
DSP/BIOS Real-Time Analysis SDK
for OSK5912

MontaVista Linux Professional Edition 3.1

Literature Number: SPRU819
August 2004

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services
at any time and to discontinue any product or service without notice. Customers should obtain
the latest relevant information before placing orders and should verify that such information is
current and complete. All products are sold subject to TI's terms and conditions of sale supplied
at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of
sale in accordance with TI's standard warranty. Testing and other quality control techniques are
used to the extent TI deems necessary to support this warranty. Except where mandated by
government requirements, testing of all parameters of each product is not necessarily per-
formed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using TI components. To minimize the risks
associated with customer products and applications, customers should provide adequate de-
sign and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under
any TI patent right, copyright, mask work right, or other TI intellectual property right relating to
any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third party products or services does not constitute a license from TI
to use such products or services or a warranty or endorsement thereof. Use of such information
may require a license from a third party under the patents or other intellectual property of that
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations,
and notices. Reproduction of this information with alteration is an unfair and deceptive business
practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated
by TI for that product or service voids all express and any implied warranties for the associated
TI product or service and is an unfair and deceptive business practice. TI is not responsible or
liable for any such statements.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright  2004, Texas Instruments Incorporated

This is a draft version printed from file: rtasdkpref.fm on 8/4/04
Preface

Read This First

About This Manual
The DSP/BIOS Real-time Analysis (RTA) Software Development Kit (SDK)
allows software developers who are using the OSK5912 Reference Platform
to analyze and monitor, at run-time, DSP-side DSP/BIOS applications from
the GPP ARM running Linux. This manual describes this SDK.

Notational Conventions
This document uses the following conventions:

❏ In file paths, <RTASDK_dir> is the directory where you installed the
DSP/BIOS RTA SDK.

❏ Program listings, program examples, and interactive displays are shown
in a special typeface. Examples use a bold version of the
special typeface for emphasis.

Related Documentation From Texas Instruments
The following books describe TMS320 devices and related support tools. You
can find these books on the Texas Instruments web site at www.ti.com.
Search for the literature number to find the book you want.

TMS320 DSP/BIOS User's Guide (literature number SPRU423) provides an over-
view and description of the DSP/BIOS real-time operating system.

TMS320C5000 DSP/BIOS Application Programming Interface (API) Refer-
ence Guide (literature number SPRU404) describes DSP/BIOS API func-
tions, which are alphabetized by name. The API Reference Guide is the com-
panion to this user�s guide.
iii

 Trademarks
Trademarks
MS-DOS, Windows, and Windows NT are trademarks of Microsoft
Corporation.

The Texas Instruments logo and Texas Instruments are registered
trademarks of Texas Instruments. Trademarks of Texas Instruments include:
TI, XDS, Code Composer, Code Composer Studio, Probe Point, Code
Explorer, DSP/BIOS, RTDX, Online DSP Lab, TMS320, TMS320C28x,
TMS320C55x, TMS320C62x, TMS320C64x, TMS320C67x, TMS320C5000,
and TMS320C6000.

All other brand or product names are trademarks or registered trademarks of
their respective companies or organizations.
iv

This is a draft version printed from file: rtasdkTOC.fm on 8/4/04
Contents

1 About the DSP/BIOS Real-Time Analysis SDK .1-1
This chapter provides an overview of the DSP/BIOS RTA SDK.
1.1 Purpose .1-2
1.2 Software Architecture .1-2
1.3 Compatibility .1-5
1.4 References .1-5
1.5 Terms and Definitions. .1-6

2 Installation and Setup .2-1
This chapter describes how to install, build, and configure applications associated with the DSP/
BIOS RTA SDK.
2.1 Installing the SDK .2-2
2.2 Build Settings and Actions .2-3
2.3 Preparing to Run the Example Applications .2-6
2.4 Configuring DSP/BIOS Examples for RTA SDK. .2-6

3 Sample Applications .3-1
This chapter describes the sample applications provided with the DSP/BIOS RTA SDK.
3.1 RTA Trace Application .3-2
3.2 Load and Run Application .3-4
3.3 Questions and Answers .3-4
v

vi

Chapter 1

About the DSP/BIOS Real-Time
Analysis SDK

This chapter provides an overview of the DSP/BIOS RTA SDK.

1.1 Purpose . 1�2
1.2 Software Architecture . 1�2
1.3 Compatibility . 1�5
1.4 References . 1�5
1.5 Terms and Definitions. 1�6

Topic Page
1-1

Purpose
1.1 Purpose

The DSP/BIOS Real-time Analysis (RTA) Software Development Kit
(SDK) allows software developers who are using the OSK5912
Reference Platform to analyze and monitor, at run-time, DSP-side
DSP/BIOS applications from the GPP ARM running Linux. The SDK
provides support for the following actions:

❏ Obtaining LOG and STS data, including CPU busy information.

❏ Transferring RTA data via the API from the DSP to the GPP.

❏ Using a fully-functional sample application to obtain standard RTA
data without having to write any code.

In addition to retrieving LOG/STS data at run-time, the DSP/BIOS RTA
SDK supports postmortem LOG/STS analysis.

The design goals of the SDK were to make it easy to determine whether
the system is operating within its design constraints, to help resolve
problems, and to find out if the system is meeting its performance
requirements.

1.2 Software Architecture

The software architecture of DSP/BIOS RTA SDK is shown in Figure 1-1:

Figure 1-1. Software Architecture of DSP/BIOS RTA SDK

GPP DSP

DSP/BIOS RTA SDK

MontaVista
Linux Pro

3.1

Postmortem
driver

DSP/BIOS
Link

DSP/BIOS RTA

Link Driver DSP/BIOS

= RTA SDK Components

= Required Components

DSP/BIOS Link
Channels
1-2

Software Architecture
The DSP/BIOS RTA SDK allows a GPP-side application to retrieve
DSP/BIOS LOG and STS information from the DSP-side application at
run-time. The software architecture for accomplishing this has
components running on both the GPP and the DSP.

1.2.1 Channels and Data Exchange

The RTA SDK uses DSP/BIOS Link to establish communication between
GPP and DSP. It requires two dedicated Link channels: one for each
communication direction (GPP-to-DSP and DSP-to-GPP).

The DSP/BIOS RTA SDK manages transferring DSP/BIOS LOG and
STS data from the DSP to the GPP at run-time. To reduce the overhead
and intrusiveness of the data transfer, all work is done while the system
is running in the DSP/BIOS idle loop. A typical data exchange transaction
can be illustrated conceptually as follows:

Figure 1-2. Typical RTA SDK Data Exchange Transaction

GPP DSP

Channel A:
Request to transfer a LOG/STS data

Channel B:
Transfer requested LOG/STS data
About the DSP/BIOS Real-Time Analysis SDK 1-3

Software Architecture
1.2.2 DSP/BIOS Link Configuration

The bioslink_common.tci file in the
<RTASDK_dir>/ti/bios/rta/examples/dsp/common directory shows how
to configure DSP/BIOS for the RTA SDK. The following statements from
this file are used to set the properties of various configuration modules.

/* BIOSLINK related settings */

bios.GIO.ENABLEGIO = true; /* enable GIO */

bios.HST.CHNLDRVNAME = "default"; /* host channel driver name */
bios.HST.HOSTLINKTYPE = "BIOSLINK"; /* HST link type for BIOSLINK */
bios.HST.BIOSLINKDEVICE = "dsplink"; /* set BIOSLINK device */

bios.RTA_toHost.biosLinkChnlNbr = 14; /* set DSP/BIOS Link channel # */
bios.RTA_fromHost.biosLinkChnlNbr = 15; /* set DSP/BIOS Link channel # */

❏ On DSP side, DSP/BIOS Link has an IOM driver implementation that
is delivered through the Link installation. The RTA SDK uses the GIO
class driver APIs to access that device driver. Hence, GIO support is
enabled.

❏ The HST configuration allows you to select the communication link
type and some of the global properties. In RTA SDK case:

� CHNLDRVNAME = The name of the embedded host-side
dynamically loadable channel driver. If the value is "default", the
RTA SDK's GPP-side component uses the "libcd_bl.so" driver. If
you want to define a driver explicitly, enter the file name without
the file extension. For example, �libcd_bl�.

� HOSTLINKTYPE = The option "BIOSLINK" is used for the RTA
SDK.

� BIOSLINKDEVICE = The name of the created DSP/BIOS Link
device.

❏ The DSP/BIOS RTA SDK requires two dedicated Link channels.
Hence, the selected channel numbers must not be in conflict with
channel numbers used by other applications. For instance; if you are
working with RF6, the Link channel numbers "0" and "1" are used by
RF6.

� RTA_toHost.biosLinkChnlNbr = The DSP/BIOS Link channel
number reserved for communication from the DSP to the GPP.

� RTA_fromHost.biosLinkChnlNbr = The DSP/BIOS Link channel
number reserved for communication from the GPP to the DSP.
1-4

Compatibility
1.3 Compatibility

The DSP/BIOS RTA SDK is compatible with the following products:

❏ C55x Codegen v2.56

❏ DSP/BIOS v5.00

❏ DSP/BIOS Link v1.10.01

❏ MontaVista Linux 3.1

1.4 References
❏ DSP/BIOS 5.00 Getting Started Guide

❏ DSP BIOS RTA SDK Release Notes

❏ DSP/BIOS Link OSK5912 Starter Kit, MontaVista Linux Professional
Edition 3.1 User's Guide Version 1.10.01 (LNK 058 USR)

❏ DSP/BIOS Driver Developer's Guide, dated November 2002
(SPRU616)

❏ DSP/BIOS Application Programming Interface (API) Reference
Guide, dated April 2004 (SPRU404)

❏ DSP/BIOS Real Time Analysis Application Programming Interface
(API) Reference Guide
About the DSP/BIOS Real-Time Analysis SDK 1-5

Terms and Definitions
1.5 Terms and Definitions

Table 1-1. Terms and Definitions

Term Definition

API Application Programming Interface

DSP Digital Signal Processor

DSP/BIOS Texas Instruments' Real-Time Operating System

DSP/BIOS Link DSP/BIOS Link is runtime software that simplifies communication between embed-
ded host and DSP.

Embedded Host Embedded Host Platform Running on GPP.

Embedded Platform Embedded development platform which is designed by using various CPU configu-
rations such as one DSP, one GPP-DSP, or multiple of them.

GIO General Input-Output module

GPP General Purpose Processor (ARM)

HST Host Channel Interface module

IOM I/O Mini-Driver module

LOG DSP/BIOS logging support module

MVL PRO31 MontaVista Linux Professional Edition 3.1

OMAP Open Multimedia Architecture Platform

OSK OSK5912 Starter Kit

Postmortem Ability to obtain final RTA data after DSP has crashed

RF6 Texas Instruments' Reference Framework 6

RTA SDK DSP/BIOS Real-Time Analysis Tools Software Development Kit

RTDX Real-Time Data Exchange

STS DSP/BIOS statistical data support module
1-6

Chapter 2

Installation and Setup

This chapter describes how to install, build, and configure applications
associated with the DSP/BIOS RTA SDK.

2.1 Installing the SDK . 2�2
2.2 Build Settings and Actions. 2�3
2.3 Preparing to Run the Example Applications. 2�6
2.4 Configuring DSP/BIOS Examples for RTA SDK 2�6

Topic Page
2-1

Installing the SDK
2.1 Installing the SDK

The following steps explain how to install the product on a Linux machine:

1) Copy or download the distribution file specific to your system to a
temporary location.

2) Create an installation directory on your system outside any CCStudio
installations. The directory must not have any spaces in the path. For
example, use "/usr/RTASDK-Rel". Do not install this SDK in the same
directory as the DSP/BIOS 5.00 installation. The remainder of this
document uses <RTASDK_dir> to refer to the directory you select
here. Make sure that you have enough disk space allocated (~60
MB), or the installation will fail with a Java error.

3) Run the dsp_bios_rta_setuplinux_5.00.00.00.bin self-extracting
installation file. Accept the End User License Agreement, and set the
destination directory to the one created in the previous step. Use the
"-console" flag if you are installing from the command line. For
example:

 ./dsp_bios_rta_setuplinux_5.00.00.00.bin -console
2-2

Build Settings and Actions
2.2 Build Settings and Actions

This section describes the steps you must perform in order to be ready to
rebuild the GPP-side and DSP-side sample applications.

2.2.1 Assumptions

The DSP/BIOS RTA SDK depends upon the following products. It
assumes that they have all been installed, set up, and built successfully:

❏ C55x Codegen v2.56

❏ DSP/BIOS v5.00

❏ DSP/BIOS Link v1.10.01

2.2.2 DSP/BIOS Link Configuration

DSP/BIOS Link supports various configurations (for example, PROC and
PROC+CHNL). Because the RTA SDK uses Link channels to establish
communication between the GPP and DSP, the minimum required
DSP/BIOS Link configuration is "PROC+CHNL". Please see the �Build
Configuration� chapter in the DSP/BIOS Link User's Guide to configure
DSP/BIOS Link.

After you configure and build DSP/BIOS Link successfully, the DSP/BIOS
RTA SDK channel driver and the "loadandrun" example need to be rebuilt
as well.

2.2.3 GPP-Side Settings Before Building

The following settings need to be made to build the sample examples on
the GPP side:

1) Edit <RTASDK_dir>/ti/bios/rta/examples/gpp/common/config.mak to
make the file to point to the DSP/BIOS Link and MontaVista Linux
toolchain directories.

 # Path to DSP/BIOS Link
 DSPLINK_DIR := <DSP/BIOS Link install dir>
 # Path to MontaVista Linux toolchain
 MVL_TOOLCHAIN := <mv linux toolchain root dir>
2) Edit <RTASDK_dir>/ti/bios/rta/examples/gpp/rtatrace/makefile to

make it point to the RTA SDK installation directory.
 # Path to RTA SDK
 RTA_SDK_DIR := <RTA SDK install dir>
Installation and Setup 2-3

Build Settings and Actions
3) Edit the <RTASDK_dir>/ti/bios/rta/sdk/pmrdrv/makefile file to make it
point to the MontaVista Linux Kernel include directory.

 # Linux Kernel Include directory
 KERNEL_INC_DIR := <Linux Kernel Include dir>
4) Edit the <RTASDK_dir>/ti/bios/rta/sdk/chnldrv/makefile file to make it

point to the RTA SDK installation directory.
 # Path to RTA SDK
 RTA_SDK_DIR := <RTA SDK install dir>

2.2.4 DSP-Side Settings Before Building

If you want to rebuild the "hello" example or want to create your DSP
project under the <RTASDK_dir>/ti/bios/rta/examples/dsp/basic
directory, you need to point the following definitions in the
<RTASDK_dir>/ti/bios/rta/examples/dsp/common/config.mak file to the
correct locations:

❏ RTASDK_INSTALL_DIR = The root directory of the DSP/BIOS RTA
SDK installation.

❏ SABIOS_INSTALL_DIR = The root directory of the DSP/BIOS
installation.

❏ COMPONENT_ROOT = The root directory of the RTDX, CSL, and
PSL components.

❏ C55X_CODEGEN_ROOT = The root directory of the C55x Codegen
V2.56 installation.

❏ BIOSLINK_DIR = The directory containing dsplink.l55l in the
DSP/BIOS Link installation.

If you want to use a project contained in the DSP/BIOS 5.00 installation,
you must also add the following definitions to the
<SABIOS_dir>/ti/bios/examples/common/config.mak file:

❏ LNKBIOSLINKLIB_DIR = <RTASDK_dir>/ti/bios/rta/rtalnk/lib

❏ BIOSLINK_DIR = <directory that contains dsplink.l55l>
2-4

Build Settings and Actions
2.2.5 Building the Examples

The examples in the DSP/BIOS RTA SDK installation are as follows:

❏ rtatrace. The DSP/BIOS RTA SDK installation contains a pre-built
"rtatrace" application. If you make any changes at the source code
level, you need to rebuild "rtatrace" as follows. After the build has
completed successfully, the "rtatrace" application is located in the
same directory.

 cd <RTASDK_dir>/ti/bios/rta/examples/gpp/rtatrace
 gmake clean
 gmake all
❏ loadandrun. The DSP/BIOS RTA SDK installation has a pre-built

"loadandrun" application. It is built with the PROC+CHNL+MSGQ
DSP/BIOS Link configuration. If you rebuild DSP/BIOS Link, you
need to rebuild "loadandrun" as well. After the build has completed
successfully, the "loadandrun" application is located in the same
directory.

 cd <RTASDK_dir>/ti/bios/rta/examples/gpp/loadandrun
 gmake clean
 gmake all
❏ chnldrv. The DSP/BIOS RTA SDK installation has a pre-built

"libcd_bl.so" application. It is built with the PROC+CHNL+MSGQ
DSP/BIOS Link configuration. If you rebuild DSP/BIOS Link, you
need to rebuild "libcd_bl.so" as well. After the build has completed
successfully, the "libcd_bl.so" application is located in the same
directory.

 cd <RTASDK_dir>/ti/bios/rta/sdk/chnldrv
 gmake clean
 gmake all
❏ pmrdrv. The postmortem driver is a loadable kernel module, hence;

if you rebuild the Linux Kernel, you need to rebuild the driver to
eliminate any kernel version mismatch warnings from Linux. After the
build has completed successfully, the "pmr_drv.o" file is located in the
"release" and "debug" directories.

 cd <RTASDK_dir>/ti/bios/rta/sdk/pmrdrv
 gmake clean
 gmake all
❏ hello. The DSP/BIOS RTA SDK installation has a pre-built "hello"

application. After the build has completed successfully, the
"hello.out" file is located in the same directory.

cd <RTASDK_dir>/ti/bios/rta/examples/dsp/basic/hello/osk5912
gmake clean
gmake
Installation and Setup 2-5

Preparing to Run the Example Applications
2.3 Preparing to Run the Example Applications

You must have root privileges in order to load the drivers and DSP
programs and to run the rtaTrace application. Then, copy the following
files to a file system that the GPP has access to, that is, an NFS-mounted
drive on another LINUX machine.

❏ Copy the channel driver (libcd_bl.so) from
<RTASDK_dir>/ti/bios/rta/sdk/lib to /usr/lib. Or this library can be
located anywhere and LD_LIBRARY_PATH can be set to point to it.
For example:

 export LD_LIBRARY_PATH=/home/sdk
❏ Copy the postmortem driver (pmr_drv.o) from the

<RTASDK_dir>/ti/bios/rta/sdk/lib directory.

If you have the MontaVista Linux PreView Kit 3.1, you need to load
the postmortem driver by executing the steps as explained in Section
5.1. If you have MontaVista Linux Pro 3.1, the "pmrdrvload.bash"
script allows you to load the postmortem driver. The script and driver
must be in same directory.

❏ Copy the trace application (rtaTrace) from the
<RTASDK_dir>/ti/bios/rta/examples/gpp/rtatrace directory.

❏ Copy the load-and-run application (loadandrun) from the
<RTASDK_dir>/ti/bios/rta/examples/gpp/loadandrun directory.

❏ Copy the DSP application.

2.4 Configuring DSP/BIOS Examples for RTA SDK

The examples installed as part of DSP/BIOS are configured to use the
JTAG/RTDX infrastructure to transfer RTA data. To reconfigure any of the
examples to use RTA SDK capabilities, perform the following steps. In
these steps, the "latency" application is used as an example.

1) Create a new directory called �osk5912� under the
<SABIOS_dir>/ti/bios/examples/advanced/latency directory.

2) Copy the following files from the omap1510 platform latency example
to the new osk5912 directory you created.

� latency.tcf

� latency_omap1510_custom.tci

� makefile
2-6

Configuring DSP/BIOS Examples for RTA SDK
3) Change the name of the latency_omap1510_custom.tci file to
latency_osk5912_custom.tci.

4) Copy the following files from the
<RTASDK_dir>/src/ti/bios/rta/examples/dsp/common directory to the
<SABIOS_dir>/src/ti/bios/examples/common directory.

� osk5912_common.tci

� dsplink-omap-base.tci

� bioslink_common.tci

5) Open the <SABIOS_dir>/ti/bios/examples/common/config.mak file,
and add the following definitions:

� LNKBIOSLINKLIB_DIR=<RTASDK_dir>/ti/bios/rta/rtalnk/lib

� BIOSLINK_DIR=<the directory that dsplink.l55l resides>

6) Open the makefile file that you copied to the
<SABIOS_dir>/ti/bios/examples/advanced/latency/osk5912
directory, and make the following modifications:

� Add the "-ml" flag to CC55FLAGS and AS55FLAGS

� Add the "-l$(BIOSLINK_DIR)/dsplink.l55l" flag to LD55FLAGS

� Add the following line to the file:
 LD55OPTS += -i$(LNKBIOSLINKLIB_DIR)
7) Open the latency.tcf file that you copied to the

<SABIOS_dir>/ti/bios/examples/advanced/latency/osk5912
directory, and make the following modifications:

� Change "omap1510_common.tci" to "osk5912_common.tci".

� Change "latency_omap1510_custom.tci" to
"latency_osk5912_custom.tci".

� Add the following lines after the line that imports the latency.tci
file:

 utils.importFile("dsplink-omap-base.tci");
 utils.importFile("bioslink_common.tci");
Installation and Setup 2-7

2-8

Chapter 3

Sample Applications

This chapter describes the sample applications provided with the
DSP/BIOS RTA SDK.

3.1 RTA Trace Application . 3�2
3.2 Load and Run Application . 3�4
3.3 Questions and Answers . 3�4

Topic Page
3-1

RTA Trace Application
3.1 RTA Trace Application

The rtaTrace sample application runs from the Linux/ARM command line.
It obtains RTA data from a DSP/BIOS program running on the DSP by
using DSP/BIOS Link as a transport. It can obtain LOG and STS data and
either print it to standard output or send it to a log file. This application can
also be used to obtain the final LOG and STS records from a DSP
program crash, that is, to perform a postmortem analysis.

The source code and makefiles are provided so that you can modify it to
fit your needs.

3.1.1 Command Line

Syntax: rtaTrace [options] executable

Options:

 -a<msec> set CPU load averaging period in msec, default is 1000

 -c print postmortem data after crash and then exit

 -d dump log names and ids, then exit

 -h print this list of options

 -l<mask> log id mask (hex), default is all but system log

 -n<prior> nice priority level

 -o print to standard out

 -p<msec> polling rate in msecs (rounded to secs), default 1000

 -r reset statistics

 -s print statistics

 -u print CPU busy utilization

 -x do not print to syslog

3.1.2 Description

If you want to send LOG and STS data to the syslog, you must configure
syslog. Edit the "/etc/syslog/conf" file to include an entry for "local0" and
then restart the syslog. See the syslog man page for details.

If you have the MontaVista Linux Preview Kit 3.1, all data is sent to the
/var/log/messages file, which is mapped to the local file system on the
local board memory. Note that this /tmp file system can run out of space
quickly.
3-2

RTA Trace Application
The typical sequence for running DSP programs and obtaining RTA data
is as follows:

1) Load the DSP/BIOS Link driver. You must do this before RTA data is
gathered, but you only need to do it once after the system has been
rebooted. If you have MontaVista Linux Pro 3.1, you can use the
dsplink.bash script. If you are using the MontaVista Linux PreView Kit
3.1, you need to run the following shell commands manually:

 [root >] insmod -f dsplinkk.o
 [root >] mknod /dev/dsplink c 230 0
2) Load the RTA SDK postmortem driver. You must do this before RTA

data is gathered, but you only need to do it once after rebooting the
system. If you have MontaVista Linux Pro 3.1, you can use
pmrdrvload.bash script. If you are using MontaVista Linux PreView
Kit 3.1, you need to run the following shell commands manually:

 [root >] insmod -f pmr_drv.o
 /* The postmortem driver major number is assigned
 dynamically. Check "bios_pmr" in the
 following list */
 [root >] cat /proc/devices
 [root >] mknod /dev/bios_pmr c MAJOR 0
3) Start the DSP (and any GPP) programs. RF6 requires additional

setup steps, so see the RF6 documentation if you plan to use it. For
example, you might use a command like one of the following:

 loadandrun hello.out &
 rf6_gpp app.out
4) Run the rtaTrace application with the desired options. By default, log

data is sent to syslog. For example:
 rtaTrace hello.out
You can run rtaTrace at any time after starting the DSP program. You can
stop rtaTrace with a kill -2 and restart it any number of times. If you stop
rtaTrace any other way (for example, with CTRL+C), it cannot be
restarted unless the DSP program is reloaded.

If the DSP program crashes and rtaTrace does not detected it, then a kill
-3 "<rtaTrace process ID>" causes rtaTrace to perform a postmortem and
stop. If rtaTrace was not running when the DSP program crashed,
rtaTrace it can be started in postmortem mode with the -c option.

The rtaTrace program can be restarted and directed to obtain different
logs. For example, with �rtaTrace -l0x1 hello.out" to obtain the system log.

If you do not start rtaTrace immediately after running the DSP program,
then you should use the -r option to clear any overrun statistics if you are
collecting STS data.
Sample Applications 3-3

Load and Run Application
3.2 Load and Run Application

The RTA SDK also provides the loadandrun utility. This utility loads a
DSP program using DSP/BIOS Link, and runs it with an optional set of
parameters that can be sent to the DSP application.

3.2.1 Command Line

Syntax: loadandrun <coffFile> [<dsp args...>]

3.2.2 Description

Loadandrun does not exit after starting the DSP program; instead it waits
for a signal to cleanup and shutdown gracefully.

To stop the DSP program, send a CTRL+C (or kill -2) to loadandrun. This
will also shut down DSP/BIOS Link cleanly so that another DSP program
can be loaded. Otherwise the OSK5912 might have to be rebooted.

In addition to retrieving LOG/STS data at run-time, the DSP/BIOS RTA
SDK supports postmortem LOG/STS analysis. To use this feature,
DSP/BIOS Link must continue running on the GPP side. Hence, if you
decide to switch to postmortem analysis, do not terminate the
"loadandrun" application. The postmortem analysis feature is only
supported if the LOG/STS objects are located in the DSP's internal
memory (DARAM/SARAM).

3.3 Questions and Answers

Q) How big is the rtaTrace application?

A) The rtaTrace application normally takes about 1.5 M bytes of virtual
memory depending up the size and number of LOG and STS objects.

Q) How much CPU time does the rtaTrace application use?

A) Running the rtaTrace application normally takes about 4% of the CPU
on the ARM. This can vary greatly depending upon the polling rate and
the amount of LOG and STS data that is being obtained.
3-4

Questions and Answers
Q) Why does the STS data not look correct when I start up the rtaTrace
application?

A) Data accumulated on the DSP for STS objects can overflow if not
uploaded on a periodic basis. If the rtaTrace application has not been
started immediately after the DSP program was loaded then start it with
the "-r" flag which will reset the accumulators on the GPP side.

Q) Why does RTA data stop coming out after I run the DSP program for
a while?

A) The DSP program might have crashed. You should perform
"kill -3 <rtaTrace process id>" to obtain any postmortem data.

Q) Why do I hear extra noise from the speakers while running rf6 every
time the rtaTrace program gets some data?

A) The rtaTrace needs to be run at a lower priority; use the -n option.

Q) Why does the postmortem analysis not display any data?

A) The postmortem analysis is only supported for the DSP/BIOS LOG
buffers that are located on DSP's internal memory.

Q) How does postmortem analysis work if the DSP is in sleep mode?

A) If the DSP is in sleep mode, the read attempt by GPP to DSP's internal
memory stalls the GPP.

Q) Why I am getting an "RTA_readProgramError=0xa0000034" while
starting "rtaTrace" program?

A) This error is caused because DSP/BIOS Link is no longer up and
running, i.e. "loadandrun" application has been terminated.
Sample Applications 3-5

3-6

This is a draft version printed from file: rtasdkIX.fm on 8/4/04
Index
A
architecture 1-2
AS55FLAGS 2-7

B
bioslink_common.tci 1-4
BIOSLINK_DIR 2-4, 2-7
BIOSLINKDEVICE 1-4
building

applications 2-3
DSP/BIOS Link 2-3
examples 2-5

C
C55X_CODEGEN_ROOT 2-4
channel driver

building 2-5
moving 2-6

channels 1-3, 1-4
chnldrv application

building 2-5
CHNLDRVNAME 1-4
Codegen 1-5

version 2-3
compatibility 1-5
COMPONENT_ROOT 2-4
config.mak file 2-4

DSP/BIOS 2-7
RTA SDK 2-3, 2-4

CPU busy 1-2, 3-2
CTRL+C 3-3

D
design goals 1-2
disk space 2-2
drivers

channel 1-4, 2-3, 2-5

DSP/BIOS Link 3-3
GIO class 1-4
IOM 1-4
loading 3-3
postmortem 2-5, 3-3

DSP application
starting 3-3
starting and stopping 3-4

DSP/BIOS 1-6
version 1-5

DSP/BIOS Link 1-6
building 2-3
configuration 2-3
loading driver 3-3
shutting down 3-4
version 1-5

dsplink.bash script 3-3
dsplink.l55l location 2-4
DSPLINK_DIR 2-3
DSP-to-GPP 1-3

E
errors 3-5

installation 2-2
examples

DSP/BIOS 2-6
moving to GPP 2-6

F
file system for GPP 2-6

G
GIO class driver 1-4
GIO module 1-6
GPP 1-6
GPP applications

starting 3-3
GPP-to-DSP 1-3
Index-1

 Index
H
hello application

building 2-5
running 3-3

HOSTLINKTYPE 1-4
HST configuration 1-4
HST module 1-6

I
idle loop 1-3
importFile 2-7
installation 2-2
internal memory 3-4
IOM driver 1-4
IOM module 1-6

J
Java error 2-2
JTAG 2-6

K
KERNEL_INC_DIR 2-4
kill command 3-3

L
LD_LIBRARY_PATH 2-6
LD55FLAGS 2-7
LD55OPTS 2-7
libcd_bl.so application 2-6

building 2-5
LNKBIOSLINKLIB_DIR 2-4, 2-7
loadandrun application

moving to GPP 2-6
loadandrun utility 3-4

building 2-5
syntax 3-4

LOG module 1-6
LOG objects 3-4

M
makefile 2-3, 2-4
MontaVista Linux

version 1-5
MVL_TOOLCHAIN 2-3

N
NFS-mounted drive 2-6
noise from speakers 3-5

O
OMAP 1-6
OSK 1-6
OSK5912 1-2
overhead 1-3

P
pmr_drv.o 2-5, 2-6
pmrdrv application

building 2-5
pmrdrvload.bash script 3-3
postmortem 3-2, 3-4

troubleshooting 3-5
postmortem driver 2-5

loading 3-3
moving 2-6

PROC+CHNL configuration 2-3
PROC+CHNL+MSGQ configuration 2-5

R
rebuilding applications 2-3
RF6 1-6

channels 1-4
setup 3-3

RTA_fromHost.biosLinkChnlNbr 1-4
RTA_SDK_DIR 2-3, 2-4
RTA_toHost.biosLinkChnlNbr 1-4
RTASDK_dir 2-2
RTASDK_INSTALL_DIR 2-4
rtaTrace 3-2

CPU use 3-4
moving to GPP 2-6
options 3-2
running 3-3
size 3-4
stopping 3-3

rtatrace application
building 2-5

RTDX 1-6, 2-6

S
SABIOS_dir 2-4
Index-2

Index
SABIOS_INSTALL_DIR 2-4
sample applications 3-1
sleep mode 3-5
statistics 3-2

overflow 3-5
stopping rtaTrace 3-3
STS module 1-6
STS objects 3-4

syslog 3-2
configuring 3-2

V
versions 1-5
Index-3

Index-4

	DSP/BIOS Real-Time Analysis SDK for OSK5912
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	About the DSP/BIOS Real-Time Analysis SDK
	1.1 Purpose
	1.2 Software Architecture
	1.2.1 Channels and Data Exchange
	1.2.2 DSP/BIOS Link Configuration

	1.3 Compatibility
	1.4 References
	1.5 Terms and Definitions

	Installation and Setup
	2.1 Installing the SDK
	2.2 Build Settings and Actions
	2.2.1 Assumptions
	2.2.2 DSP/BIOS Link Configuration
	2.2.3 GPP-Side Settings Before Building
	2.2.4 DSP-Side Settings Before Building
	2.2.5 Building the Examples

	2.3 Preparing to Run the Example Applications
	2.4 Configuring DSP/BIOS Examples for RTA SDK

	Sample Applications
	3.1 RTA Trace Application
	3.1.1 Command Line
	3.1.2 Description

	3.2 Load and Run Application
	3.2.1 Command Line
	3.2.2 Description

	3.3 Questions and Answers

	Index

