In this example, you would type mkdir, as shown, and replace tool_dir with
the name of your directory.

� Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
do not enter the brackets themselves. Here is an example of a command
that has optional parameters:

SET C_DIR=pathname1[;pathname2 . . .]

Setting the C_DIR environment variable allows you to specify one or more
pathnames for the C/C++ compiler to search.

Related Documentation From Texas Instruments

The following books describe the TMS470R1x and related support tools. To
obtain a copy of any of these TI documents, call the Texas Instruments
Literature Response Center at (800)477–8924. When ordering, please
identify the book by its title and literature number.

TMS470R1x Assembly Language Tools User’s Guide (literature number
SPNU118) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the TMS470R1x devices.

TMS470R1x C Source Debugger User’s Guide (literature number
SPNU124) describes the TMS470R1x emulator and simulator versions
of the C source debugger interface. This book discusses various aspects
of the debugger interface, including window management, command
entry, code execution, data management, and breakpoints. It also
includes a tutorial that introduces basic debugger functionality.

 Related Documentation From Texas Instruments / Related Documentation / Trademarks

v Read This First

TMS470R1x Optimizing C/C++ Compiler User’s Guide (literature number
SPNU151) describes the TMS470R1x C/C++ compiler. This C/C++
compiler accepts ANSI standard C/C++ source code and produces
assembly language source code for the TMS470R1x devices.

TMS470R1x User’s Guide (literature number SPNU134) describes the
TMS470R1x RISC microcontroller, its architecture (including registers),
ICEBreaker module, interfaces (memory, coprocessor, and debugger),
16-bit and 32-bit instruction sets, and electrical specifications.

Related Documentation

You can use the following books to supplement this getting started guide:

The Annotated C++ Reference Manual , by Margaret A. Ellis and Bjarne
Stroustrup, published by Addison-Wesley Publishing Company,
Reading, Massachusetts, 1990

Working Paper for Draft Proposed International Standard for Information
Systems—Programming Language C++ X3J16/WG21 , American
National Standards Institute

Trademarks

HP-UX, HP 9000 Series 700, and PA-RISC are trademarks of
Hewlett-Packard Company.

Microsoft, Windows, and Windows NT are registered trademarks of Microsoft
Corporation.

PC is a trademark of International Business Machines Corp.

Pentium is a trademark of Intel Corporation.

SPARCstation is trademark of SPARC International, Inc., but licensed
exclusively to Sun Microsystems, Inc.

SunOS and Solaris are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited.

Related Documentation From Texas Instruments / Related Documentation / Trademarks

If You Need Assistance

vi

If You Need Assistance . . .

� World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
Microcontroller Home Page http://www.ti.com/sc/micro

� North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
TI Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
Microcontroller Hotline (281) 274-2370 Fax: (281) 274-4203 Email: micro@ti.com
Microcontroller Modem BBS (281) 274-3700 8-N-1

� Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:

Multi-Language Support +33 1 30 70 11 69 Fax: +33 1 30 70 10 32 Email: epic@ti.com
Deutsch +49 8161 80 33 11 or +33 1 30 70 11 68
English +33 1 30 70 11 65
Francais +33 1 30 70 11 64
Italiano +33 1 30 70 11 67

EPIC Modem BBS +33 1 30 70 11 99
European Factory Repair +33 4 93 22 25 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10

� Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200

� Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)

+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259

� Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.

Mail: Texas Instruments Incorporated Email: micro@ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the
book.

 Contents

vii

Contents

1 Setting Up the Code Generation Tools With Windows 95 and Windows NT 1-1.
Provides instructions for installing the code generation tools on PCs running Windows 95 or
Windows NT.

1.1 System Requirements 1-2.
Hardware checklist 1-2.
Software checklist 1-2.

1.2 Installing the Code Generation Tools 1-3.
1.3 Setting Up the Code Generation Environment 1-4.

Identifying the directory that contains the executable files (PATH statement) 1-5.
Identifying alternate directories for the assembler to search (A_DIR) 1-5.
Identifying alternate directories for the compiler and linker to search (C_DIR) 1-6.
Setting default shell options (C_OPTION) 1-6.
Specifying a temporary file directory (TMP) 1-7.
Resetting defined environment variables 1-7.
Verifying that the environment variables are set 1-7.

1.4 Where to Go From Here 1-8.

2 Setting Up the Code Generation Tools on a SPARCstation 2-1.
Provides instructions for installing the code generation tools on SPARCstations running SunOS
version 5.5x (or higher) or Solaris.

2.1 System Requirements 2-2.
Hardware checklist 2-2.
Software checklist 2-2.

2.2 Installing the Code Generation Tools 2-3.
Mounting the CD-ROM 2-3.
Copying the files 2-4.
Unmounting the CD-ROM 2-4.

2.3 Setting Up the Code Generation Environment 2-5.
Identifying the directory that contains the executable files (path statement) 2-6.
Identifying alternate directories for the assembler to search (A_DIR) 2-6.
Identifying alternate directories for the compiler and linker to search (C_DIR) 2-7.
Setting default shell options (C_OPTION) 2-7.
Specifying a temporary file directory (TMP) 2-8.
Reinitializing your shell 2-9.
Resetting defined environment variables 2-9.
Verifying that the environment variables are set 2-10.

2.4 Where to Go From Here 2-10.

Contents

viii

3 Setting Up the Code Generation Tools on an HP Workstation 3-1.
Provides instructions for installing the code generation tools on HP 9000 Series 700 PA-RISC
computers running HP-UX.

3.1 System Requirements 3-2.
Hardware checklist 3-2.
Software checklist 3-2.

3.2 Installing the Code Generation Tools 3-3.
Mounting the CD-ROM 3-3.
Copying the files 3-3.
Setting up the software tools using a C shell 3-4.
Setting up the software tools using a Korn shell 3-4.
Unmounting the CD-ROM 3-4.

3.3 Setting Up the Code Generation Environment 3-5.
Identifying the directory that contains the executable files (path statement) 3-6.
Identifying alternate directories for the assembler (A_DIR) 3-6.
Identifying alternate directories for the compiler and linker (C_DIR) 3-7.
Setting default shell options (C_OPTION) 3-7.
Specifying a temporary file directory (TMP) 3-8.
Reinitializing your shell 3-9.
Resetting defined environment variables 3-9.
Verifying that the environment variables are set 3-10.

3.4 Where to Go From Here 3-10.

4 Getting Started With the Code Generation Tools 4-1.
Provides instructions on how to invoke and use the assembler, linker, and compiler.

4.1 Getting Started With the Assembler and Linker 4-2.
4.2 Getting Started With the C/C++ Compiler 4-7.

5 Release Notes 5-1.
Describes the media contents and the supported C++ language features for this release.

5.1 Media Contents 5-2.
5.2 C++ Language Support 5-6.

Additional C++ language features supported 5-6.
Unsupported C++ language features defined in the X3J16/WG21 Working Paper 5-8. . .

A Glossary A-1.
Defines terms and acronyms used in this book.

 Figures

ix Contents

Tables

5–1 Media Contents for SPARCstations and HP Workstations 5-2.
5–2 Media Contents for PCs 5-4.

Figures

x

Examples

4–1 file1.asm 4-2.
4–2 file2.asm 4-2.
4–3 file2.lst, the Listing File Created by asm470 file2.asm –l 4-3.
4–4 Output Map File, lnker2.map 4-4.
4–5 Sample Linker Command File, linker2.cmd 4-5.
4–6 Linker Map File (linker2.map) Linked Using a Linker Command File 4-6.
4–7 function.c 4-7.
4–8 Screen Output After Compilation of function.c 4-7.

1-1

Setting Up the Code Generation Tools
With Windows 95 and Windows NT

This chapter helps you install release 1.00 of the TMS470R1x code generation
tools and set up your code-development environment on a 32-bit x86-based
or Pentium PC running Windows 95 or Windows NT . These tools in-
clude an optimizing C/C++ compiler and a full set of assembly language tools
for developing and manipulating assembly language and object (executable)
code.

The C/C++ compiler tools include the following:

� Compiler
� Interlist utility
� Library-build utility
� C++ name demangling utility

The assembly language tools include the following:

� Assembler
� Archiver
� Linker
� Absolute lister
� Cross-reference lister
� Hex-conversion utility

Topic Page

1.1 System Requirements 1-2.

1.2 Installing the Code Generation Tools 1-3.

1.3 Setting Up the Code Generation Environment 1-4.

1.4 Where to Go From Here 1-8.

Chapter 1

System Requirements

 1-2

1.1 System Requirements

To install and use the code generation tools, you need the items listed in the
following hardware and software checklists.

Hardware checklist

Host 32-bit x86-based or Pentium-based PC with an ISA/EISA bus

Memory Minimum of 16M bytes of RAM plus 32M bytes of hard-disk space
for temporary files and 4M bytes of hard-disk space for the code
generation tools

Display Monochrome or color monitor (color recommended)

Required hardware CD-ROM drive

Optional hardware Microsoft compatible mouse

Software checklist

Operating system One of the following:

� Windows 95 version 4.0 (or higher)
� Windows NT Workstation version 4.0

CD-ROMs TMS470R1x Code Generation Tools for C/C++

Installing the Code Generation Tools

1-3Setting Up the Code Generation Tools With Windows 95 and Windows NT

1.2 Installing the Code Generation Tools

This section helps you install the code generation tools on your hard-disk sys-
tem. The code generation tools package is shipped on CD-ROM. To install the
tools on a PC running Windows 95 or Windows NT, follow these steps:

1) Insert the TMS470R1x Code Generation Tools for C/C++ CD-ROM into
your CD-ROM drive.

2) Start Windows.

3) Select Run from the Start menu.

4) In the dialog box, enter the following command (where d: is the name of
your CD-ROM drive):

d:\ setup.exe

5) Click on OK.

6) Follow the on-screen instructions.

If you choose not to have the environment variables set up automatically, you
can set them up yourself in one of the following ways:

� If you are running Windows 95, you can set up the environment variables
in your autoexec.bat file.

� If you are running Windows NT, you can set up the environment variables
in the System applet of the control panel.

See Section 1.3, Setting Up the Code Generation Environment, on page 1-4,
for more information.

Setting Up the Code Generation Environment

 1-4

1.3 Setting Up the Code Generation Environment

Before or after you install the code generation tools, you can define environ-
ment variables that set certain software tool parameters that you normally use.
An environment variable is a special system symbol that you define and assign
to a string. A program uses this symbol to find or obtain certain types of in-
formation.

When you use environment variables, default values are set, making each
individual invocation of the tools simpler because these parameters are auto-
matically specified. When you invoke a tool, you can use command-line
options to override many of the defaults that are set with environment vari-
ables.

The code generation tools use the following environment variables:

� A_DIR
� C_DIR
� C_OPTION
� TMP

By default, the installation program modifies your autoexec.bat file and sets
up environment variables in the following manner:

set PATH=c:\ tool_dir ;%PATH%
set A_DIR=c:\ tool_dir
set C_DIR=c:\ tool_dir

These variables are set up in the registry under:

HKEY_CURRENT_USER\Environment

If you choose not to have the environment variables set up automatically, you
can set them up yourself in one of the following ways:

� If you are running Windows 95, you can modify your autoexec.bat file to
include the set commands above.

� If you are running Windows NT, you can set up the environment variables
in the System applet of the control panel. Enter the same commands that
you would enter on the command line in the System applet.

In addition to setting up environment variables, you must modify your path
statement. The following subsections describe how to modify your path state-
ment and how to define the environment variables that the code generation
tools use.

Setting Up the Code Generation Environment

1-5Setting Up the Code Generation Tools With Windows 95 and Windows NT

Identifying the directory that contains the executable files (PATH statement)

You must include the tool_dir directory in your PATH statement so that you can
specify the assembler and compiler tools without specifying the name of the
directory that contains the executable files.

� You can change the path information in one of the following ways:

� If you are running Windows 95, modify your autoexec.bat file to
change the path information by adding the following to the end of the
PATH statement:

;c:\ tool_dir

� If you are running Windows NT, modify the System applet of the Con-
trol Panel to change the path information by adding the following to the
end of the PATH statement:

;c:\ tool_dir

� If you set the PATH statement from the command line, enter the following:

set PATH=c:\ tool_dir ;%PATH%

The addition of ;%PATH% ensures that this PATH statement does not
undo the PATH statements in any other batch files (including the
autoexec.bat file).

Identifying alternate directories for the assembler to search (A_DIR)

The assembler uses the A_DIR environment variable to name alternate
directories for the assembler to search. To set the A_DIR environment vari-
able, use this syntax:

set A_DIR= pathname1[;pathname2 . . .]

The pathnames are directories that contain copy/include files or macro librar-
ies. You can separate the pathnames with a semicolon or with a blank. Once
you set A_DIR, you can use the .copy, .include, or .mlib directive in assembly
source without specifying path information.

If the assembler does not find the file in the directory that contains the current
source file or in directories named by the –i option (which names alternate
directories), it searches the paths named by the A_DIR environment variable.
For more information on the –i option, see the TMS470R1x Assembly
Language Tools User’s Guide or the TMS470R1x Optimizing C/C++ Compiler
User’s Guide.

Setting Up the Code Generation Environment

 1-6

Identifying alternate directories for the compiler and linker to search (C_DIR)

The compiler and linker use the C_DIR environment variable to name alter-
nate directories that contain #include files and function libraries. To set the
C_DIR environment variable, use this syntax:

set C_DIR=pathname1[;pathname2 . . .]

The pathnames are directories that contain #include files or libraries (such as
stdio.h). You can separate the pathnames with a semicolon or with a blank. In
C/C++ source, you can use the #include directive without specifying path in-
formation. Instead, you can specify the path information with C_DIR.

Setting default shell options (C_OPTION)

You may find it useful to set the compiler, assembler, and linker default shell
options using the C_OPTION environment variable. If you do this, the shell
uses the default options and/or input filenames that you name with C_OPTION
every time you run the shell.

Setting up default options with the C_OPTION environment variable is useful
when you want consecutive shell runs with the same set of options and/or input
files. After the shell reads the command line and the input filenames, it reads
the C_OPTION environment variable and processes it.

To set the C_OPTION environment variable, use this syntax:

set C_OPTION=option1 [option2 . . .]

Environment variable options are specified in the same way and have the
same meaning that they would if they were specified on the command line. For
example, if you want to always run quietly (the –q option), enable C/C++
source interlisting (the –s option), and link (the –z option), set up the C_OP-
TION environment variable as follows:

set C_OPTION=–qs –z

In the following examples, each time you run the compiler shell, it runs the
linker. Any options following –z on the command line or in C_OPTION are
passed to the linker. This enables you to use the C_OPTION environment vari-
able to specify default compiler and linker options and then specify additional
compiler and linker options on the shell command line. If you have set –z in
the environment variable and want to compile only, use the –c option of the
shell. These additional examples assume C_OPTION is set as shown above:

clp470 *.c ; compiles and links
clp470 –c *.c ; only compiles
clp470 *.c –z lnk.cmd ; compiles and links using a

; command file
clp470 –c *.c –z lnk.cmd ; only compiles (–c overrides –z)

Setting Up the Code Generation Environment

1-7Setting Up the Code Generation Tools With Windows 95 and Windows NT

For more information about shell options, see the TMS470R1x Optimizing
C/C++ Compiler User’s Guide. For more information about linker options, see
the TMS470R1x Assembly Language Tools User’s Guide.

Specifying a temporary file directory (TMP)

The compiler shell program creates intermediate files as it processes your pro-
gram. By default, the shell puts intermediate files in the current directory. How-
ever, you can name a specific directory for temporary files by using the TMP
environment variable.

Using the TMP environment variable allows use of a RAM disk or other file
systems. It also allows you to compile source files from a remote directory with-
out writing any files into the directory in which the source resides. This is useful
for compiling from protected directories.

To set the TMP environment variable, use this syntax:

set TMP=pathname

For example, to set up a directory named temp for intermediate files on your
hard drive, enter:

set TMP=c:\temp

Resetting defined environment variables

The environment variables that you define remain set until you reboot the sys-
tem. If you want to clear an environment variable, use this command:

set variable_name=

For example, to reset the A_DIR environment variable, enter:

set A_DIR=

Verifying that the environment variables are set

To verify that the environment variables are set, open a DOS box and enter:

set

This command lists the path and environment variables and their current
values.

Where to Go From Here

 1-8

1.4 Where to Go From Here

Your code generation tools are now installed on your Windows 95 or Windows
NT system. Now you should read the following:

� Chapter 4, Getting Started With the Code Generation Tools. This chapter
provides you with an overview of how to invoke and use the assembler,
linker, and compiler.

� Chapter 5, Release Notes. This chapter describes the media contents and
explains the C++ language features supported by release 1.00 of the code
generation tools.

2-1

Setting Up the Code Generation Tools
on a SPARCstation

This chapter helps you install release 1.00 of the TMS470R1x code generation
tools and set up your code-development environment on a SPARCstation
running SunOS version 5.5x or higher (also known as Solaris version 2.5x
or higher). These tools include an optimizing C/C++ compiler and a full set of
assembly language tools for developing and manipulating assembly language
and object (executable) code.

The C/C++ compiler tools include the following:

� Compiler
� Interlist utility
� Library-build utility
� C++ name demangling utility

The assembly language tools include the following:

� Assembler
� Archiver
� Linker
� Absolute lister
� Cross-reference lister
� Hex-conversion utility

Topic Page

2.1 System Requirements 2-2.

2.2 Installing the Code Generation Tools 2-3.

2.3 Setting Up the Code Generation Environment 2-5.

2.4 Where to Go From Here 2-10.

Chapter 2

System Requirements

 2-2

2.1 System Requirements

To install and use the code generation tools, you need the items in the following
hardware and software checklists.

Hardware checklist

Host SPARCstation-compatible system with a SPARCstation class 2 or
higher performance

Display Monochrome or color monitor (color recommended)

Disk space 4M bytes of disk space

Required hardware CD-ROM drive

Optional hardware Mouse

Software checklist

Operating system SunOS version 5.5x or higher (also known as Solaris 2.5x or higher)

Root privileges Root privileges to mount and unmount the CD-ROM

CD-ROMs TMS470R1x Code Generation Tools for C/C++

Installing the Code Generation Tools

2-3Setting Up the Code Generation Tools on a SPARCstation

2.2 Installing the Code Generation Tools

This section helps you install the code generation tools on your hard-disk sys-
tem. The software package is shipped on a CD-ROM. To install the tools on
a SPARCstation running SunOS or Solaris, you must mount the CD-ROM,
copy the files to your system, and unmount the CD-ROM.

Note:

You must have root privileges to mount or unmount the CD-ROM. If you do
not have root privileges, get help from your system administrator.

Mounting the CD-ROM

The first step in installing the code generation tools is to mount the CD-ROM.

1) If your CD-ROM drive is already attached, load the CD-ROM into the drive
and enter the following command from a command shell:

cd /cdrom/cdrom0/sunos

2) If you do not have a CD-ROM drive attached, you must shut down your
system to the PROM level, attach the CD-ROM drive, and enter the follow-
ing command:

boot –r

After you log into your system, load the CD-ROM into the drive and enter
the following command from a command shell:

cd /cdrom/cdrom0/sunos

Installing the Code Generation Tools

 2-4

Copying the files

Be sure you are not logged on as root. After you mount the CD-ROM, you must
create the directory that will contain the software tools and copy the software
to that directory.

1) Create a tools directory on your hard disk. To create this directory, enter:

mkdir / your_pathname / tool_dir

2) Copy the files from the CD-ROM to your hard-disk system:

cp –r * / your_pathname / tool_dir

Unmounting the CD-ROM

You must unmount the CD-ROM after copying the files. From a command
shell, enter:

cd
eject

Setting Up the Code Generation Environment

2-5Setting Up the Code Generation Tools on a SPARCstation

2.3 Setting Up the Code Generation Environment

Before or after you install the code generation tools, you can define environ-
ment variables that set certain software tool parameters you normally use. An
environment variable is a special system symbol that you define and assign
to a string. A program uses this symbol to find or obtain certain types of
information.

When you use environment variables, default values are set, making each
individual invocation of the tools simpler because these parameters are auto-
matically specified. When you invoke a tool, you can use command-line op-
tions to override many of the defaults that are set with environment variables.

The code generation tools use the following environment variables:

� A_DIR
� C_DIR
� C_OPTION
� TMP

You can set up the environment variables on the command line or in your .login
or .cshrc file (for C shells) or .profile file (for Bourne or Korn shells). To set up
these environment variables in your system initialization file, enter the same
commands that you would enter on the command line in the file.

In addition to setting up environment variables, you must modify your path
statement. The following subsections describe how to modify your path state-
ment and how to define the environment variables that the code generation
tools use.

Setting Up the Code Generation Environment

 2-6

Identifying the directory that contains the executable files (path statement)

You must include the tool_dir directory in your path statement so that you can
specify the assembler and compiler tools without specifying the name of the
directory that contains the executable files.

� If you modify your .cshrc file (for C shells) or .profile file (for Bourne or Korn
shells) to change the path information, add the following path to the end
of the path statement:

/ your_pathname / tool_dir

� If you set the path statement from the command line, use this format:

� For C shells:

set path=(/ your_pathname / tool_dir $path)

� For Bourne or Korn shells:

PATH=/ your_pathname / tool_dir $PATH

The addition of $path or $PATH ensures that this path statement does not
undo the path statements in the .cshrc or .profile file.

Identifying alternate directories for the assembler to search (A_DIR)

The assembler uses the A_DIR environment variable to name alternate
directories for the assembler to search. To set the A_DIR environment vari-
able, use this syntax:

� For C shells:

setenv A_DIR ” pathname1[;pathname2 . . .]”

� For Bourne or Korn shells:

A_DIR=” pathname1[;pathname2 . . .]”
export A_DIR

(Be sure to enclose the directory names in quotes.)

The pathnames are directories that contain copy/include files or macro librar-
ies. You can separate the pathnames with a semicolon or a blank. Once you
set A_DIR, you can use the .copy, .include, or .mlib directive in assembly
source without specifying path information.

If the assembler does not find the file in the directory that contains the current
source file or in directories named by the –i option (which names alternate di-
rectories), it searches the paths named by the A_DIR environment variable.

Setting Up the Code Generation Environment

2-7Setting Up the Code Generation Tools on a SPARCstation

For more information on the –i option, see the TMS470R1x Assembly Lan-
guage Tools User’s Guide or the TMS470R1x Optimizing C/C++ Compiler
User’s Guide.

Identifying alternate directories for the compiler and linker to search (C_DIR)

The compiler and linker use the C_DIR environment variable to name alter-
nate directories that contain #include files and function libraries. To set the
C_DIR environment variable, use this syntax:

� For C shells:

setenv C_DIR “ pathname1[;pathname2 . . .]”

� For Bourne or Korn shells:

C_DIR=“ pathname1[;pathname2 . . .]”
export C_DIR

(Be sure to enclose the directory names in quotes.)

The pathnames are directories that contain #include files or libraries (such as
stdio.h). You can separate pathnames with a semicolon or with blanks. In
C/C++ source, you can use the #include directive without specifying path in-
formation. Instead, you can specify the path information with C_DIR.

Setting default shell options (C_OPTION)

You may find it useful to set the compiler, assembler, and linker default shell
options using the C_OPTION environment variable. If you do this, the shell
uses the default options and/or input filenames that you name with C_OPTION
every time you run the shell.

Setting up default options with the C_OPTION environment variable is useful
when you want consecutive shell runs with the same set of options and/or input
files. After the shell reads the command line and the input filenames, it reads
the C_OPTION environment variable and processes it.

To set the C_OPTION environment variable, use this syntax:

� For C shells:

setenv C_OPTION ” option1 [option2 . . .]”

� For Bourne or Korn shells:

C_OPTION=” option1 [option2 . . .]”
export C_OPTION

(Be sure to enclose the options in quotes.)

Setting Up the Code Generation Environment

 2-8

Environment variable options are specified in the same way and have the
same meaning that they would if they were specified on the command line. For
example, if you want to always run quietly (the –q option), enable C/C++
source interlisting (the –s option), and link (the –z option), set up the
C_OPTION environment variable as follows:

� For C shells:

setenv C_OPTION ”–qs –z”

� For Bourne or Korn shells:

C_OPTION=”–qs –z”
export C_OPTION

In the following examples, each time you run the compiler shell, it runs the
linker. Any options following –z on the command line or in C_OPTION are
passed to the linker. This enables you to use the C_OPTION environment vari-
able to specify default compiler and linker options and then specify additional
compiler and linker options on the shell command line. If you have set –z in
the environment variable and want to compile only, use the –c option of the
shell. These examples assume C_OPTION is set as shown above:

clp470 *.c ; compiles and links
clp470 –c *.c ; only compiles
clp470 *.c –z lnk.cmd ; compiles and links using a

; command file
clp470 –c *.c –z lnk.cmd ; only compiles (–c overrides –z)

For more information about shell options, see the TMS470R1x Optimizing
C/C++ Compiler User’s Guide. For more information about linker options, see
the TMS470R1x Assembly Language Tools User’s Guide.

Specifying a temporary file directory (TMP)

The compiler shell program creates intermediate files as it processes your pro-
gram. By default, the shell puts intermediate files in the current directory. How-
ever, you can name a specific directory for temporary files by using the TMP
environment variable.

Using the TMP environment variable allows use of a RAM disk or other file
systems. It also allows you to compile source files from a remote directory with-
out writing any files into the directory in which the source resides. This is useful
for compiling from protected directories.

Setting Up the Code Generation Environment

2-9Setting Up the Code Generation Tools on a SPARCstation

To set the TMP environment variable, use this syntax:

� For C shells:

setenv TMP ” pathname”

� For Bourne or Korn shells:

TMP=” pathname”
export TMP

(Be sure to enclose the directory name in quotes.)

For example, to set up a directory named temp for intermediate files, enter:

� For C shells:

setenv TMP ”/temp”

� For Bourne or Korn shells:

TMP=”/temp”
export TMP

Reinitializing your shell

When you modify your shell configuration file, you must ensure that the
changes are made to your current session. Use one of the following com-
mands to reread your system initialization file:

� For C shells:

source ~/.cshrc

� For Bourne or Korn shells:

source ~/.profile

Resetting defined environment variables

The environment variables that you define remain set until you reboot the sys-
tem. If you want to clear an environment variable, use this command:

� For C shells:

unsetenv variable_name

� For Bourne or Korn shells:

unset variable_name

For example, to reset the A_DIR environment variable, enter one of these
commands:

� For C shells:

unsetenv A_DIR

� For Bourne or Korn shells:

unset A_DIR

Where to Go From Here

 2-10

Verifying that the environment variables are set

To verify that the environment variables are set, enter:

set

This command lists the path and environment variables and their current
values.

2.4 Where to Go From Here

Your code generation tools are now installed. Now you should read the follow-
ing:

� Chapter 4, Getting Started With the Code Generation Tools. This chapter
provides you with an overview of how to invoke and use the assembler,
linker, and compiler.

� Chapter 5, Release Notes. This chapter describes the media contents and
explains the C++ language features supported by release 1.00 of the code
generation tools.

Setting Up the Code Generation Environment / Where to Go From Here

3-1

Setting Up the Code Generation Tools
on an HP Workstation

This chapter helps you install release 1.00 of the TMS470R1x code generation
tools and set up your code-development environment on an HP 9000 Series
700 PA-RISC computer with HP-UX 10.2x. These tools include an opti-
mizing C/C++ compiler and a full set of assembly language tools for develop-
ing and manipulating assembly language and object (executable) code.

The C/C++ compiler tools include the following:

� Compiler
� Interlist utility
� Library-build utility
� C++ name demangling utility

The assembly language tools include the following:

� Assembler
� Archiver
� Linker
� Absolute lister
� Cross-reference lister
� Hex-conversion utility

Topic Page

3.1 System Requirements 3-2.

3.2 Installing the Code Generation Tools 3-3.

3.3 Setting Up the Code Generation Environment 3-5.

3.4 Where to Go From Here 3-10.

Chapter 3

System Requirements

 3-2

3.1 System Requirements

To install and use the code generation tools, you need the items in the following
hardware and software checklists.

Hardware checklist

Host An HP 9000 Series 700 PA-RISC computer

Display Monochrome or color monitor (color recommended)

Disk space 4M bytes of disk space

Required hardware CD-ROM drive

Optional hardware Mouse

Software checklist

Operating system HP-UX 10.2x operating system

Root privileges Root privileges to mount and unmount the CD-ROM

CD-ROMs TMS470R1x Code Generation Tools for C/C++

Installing the Code Generation Tools

3-3Setting Up the Code Generation Tools on an HP Workstation

3.2 Installing the Code Generation Tools

This section helps you install the code generation tools on your hard-disk sys-
tem. The software package is shipped on a CD-ROM. To install the tools on
an HP workstation, you must mount the CD-ROM, copy the files to your sys-
tem, and unmount the CD-ROM.

Note:

You must have root privileges to mount or unmount the CD-ROM. If you do
not have root privileges, get help from your system administrator.

Mounting the CD-ROM

As root, you can mount the CD-ROM using the UNIX mount command or the
SAM (system administration manager):

� To use the UNIX mount command, enter the following command from a
command shell:

mount –F cdfs –o cdcase /dev/dsk/ your_cdrom_device /cdrom
exit

Make the hp directory on the CD-ROM the current directory. For example,
if the CD-ROM is mounted at /cdrom, enter:

cd /cdrom/hp

� To use SAM to mount the CD-ROM, see System Administration Tasks, the
HP documentation about SAM, for instructions.

Copying the files

After you mount the CD-ROM, log out as root and log back on as yourself. You
must create the directory that will contain the software tools and copy the soft-
ware to that directory.

1) Create a tools directory on your hard disk. To create this directory, enter:

mkdir / your_pathname / tool_dir

2) Copy the files from the CD-ROM to your hard-disk system:

cp –r * / your_pathname / tooldir

Installing the Code Generation Tools

 3-4

Setting up the software tools using a C shell

If you are using a C shell, enter the following commands:

setenv C_DIR ” tool_dir ”
setenv A_DIR ” tool_dir ”
set path=(tool_dir $path)

You can move the setenv and set path commands into your .login or .cshrc
file to avoid entering these commands each time you invoke a new shell.

Setting up the software tools using a Korn shell

If you are using a Bourne or Korn shell, enter the following commands:

C_DIR=tool_dir
A_DIR= tool_dir
PATH=tool_dir :$PATH

You can move the environment variable instructions into your .kshrc file to
avoid entering these commands each time you invoke a new shell.

Unmounting the CD-ROM

You must unmount the CD-ROM after copying the files. As root, enter the fol-
lowing commands from a command shell:

cd
umount /cdrom
exit

Setting Up the Code Generation Environment

3-5Setting Up the Code Generation Tools on an HP Workstation

3.3 Setting Up the Code Generation Environment

Before or after you install the code generation tools, you can define environ-
ment variables that set certain software tool parameters you normally use. An
environment variable is a special system symbol that you define and assign
to a string. A program uses this symbol to find or obtain certain types of
information.

When you use environment variables, default values are set, making each
individual invocation of the tools simpler because these parameters are auto-
matically specified. When you invoke a tool, you can use command-line op-
tions to override many of the defaults that are set with environment variables.

The code generation tools use the following environment variables:

� A_DIR
� C_DIR
� C_OPTION
� TMP

You can set up the environment variables on the command line or in your .login
or .cshrc file (for C shells) or .profile file (for Bourne or Korn shells). To set up
these environment variables in your system initialization file, enter the same
commands that you would enter on the command line in the file.

In addition to setting up environment variables, you must modify your path
statement. The following subsections describe how to modify your path state-
ment and how to define the environment variables that the code generation
tools use.

Setting Up the Code Generation Environment

 3-6

Identifying the directory that contains the executable files (path statement)

You must include the tool_dir directory in your path statement so that you can
specify the assembler and compiler tools without specifying the name of the
directory that contains the executable files.

� If you modify your .cshrc file (for C shells) or .profile file (for Bourne or Korn
shells) to change the path information, add the following path to the end
of the path statement:

/your_pathname /tool_dir

� If you set the path statement from the command line, use this format:

� For C shells:

set path=(/ your_pathname /tool_dir $path)

� For Bourne or Korn shells:

PATH=/your_pathname /tool_dir $PATH

The addition of $path or $PATH ensures that this path statement does not
undo the path statements in the .cshrc or .profile file.

Identifying alternate directories for the assembler (A_DIR)

The assembler uses the A_DIR environment variable to name alternate
directories for the assembler to search. To set the A_DIR environment vari-
able, use this syntax:

� For C shells:

setenv A_DIR ” pathname1[;pathname2 …]”

� For Bourne or Korn shells:

A_DIR=” pathname1[;pathname2 …]”
export A_DIR

(Be sure to enclose the directory names in quotes.)

The pathnames are directories that contain copy/include files or macro librar-
ies. You can separate the pathnames with a semicolon or a blank. Once you
set A_DIR, you can use the .copy, .include, or .mlib directive in assembly
source without specifying path information.

If the assembler does not find the file in the directory that contains the current
source file or in directories named by the –i option (which names alternate
directories), it searches the paths named by the A_DIR environment variable.
For more information on the –i option, see the TMS470R1x Assembly
Language Tools User’s Guide or the TMS470R1x Optimizing C/C++ Compiler
User’s Guide.

Setting Up the Code Generation Environment

3-7Setting Up the Code Generation Tools on an HP Workstation

Identifying alternate directories for the compiler and linker (C_DIR)

The compiler and linker use the C_DIR environment variable to name alter-
nate directories that contain #include files and libraries. To set the C_DIR envi-
ronment variable, use this syntax:

� For C shells:

setenv C_DIR “ pathname1[;pathname2 . . .]”

� For Bourne or Korn shells:

C_DIR=“ pathname1[;pathname2 . . .]”
export C_DIR

(Be sure to enclose the directory names in quotes.)

The pathnames are directories that contain #include files or libraries (such as
stdio.h). You can separate pathnames with a semicolon or with blanks. In
C/C++ source, you can use the #include directive without specifying path
information. Instead, you can specify the path information with C_DIR.

Setting default shell options (C_OPTION)

You may find it useful to set the compiler, assembler, and linker shell default
options using the C_OPTION environment variable. If you do this, the shell
uses the default options and/or input filenames that you name with C_OPTION
every time you run the shell.

Setting up default options with the C_OPTION environment variable is useful
when you want consecutive shell runs with the same set of options and/or input
files. After the shell reads the command line and the input filenames, it reads
the C_OPTION environment variable and processes it.

The set the C_OPTION environment variable, use this syntax:

� For C shells:

setenv C_OPTION ” option1 [option2 . . .]”

� For Bourne or Korn shells:

C_OPTION=” option1 [option2 . . .]”
export C_OPTION

(Be sure to enclose the options in quotes.)

Setting Up the Code Generation Environment

 3-8

Environment variable options are specified in the same way and have the
same meaning that they would if they were specified on the command line. For
example, if you want to always run quietly (the –q option), enable C/C++
source interlisting (the –s option), and link (the –z option), set up the C_OP-
TION environment variable as follows:

� For C shells:

setenv C_OPTION ”–qs –z”

� For Bourne or Korn shells:

C_OPTION=”–qs –z”
export C_OPTION

In the following examples, each time you run the compiler shell, it runs the
linker. Any options following –z on the command line or in C_OPTION are
passed to the linker. This enables you to use the C_OPTION environment vari-
able to specify default compiler and linker options and then specify additional
compiler and linker options on the shell command line. If you have set –z in
the environment variable and want to compile only, use the –c option of the
shell. These examples assume C_OPTION is set as shown above:

clp470 *.c ; compiles and links
clp470 –c *.c ; only compiles
clp470 *.c –z lnk.cmd ; compiles and links using a

; command file
clp470 –c *.c –z lnk.cmd ; only compiles (–c overrides –z)

For more information about shell options, see the TMS470R1x Optimizing
C/C++ Compiler User’s Guide. For more information on linker options, see the
TMS470R1x Assembly Language Tools User’s Guide.

Specifying a temporary file directory (TMP)

The compiler shell program creates intermediate files as it processes your
program. By default, the shell puts intermediate files in the current directory.
However, you can name a specific directory for temporary files by using the
TMP environment variable.

Using the TMP environment variable allows use of a RAM disk or other file
systems. It also allows you to compile source files from a remote directory with-
out writing any files into the directory in which the source resides. This is useful
for compiling from protected directories.

Setting Up the Code Generation Environment

3-9Setting Up the Code Generation Tools on an HP Workstation

To set the TMP environment variable, use this syntax:

� For C shells:

setenv TMP ” pathname”

� For Bourne or Korn shells:

TMP=” pathname”
export TMP

(Be sure to enclose the directory name in quotes.)

For example, to set up a directory named temp for intermediate files, enter:

� For C shells:

setenv TMP ”/temp”

� For Bourne or Korn shells:

TMP=”/temp”
export TMP

Reinitializing your shell

When you modify your shell configuration file, you must ensure that the
changes are made to your current session. Use one of the following com-
mands to reread your system initialization file:

� For C shells:

source ~/.cshrc

� For Bourne or Korn shells:

source ~/.profile

Resetting defined environment variables

The environment variables that you define remain set until you reboot the sys-
tem. If you want to clear an environment variable, use this command:

� For C shells:

unsetenv variable name

� For Bourne or Korn shells:

unset variable name

For example, to reset the A_DIR environment variable, enter one of these
commands:

� For C shells:

unsetenv A_DIR

� For Bourne or Korn shells:

unset A_DIR

Where to Go From Here

 3-10

Verifying that the environment variables are set

To verify that the environment variables are set, enter:

set

This command lists the path and environment variables and their current
values.

3.4 Where to Go From Here

Your code generation tools are now installed. Now you should read the follow-
ing:

� Chapter 4, Getting Started With the Code Generation Tools. This chapter-
provides you with an overview of how to invoke and use the assembler,
linker, and compiler.

� Chapter 5, Release Notes. This chapter describes the media contents and
explains the C++ language features supported by release 1.00 of the code
generation tools.

Setting Up the Code Generation Environment / Where to Go From Here

4-1

Getting Started With the
Code Generation Tools

This chapter helps you start using the assembler, linker, and compiler by
providing a quick walkthrough of these tools. For more information about
invoking and using these tools, see the TMS470R1x Assembly Language
Tools User’s Guide and the TMS470R1x Optimizing C/C++ Compiler User’s
Guide.

Topic Page

4.1 Getting Started With the Assembler and Linker 4-2.

4.2 Getting Started With the C/C++ Compiler 4-7.

Chapter 4

Getting Started With the Assembler and Linker

 4-2

4.1 Getting Started With the Assembler and Linker

This section provides a quick walkthrough of the assembler and linker so that
you can get started without reading the entire TMS470R1x Assembly
Language Tools User’s Guide.

1) Create two short source files to use for the walkthrough; call them
file1.asm and file2.asm. (See Example 4–1 and Example 4–2.)

Example 4–1. file1.asm

 .global inclw

start: MOV r6, #0
 MOV r7, #0

loop: BL inclw
 BCC loop

 .end

Example 4–2. file2.asm

 .global inclw

inclw: ADDS r7, r7, #1
 ADDCSS r6, r6, #1
 MOV pc, lr

 .end

2) Enter the following command to assemble file1.asm:

asm470 file1

The asm470 command invokes the assembler. The input source file is
file1.asm. (If the input file extension is .asm, you do not have to specify the
extension; the assembler uses .asm as the default.)

This example creates an object file called file1.obj. The assembler creates
an object file only if there are no errors in assembly. You can specify a
name for the object file, but if you do not, the assembler uses the input file-
name with the extension .obj.

Getting Started With the Assembler and Linker

4-3Getting Started With the Code Generation Tools

3) Now enter the following command to assemble file2.asm:

asm470 file2.asm –l

This time, the assembler creates an object file called file2.obj. The –l
(lowercase L) option tells the assembler to create a listing file; the listing
file for this example is called file2.lst. It is not necessary to create a listing
file, but you can use the listing file to verify that the assembly has resulted
in the desired object code. The listing file for this example is shown in
Example 4–3.

Example 4–3. file2.lst, the Listing File Created by asm470 file2.asm –l

TMS470 COFF Assembler Version 1.00 Sat Feb 8 15:22:13 1997
Copyright (c) 1996–1997 Texas Instruments Incorporated

file2.asm PAGE 1

 1
 2 .global inclw
 3
 4 00000000 E2977001 inclw: ADDS r7, r7, #1
 5 00000004 22966001 ADDCSS r6, r6, #1
 6 00000008 E1A0F00E MOV pc, lr
 7
 8 .end

 No Errors, No Warnings

4) Now enter the following command to link file1.obj and file2.obj:

lnk470 file1 file2 –m lnker2.map –o prog.out

The lnk470 command invokes the linker. The input object files are file1.obj
and file2.obj. (If the input file extension is .obj, you do not have to specify
the extension; the linker uses .obj as the default.) The linker combines
file1.obj and file2.obj to create an executable object module called
prog.out. The –o option supplies the name of the output module.
Example 4–4 shows the map file resulting from this operation. (The map
file is produced only if you use the –m option.)

Getting Started With the Assembler and Linker

 4-4

Example 4–4. Output Map File, lnker2.map

TMS470 COFF Linker Version 1.00

Sat Feb 8 15:24:43 1997

OUTPUT FILE NAME: <prog.out>
ENTRY POINT SYMBOL: 0

SECTION ALLOCATION MAP

 output attributes/
section page origin length input sections
–––––––– –––– –––––––––– –––––––––– ––––––––––––––––
.text 0 00000000 0000001c
 00000000 00000010 file1.obj (.text)
 00000010 0000000c file2.obj (.text)

.const 0 00000000 00000000 UNINITIALIZED

.data 0 00000000 00000000 UNINITIALIZED
 00000000 00000000 file2.obj (.data)
 00000000 00000000 file1.obj (.data)

.bss 0 00000000 00000000 UNINITIALIZED
 00000000 00000000 file2.obj (.bss)
 00000000 00000000 file1.obj (.bss)

GLOBAL SYMBOLS

address name address name
–––––––– –––– –––––––– ––––
00000000 .bss 00000000 .bss
00000000 .data 00000000 ___edata__
00000000 .text 00000000 edata
00000000 ___bss__ 00000000 ___end__
00000000 ___data__ 00000000 end
00000000 ___edata__ 00000000 ___bss__
00000000 ___end__ 00000000 ___data__
0000001c ___etext__ 00000000 .text
00000000 ___text__ 00000000 ___text__
00000000 edata 00000000 .data
00000000 end 00000010 inclw
0000001c etext 0000001c ___etext__
00000010 inclw 0000001c etext

[13symbols]

Getting Started With the Assembler and Linker

4-5Getting Started With the Code Generation Tools

The two files, file1 and file2, can be linked together with or without a com-
mand file. However, using a command file allows you to configure your
memory using the MEMORY and SECTIONS directives:

� The MEMORY directive lets you specify a model of target memory so
that you can define the types of memory your system contains and the
address ranges they occupy.

� The SECTIONS directive describes how input sections are combined
into output sections and specifies where output sections are placed in
memory.

You can include the linker options and filenames in the linker command
file, or you can enter them on the command line. If you do not include a
linker command file, the linker uses a default allocation algorithm. Refer to
the TMS470R1x Assembly Language Tools User’s Guide for more in-
formation about the linker command file and the default allocation algo-
rithm.

Example 4–5. Sample Linker Command File, linker2.cmd

/* Specify the System Memory Map */

MEMORY
{
 D_MEM : org = 0x00000000 len = 0x00001000 /* Data Memory (RAM) */
 P_MEM : org = 0x00001000 len = 0x00001000 /* Program Memory (ROM) */
}

/* Specify the Sections Allocation Into Memory */

SECTIONS
{
 .data : {} > D_MEM /* Initialized Data */
 .text : {} > P_MEM /* Code */
}

Typing in the following command line using the linker command file shown
in Example 4–5 results in the map file shown in Example 4–6.

lnk470 file1 file2 linker2.cmd –m linker2.map –o prog.out

Getting Started With the Assembler and Linker

 4-6

Example 4–6. Linker Map File (linker2.map) Linked Using a Linker Command File

TMS470 COFF Linker Version 1.00

Sat Feb 8 15:36:45 1997

OUTPUT FILE NAME: <prog.out>
ENTRY POINT SYMBOL: 0

MEMORY CONFIGURATION

 name origin length used attributes fill
 –––––––– –––––––– ––––––––– –––––––– –––––––––– ––––––––
 D_MEM 00000000 000001000 00000000 RWIX
 P_MEM 00001000 000001000 0000001c RWIX

SECTION ALLOCATION MAP

 output attributes/
section page origin length input sections
–––––––– –––– –––––––––– –––––––––– ––––––––––––––––
.data 0 00000000 00000000 UNINITIALIZED
 00000000 00000000 file2.obj (.data)
 00000000 00000000 file1.obj (.data)

.text 0 00001000 0000001c
 00001000 00000010 file1.obj (.text)
 00001010 0000000c file2.obj (.text)

.bss 0 00000000 00000000 UNINITIALIZED
 00000000 00000000 file2.obj (.bss)
 00000000 00000000 file1.obj (.bss)

GLOBAL SYMBOLS

address name address name
–––––––– –––– –––––––– ––––
00000000 .bss 00000000 end
00000000 .data 00000000 ___edata__
00001000 .text 00000000 .bss
00000000 ___bss__ 00000000 ___bss__
00000000 ___data__ 00000000 .data
00000000 ___edata__ 00000000 ___end__
00000000 ___end__ 00000000 edata
0000101c ___etext__ 00000000 ___data__
00001000 ___text__ 00001000 ___text__
00000000 edata 00001000 .text
00000000 end 00001010 inclw
0000101c etext 0000101c ___etext__
00001010 inclw 0000101c etext

[13 symbols]

Getting Started With the C/C++ Compiler

4-7Getting Started With the Code Generation Tools

4.2 Getting Started With the C/C++ Compiler

This section provides a quick walkthrough of the C/C++ compiler so that you
can get started without reading the entire TMS470R1x Optimizing C/C++
Compiler User’s Guide.

1) Create a sample file called function.c that contains the code in
Example 4–7.

Example 4–7. function.c

/**************************************/
/* function.c */
/* (Sample file for walkthrough) */
/**************************************/
int main(int i)
{
 return(i < 0 ? –i : i);
}

2) To invoke the shell program to compile and assemble function.c, enter:

clp470 –o function.c

By default, the TMS470R1x shell program compiles and assembles 32-bit
instructions. To compile 16-bit instructions, use the –mt option:

clp470 –o –mt function.c

The shell program prints the information shown in Example 4–8 as it com-
piles the program.

Example 4–8. Screen Output After Compilation of function.c

[function]
TMS470 ANSI C/C++ Compiler Version 1.00
Copyright (c) 1996–1997 Texas Instruments Incorporated
 ”function.c” ==> main
TMS470 ANSI C Optimizer Version 1.00
Copyright (c) 1996–1997 Texas Instruments Incorporated
 ”function.c” ==> main
TMS470 ANSI C/C++ Codegen Version 1.00
Copyright (c) 1996–1997 Texas Instruments Incorporated
 ”function.c”: ==> main
TMS470 COFF Assembler Version 1.00
Copyright (c) 1996–1997 Texas Instruments Incorporated
 PASS 1
 PASS 1.1 ON SECTION .text
 PASS 2

 No Errors, No Warnings

Getting Started With the C/C++ Compiler

 4-8

By default, the shell deletes the assembly language file from the current
directory after the file is assembled. If you want to inspect the assembly
language output, use the –k option to retain the assembly language file:

clp470 –o –k function.c

3) Also by default, the shell creates a COFF object file as output; however,
if you use the –z option, the output is an executable object module. The
following examples show two ways of creating an executable object
module:

a) The command in step 2 creates an object file called function.obj. To
create an executable object module, run the linker separately by
invoking lnk470:

lnk470 –c function.obj lnk32.cmd –o function.out –l rtsc_32.lib

The –c linker option tells the linker to observe the C/C++ language
linking conventions. The linker command file, lnk32.cmd, is shipped
with the code generation tools. The –o option names the output
module, function.out; if you do not use the –o option, the linker names
the output module a.out. The –l option names the runtime-support
library. You must have a runtime-support library before you can create
an executable object module; the prebuilt runtime-support libraries
rtsc_32.lib and rtsc_16.lib (C runtime library object) and rtscpp_32.lib
and rtscpp_16.lib (C++ runtime library object) are included with the
code generation tools.

b) In this example, use the –z shell option, which tells the shell program
to run the linker. The –z option is followed by linker options.

clp470 –o function.c –z lnk32.cmd –o function.out –l rtsc_32.lib

For more information on linker commands, see the Linker Description
chapter of the TMS470R1x Assembly Language Tools User’s Guide.

4) The TMS470R1x compiler package also includes an interlist utility. This
program interlists the C/C++ source statements as comments in the
assembly language compiler output, allowing you to inspect the assembly
language generated for each line of C/C++. To run the interlist utility, in-
voke the shell program with the –s option. For example:

clp470 –s function.c –z lnk32.cmd –o function.out

The output of the interlist utility is written to the assembly language file
created by the compiler. (The shell –s option implies –k; that is, when you
use the interlist utility, the assembly file is automatically retained.)

5-1

Release Notes

This chapter describes the media contents of the TMS470R1x tools kit. The
tools are supported on SPARCstations, HP workstations, and PCs with
Windows 95 or Windows NT.

This chapter also documents the C++ language features that are supported
by the ’470 C/C++ compiler in this release.

Topic Page

5.1 Media Contents 5-2.

5.2 C++ Language Support 5-6.

Chapter 5

Media Contents

 5-2

5.1 Media Contents

The CD-ROM included in the TMS470R1x tools kit for SPARCstations and HP
workstations contains the files listed in Table 5–1. The CD-ROM included in
the TMS470R1x tools kit for PCs contains the files listed in Table 5–2.

Table 5–1. Media Contents for SPARCstations and HP Workstations

File Description

README.1ST Online release bulletin

abs470 Absolute lister

acp470 C/C++ parser

ar470 Archiver

asm470 Assembler

cg470 Code generator

clist C/C++ source interlist utility

clp470 Compiler shell program

dem470 C++ name demangling utility

hex470 Hex-conversion utility

intvecs.asm Sample interrupt vector setup file

lnk470 COFF linker

lnk16.cmd Sample 16-bit linker command file

lnk32.cmd Sample 32-bit linker command file

mkp470 Library-build utility

opt470 C/C++ optimizer

rtsc_16.lib 16-bit C runtime-support library

rtsc_32.lib 32-bit C runtime-support library

rtscpp_16.lib 16-bit C++ runtime-support library

rtscpp_32.lib 32-bit C++ runtime-support library

rtsc.src C runtime-support source library

rtscpp.src C++ runtime-support source library

Media Contents

5-3Release Notes

Table 5–1. Media Contents for SPARCstations and HP Workstations (Continued)

File Description

xref470 Cross-reference utility

*.h #include header files for ANSI C runtime support:

assert.h limits.h stdarg.h stdlib.h

ctype.h math.h stddef.h string.h

errno.h setjmp.h stdio.h time.h

float.h

#include header files for C++ runtime support:

cassert cmath cstdlib stdexcept

cctype csetjmp cstring typeinfo

cerrno cstdarg ctime

cfloat cstddef exception

climits cstdio new

Media Contents

 5-4

Table 5–2. Media Contents for PCs

File Description

readme.1st Online release bulletin

abs470.exe Absolute lister

acp470.exe C/C++ parser

ar470.exe Archiver

asm470.exe Assembler

cg470.exe Code generator

clp470.exe Compiler shell program

clist.exe C/C++ source interlist utility

dem470.exe C++ name demangling utility

hex470.exe Hex-conversion utility

intvecs.asm Sample interrupt vector setup file

lnk470.exe COFF linker

lnk16.cmd Sample 16-bit linker command file

lnk32.cmd Sample 32-bit linker command file

mkp470.exe Library-build utility

opt470.exe C/C++ optimizer

rtsc_16.lib 16-bit runtime-support library

rtsc_32.lib 32-bit runtime-support library

rtsc.src C runtime-support source library

rtscpp.src C++ runtime-support source library

rtscpp_16.lib 16-bit C++ runtime-support library

rtscpp_32.lib 32-bit C++ runtime-support library

xref470.exe Cross-reference utility

Media Contents

5-5Release Notes

Table 5–2. Media Contents for PCs (Continued)

File Description

*.h #include header files for ANSI C RTS:

assert.h limits.h stdarg.h stdlib.h

ctype.h math.h stddef.h string.h

errno.h setjmp.h stdio.h time.h

float.h

#include header files for C++ runtime support:

cassert cmath cstdlib stdexcept

cctype csetjmp cstring typeinfo

cerrno cstdarg ctime

cfloat cstddef exception

climits cstdio new

C++ Language Support

 5-6

5.2 C++ Language Support

The ’470 C/C++ compiler for release 1.00 of the code generation tools sup-
ports C++ as defined by Ellis and Stroustrup’s Annotated C++ Reference
Manual (ARM) except that it does not support exception handling.

Notes:

1) See the TMS470R1x Optimizing C/C++ Compiler User’s Guide for a de-
scription of the C language features supported in this release.

2) The lists of supported and unsupported C++ language features given in
this section are subject to change as the product matures and as the C++
standard comes into existence.

Additional C++ language features supported

In addition to supporting C++ as defined in the ARM, the compiler accepts the
following features, which are defined in the X3J16/WG21 Working Paper:

� The dependent statement of an if, while, do-while, or for loop is considered
to be a scope, and the restriction on having such a dependent statement
be a declaration is removed.

� The expression tested in an if, while, do-while, or for loop as the first oper-
and of a ? operator or as an operand of the &&, ||, or ! operator can have
a pointer-to-member type or a class type that can be converted to a point-
er-to-member type in addition to the scalar cases permitted by the ARM.

� Qualified names are allowed in elaborated type specifiers.

� The global-scope qualifier is allowed in member references of the form
x.: :A: :B and p–>: :A: :B.

� The precedence of the third operand of the ? operator is changed.

� If control reaches the end of the main() routine and main() has an integral
return type, it is treated as if a return 0; statement were executed.

� Pointers to arrays with unknown bounds as parameter types are diag-
nosed as errors.

� A functional-notation cast of the form A() can be used even if A is a class
without a (nontrivial) constructor. The temporary copy that is created gets
the same default initialization to 0 as a static object of the class type.

� A cast can be used to select one out of a set of overloaded functions when
taking the address of a function.

C++ Language Support

5-7Release Notes

� Template friend declarations and definitions are permitted in class defini-
tions and class template definitions.

� Type template parameters are permitted to have default arguments.

� Function templates may have nontype template parameters.

� A reference to const volatile cannot be bound to an rvalue.

� Qualification conversions such as conversion from T** to T const * const *
are allowed.

� Digraphs are recognized.

� Operator keywords (and, bitand, etc.) are recognized.

� Static data member declarations can be used to declare member
constants.

� wchar_t is recognized as a keyword and a distinct type.

� bool is recognized as a keyword and a distinct type.

� RTTI (runtime type identification), including dynamic_cast and the typeid
operator, is implemented.

� Declarations in tested conditions (in if, switch, for, and while statements)
are supported.

� Array new and delete are implemented.

� New-style casts (static_cast, reinterpret_cast, and const_cast) are imple-
mented.

� The definition of a nested class outside its enclosing class is allowed.

� mutable is accepted on nonstatic data member declarations.

� Namespaces are implemented, including using declarations and direc-
tives. Access declarations are broadened to match the corresponding us-
ing declarations.

� Explicit instantiation of templates is implemented.

� The typename keyword is recognized.

C++ Language Support

 5-8

Unsupported C++ language features defined in the X3J16/WG21 Working Paper

The following features, which are not defined in the ARM but are defined in the
X3J16/WG21 Working Paper, are not supported:

� C++ standard library support is not included. (C subset and basic lan-
guage support is included.)

� Virtual functions in derived classes may not return a type that is the de-
rived-class version of the type returned by the overridden function in the
base class.

� enum types are not considered to be nonintegral types.

� Operators cannot be overloaded using functions that take enum types and
no class types.

� The new lookup rules for member references of the form x.A: :B and
p–>A: :B are not implemented.

� Classes are not assumed to always have constructors, and the distinction
between trivial and nontrivial constructors is not implemented.

� enum types cannot contain values larger than those that can be contained
in an int.

� Type qualifiers are not retained on rvalues (in particular, on function return
values).

� reinterpret_cast does not allow casting a pointer to member of one class
to pointer to member of another class if the classes are unrelated.

� Explicit qualification of template functions is not implemented.

� Member templates are not implemented.

� Name binding in templates in the style of N0288/03–0081 is not imple-
mented.

� The scope of a variable declared in a for loop is still the whole surrounding
scope, not just the loop.

� As required by the ARM, in a reference of the form f()–>g(), with g equal
to a static member function, f() is not evaluated. (The Working Paper, how-
ever, does require that f() be evaluated.)

� (p–>*pm) = 0 cannot be written as p–>*pm=0. (The syntax still conforms
to the ARM.)

C++ Language Support

5-9Release Notes

� Nonconverting constructors are not implemented.

� Class name injection is not implemented.

� Overloading of function templates (partial specialization) is not imple-
mented.

� Partial specialization of class templates is not implemented.

� Placement delete is not implemented.

� The notation :: template (and –>template, etc.) is not implemented.

 5-10

A-1

Appendix A

Glossary

A

asm470: The name of the command that invokes the assembler for the
TMS470R1x.

assembler: A software program that creates a machine-language program
from a source file that contains assembly-language instructions, direc-
tives, and macro definitions. The assembler substitutes absolute opera-
tion codes for symbolic operation codes and absolute or relocatable
addresses for symbolic addresses.

C

C/C++ compiler: A software program that translates C/C++ source state-
ments into assembly-language source statements.

code generator: A compiler tool that takes the file produced by the parser
or the optimizer and produces an assembly-language source file.

COFF: Common object file format. A binary object file format that promotes
modular programming by supporting the concept of sections. All COFF
sections are independently relocatable in memory space; you can place
any section into any allocated block of target memory.

clp470: The name of the command that invokes the compiler shell program
for the TMS470R1x. (The second character in the shell name is a lower-
case L.)

E

environment variables: System symbols that you define and assign to a
string. They are usually included in batch files (for example, .cshrc).

Appendix A

Glossary

 A-2

I

interlist utility: A compiler utility that inserts your original C/C++ source
statements as comments in the assembly language output from the
assembler. The C/C++ statements are inserted next to the equivalent as-
sembly instructions.

L

linker: A software program that combines object files to form an object mod-
ule that can be allocated into system memory and executed by the de-
vice.

lnk470: The name of the command that invokes the linker for the
TMS470R1x.

O

optimizer: A software tool that improves the execution speed and reduces
the size of C/C++ programs.

options: Command parameters that allow you to request additional or
specific functions when you invoke a software tool.

P

pragma: A preprocessor directive that provides directions to the compiler
about how to treat a particular statement.

S

shell program: A utility that lets you compile, assemble, and optionally link
in one step. The shell runs one or more source modules through the com-
piler (including the parser, optimizer, and code generator), the assem-
bler, and the linker.

structure: A collection of one or more variables grouped together under a
single name.

swap file: The file in which virtual memory (secondary memory) is allocated
on the hard disk.

Glossary

A-3Glossary

V

veneer: A sequence of instructions that serves as an alternate entry point
into a routine if a state change is required.

virtual memory: The ability of a program to use more memory than the com-
puter actually has available as RAM. This is accomplished by using a
swap file on disk to augment RAM. When RAM is not sufficient, part of
the program is swapped out to a disk file until it is needed again. The
combination of the swap file and available RAM is the virtual memory.

 A-4

Index

Index-1

Index

A
A_DIR environment variable

for HP workstations 3-6
for SPARCstations 2-6 to 2-7
for Windows 95/NT systems 1-5

asm470
definition A-1
invoking 4-2

assembler
definition A-1
walkthrough 4-2 to 4-4

assistance from TI vi

C
C++ language support 5-6 to 5-10

C/C++ compiler walkthrough 4-7 to 4-8

C_DIR environment variable
for HP workstations 3-7
for SPARCstations 2-7
for Windows 95/NT systems 1-6

C_OPTION environment variable
for HP workstations 3-7 to 3-8
for SPARCstations 2-7 to 2-8
for Windows 95/NT systems 1-6

CD-ROM
mounting

for HP workstations 3-3
for SPARCstations 2-3

requirements
for HP workstations 3-2
for SPARCstations 2-2
for Windows 95/NT systems 1-2

retrieving files from (copying)
for HP workstations 3-4
for SPARCstations 2-4

CD-ROM (continued)
unmounting

for HP workstations 3-4
for SPARCstations 2-4

clp470
definition A-1
invoking 4-7

code generation tools
for HP workstations 3-2
for SPARCstations 2-2
for Windows 95/NT systems 1-2

code generator, definition A-1
COFF

creating object file 4-8
definition A-1

compiler, definition A-1
conventions, notational iii to iv
.cshrc file

for HP workstations 3-5 to 3-10
for SPARCstations 2-5 to 2-10

D
digraphs 5-7
directives

MEMORY 4-5
SECTIONS 4-5

directories, software tools
for HP workstations 3-3, 3-6, 3-7
for SPARCstations 2-4, 2-6, 2-7
for Windows 95/NT systems 1-5, 1-6

disk space requirements
for HP workstations 3-2
for SPARCstations 2-2

display requirements
for HP workstations 3-2
for SPARCstations 2-2
for Windows 95/NT systems 1-2

documentation, related iv to v

Index

Index-2

E
environment setup

for HP workstations 3-5 to 3-10
for SPARCstations 2-5 to 2-10
for Windows 95/NT systems 1-4 to 1-7

environment variables
A_DIR 1-5, 2-6 to 2-7, 3-6
C_DIR 1-6, 2-7, 3-7
C_OPTION 1-6, 2-7 to 2-8, 3-7 to 3-8
definition A-1
for HP workstations 3-5 to 3-10
for SPARCstations 2-5 to 2-10
for Windows 95/NT systems 1-4 to 1-7
resetting 1-7, 2-9, 3-9
TMP 1-7, 2-8 to 2-9, 3-8 to 3-9
verifying 1-7, 2-10, 3-10

example
assembler 4-2 to 4-3
compiler 4-7 to 4-9
linker 4-4 to 4-6

H
hardware checklist

for HP workstations 3-2
for SPARCstations 2-2
for Windows 95/NT systems 1-2

host system
for HP workstations 3-2
for SPARCstations 2-2
for Windows 95/NT systems 1-2

HP workstations
requirements 3-2
setting up the environment 3-5 to 3-10
software installation 3-3 to 3-4

I
installation, software

for HP workstations 3-3 to 3-4
for SPARCstations 2-3 to 2-4
for Windows 95/NT systems 1-3

interlist utility
definition A-2
described 4-8

invoking
assembler 4-2 to 4-4
compiler 4-7 to 4-8
linker 4-2 to 4-6

L
linker

definition A-2
walkthrough 4-2 to 4-4

lnk470
definition A-2
invoking 4-3

M
media contents

HP workstations 5-2
PCs with DOS 5-4
PCs with Windows 3.1x 5-4
PCs with Windows 95/NT 5-4
SPARCstations 5-2

MEMORY directive 4-5
memory requirements, for Windows 95/NT

systems 1-2
modifying PATH statement

for HP workstations 3-6
for SPARCstations 2-6
for Windows 95/NT systems 1-5

mounting CD-ROM
for HP workstations 3-3
for SPARCstations 2-3

mouse requirements
for HP workstations 3-2
for SPARCstations 2-2
for Windows 95/NT systems 1-2

N
notational conventions iii to iv

O
operating system

for HP workstations 3-2
for SPARCstations 2-2
for Windows 95/NT systems 1-2

optimizer, definition A-2
options, definition A-2

Index

Index-3

P
PATH statement

for HP workstations 3-6
for SPARCstations 2-6
for Windows 95/NT systems 1-5

permissions
for HP workstations 3-2
for SPARCstations 2-2

pragma, definition A-2

.profile file
for HP workstations 3-5 to 3-10
for SPARCstations 2-5 to 2-10

R
reinitializing

.cshrc file 2-9, 3-9

.profile file 2-9, 3-9
shell 2-9, 3-9

related documentation iv to v

requirements. See hardware checklist; software
checklist

resetting environment variables
for HP workstations 3-9
for SPARCstations 2-9
for Windows 95/NT systems 1-7

retrieving files from CD-ROM
for HP workstations 3-4
for SPARCstations 2-4

root privileges
for HP workstations 3-2
for SPARCstations 2-2

runtime-support library 4-8

S
SECTIONS directive 4-5

setting up the environment
for HP workstations 3-5 to 3-10
for SPARCstations 2-5 to 2-10
for Windows 95/NT systems 1-4 to 1-7

setup.exe, for Windows 95/NT systems 1-3

shell, reinitializing 2-9, 3-9

shell program
COFF file 4-8
definition A-2

software checklist
for HP workstations 3-2
for SPARCstations 2-2
for Windows 95/NT systems 1-2

Solaris. See SPARCstations

SPARCstations
requirements 2-2
setting up the environment 2-5 to 2-10
software installation 2-3 to 2-4

structure, definition A-2

SunOS. See SPARCstations

supported C++ language features 5-6 to 5-7

swap file, definition A-2

system initialization files
.cshrc

for HP workstations 3-5 to 3-10
for SPARCstations 2-5 to 2-10

.profile
for HP workstations 3-5 to 3-10
for SPARCstations 2-5 to 2-10

system requirements. See hardware checklist; soft-
ware checklist

T
TMP environment variable

for HP workstations 3-8 to 3-9
for SPARCstations 2-8 to 2-9
for Windows 95/NT systems 1-7

U
unmounting CD-ROM

for HP workstations 3-4
for SPARCstations 2-4

unsupported C++ language features 5-8 to 5-9

V
veneer, definition A-3

virtual memory, definition A-3

Index

Index-4

W
walkthrough

assembler 4-2 to 4-4
C/C++ compiler 4-7 to 4-8
linker 4-2 to 4-4

Windows 95/NT systems
requirements 1-2
setting up the environment 1-4 to 1-7
software installation 1-3

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright 1998, Texas Instruments Incorporated

