AAC Encoder on C64x+

User Guide

DAVINCI

TEXAS INSTRUMENTS

Literature Number: SPRUEX8
May 2007

” TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any Tl patent right, copyright, mask
work right, or other Tl intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from Tl to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that product or service
voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business
practice. Tl is not responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of Tl products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its
representatives against any damages arising out of the use of Tl products in such safety-critical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the Tl products are
specifically designated by Tl as military-grade or "enhanced plastic." Only products designated by Tl as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

Tl products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products
are designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, Tl will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications
Amplifiers Audio ww Ircom/audid
Data Converters Automotive [vww i.com/automotivg
DSP Broadband [Www it.com/broadband
Interface Digital Control
Logic [odicTicom Military
Power Mgmt pRowerfr.coni Optical Networking [vww.fi.com/opficalnetworH
Microcontrollers picrocontroller-tr.com Security
Low Power Telephony [pww ir-com/telephony
Wireless
Video & Imaging Www.tl.com/vided
Wireless [vww Ti.com/wirelesd

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti.com/lpw
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

Preface

Read This First

About This Manual

This document describes how to install and work with Texas Instruments’
(TI) AAC Encoder implementation on the C64x+ platform. It also provides
a detailed Application Programming Interface (API) reference and
information on the sample application that accompanies this component.

TI's codec implementations are based on the eXpressDSP Digital Media
(XDM) standard. XDM is an extension of the eXpressDSP Algorithm
Interface Standard (XDAIS).

Intended Audience

This document is intended for system engineers who want to integrate
TI's codecs with other software to build a multimedia system based on
the C64x+ platform.

This document assumes that you are fluent in the C language, have a
good working knowledge of Digital Signal Processing (DSP), digital
signal processors, and DSP applications. Good knowledge of
eXpressDSP Algorithm Interface Standard (XDAIS) and eXpressDSP
Digital Media (XDM) standard will be helpful.

How to Use This Manual

This document includes the following chapters:

O Chapter 1 - Introduction, provides a brief introduction to the XDAIS
and XDM standards. It also provides an overview of the codec and
lists its supported features.

O Chapter 2 - Installation Overview, describes how to install, build,
and run the codec.

O Chapter 3 - Sample Usage, describes the sample usage of the
codec.

O Chapter 4 - API Reference, describes the data structures and
interface functions used in the codec.

O Appendix A —AAC Encoder Bit-rate and Sampling Frequency
Combination, contains the AAC Encoder bit rate and sampling
frequency combination.

Read This First

Related Documentation From Texas Instruments

The following documents describe TI's DSP algorithm standards such
as, XDAIS and XDM. To obtain a copy of any of these Tl documents,
visit the Texas Instruments website at www.ti.com.

Q

TMS320 DSP Algorithm Standard Rules and Guidelines (literature
number SPRU352) defines a set of requirements for DSP algorithms
that, if followed, allow system integrators to quickly assemble
production-quality systems from one or more such algorithms.

TMS320 DSP Algorithm Standard API Reference (literature number
SPRU360) describes all the APIs that are defined by the TMS320
DSP Algorithm Interface Standard (also known as XDAIS)
specification.

Technical Overview of eXpressDSP - Compliant Algorithms for DSP
Software Producers (literature number SPRA579) describes how to
make algorithms compliant with the TMS320 DSP Algorithm
Standard which is part of TI's eXpressDSP technology initiative.

Using the TMS320 DSP Algorithm Standard in a Static DSP System
(literature number SPRA577) describes how an eXpressDSP-
compliant algorithm may be used effectively in a static system with
limited memory.

DMA Guide for eXpressDSP-Compliant Algorithm Producers and
Consumers (literature number SPRA445) describes the DMA
architecture specified by the TMS320 DSP Algorithm Standard
(XDAIS). It also describes two sets of APIs used for accessing DMA
resources: the IDMA2 abstract interface and the ACPY?2 library.

eXpressDSP Digital Media (XDM) Standard API Reference (literature
number SPRUECS)

The following documents describe TMS320 devices and related support
tools:

a

Design and Implementation of an eXpressDSP-Compliant DMA
Manager for C6X1X (literature number SPRA789) describes a
C6x1x-optimized (C6211, C6711) ACPY2 library implementation and
DMA Resource Manager.

TMS320C64x+ Megamodule (literature number SPRAAG8) describes
the enhancements made to the internal memory and describes the
new features which have been added to support the internal memory
architecture's performance and protection.

TMS320C64x+ DSP Megamodule Reference Guide (literature
number SPRU871) describes the C64x+ megamodule peripherals.

TMS320C64x to TMS320C64x+ CPU Migration Guide (literature
number SPRAA84) describes migration from the Texas Instruments
TMS320C64x™ digital signal processor (DSP) to the
TMS320C64x+™ DSP.

TMS320C6000 Optimizing Compiler v 6.0 Beta User's Guide
(literature number SPRU187N) explains how to use compiler tools

http://www.ti.com/

Read This First

such as compiler, assembly optimizer, standalone simulator, library-
build utility, and C++ name demangler.

O TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide
(literature number SPRU732) describes the CPU architecture,
pipeline, instruction set, and interrupts of the C64x and C64x+ DSPs.

O TMS320DM6446 Digital Media System-on-Chip (literature number
SPRS283)

O TMS320DM6446 Digital Media System-on-Chip Errata (Silicon
Revision 1.0) (literature number SPRZ241) describes the known
exceptions to the functional specifications for the TMS320DM6446
Digital Media System-on-Chip (DMSoC).

O TMS320DM6443 Digital Media System-on-Chip (literature number
SPRS282)

O TMS320DM6443 Digital Media System-on-Chip Errata (Silicon
Revision 1.0) (literature number SPRZ240) describes the known
exceptions to the functional specifications for the TMS320DM6443
Digital Media System-on-Chip (DMSoC).

O TMS320DM644x DMSoC DSP Subsystem Reference Guide
(literature number SPRUE15) describes the digital signal processor
(DSP) subsystem in the TMS320DM644x Digital Media System-on-
Chip (DMSoC).

O TMS320DM644x DMSoC ARM Subsystem Reference Guide
(literature number SPRUE14) describes the ARM subsystem in the
TMS320DM644x Digital Media System on a Chip (DMSoC).

Related Documentation
You can use the following documents to supplement this user guide:

O ISO/IEC IS 14496-3 Information Technology -- Coding of Moving
Pictures and Associated Audio for Digital Storage Media at up to
about 1.5 Mbps -- Part 3: Audio

O ISO/IEC IS 13818-7 Information Technology -- Generic Coding of
Moving Pictures and Associated Audio Information -- Part 7:
Advanced Audio Coding

Read This First

Abbreviations

The following abbreviations are used in this document:

Table 1-1. List of Abbreviations

Abbreviation Description

API Application Programming Interface

ADIF Audio Data Interchange Format

ADTS Audio Data Transport Stream

CBR Constant Bit Rate

CRC Cyclic Redundancy Check

DMA Direct Memory Access

DMAN3 DMA Manager

EVM Evaluation Module

HE High Efficiency

HEv2 High Efficiency with parametric stereo

Kbps Kilo bits per second

LC Low Complexity

MPEG Moving Picture Experts Group

PCM Pulse code modulation

PNS Perceptual noise substitution

PS Parametric Stereo

SBR Spectral Band Replication

TNS Tonal Noise Shaping

VBR Variable Bit Rate

XDAIS eXpressDSP Algorithm Interface
Standard

XDM eXpressDSP Digital Media

vi

Read This First

Text Conventions

Product Support

Trademarks

The following conventions are used in this document:
O Textinside back-quotes (*) represents pseudo-code.

O Program source code, function and macro names, parameters, and
command line commands are shown in a mono-spaced font.

When contacting Tl for support on this codec, please quote the product
name (AAC Encoder on C64x+) and version number. The version
number of the codec is included in the Title of the Release Notes that
accompanies this codec.

Code Composer Studio, the DAVINCI Logo, DAVINCI, DSP/BIOS,
eXpressDSP, TMS320, TMS320C64x, TMS320C6000, TMS320DM644X,
and TMS320C64x+ are trademarks of Texas Instruments.

All trademarks are the property of their respective owners.

vii

Read This First

This page is intentionally left blank

viii

Contents

= 1o I I 0T ST T] iii
ADOUL THIS MANUALeiiiiiiiie i e a e e e e e iii
INENAEA AUGIENCE ... e e e e e e et e e e e e e e e eeraaaaaas iii
How to Use ThiS ManUalccooiiiiiiee e iii
Related Documentation From Texas INStrumMeNtS..........ccuuuveviiiiiiiiiiiiiiieeeee e iv
Related DOCUMENTALION........uuuii e e e e e e e e e e e e e e e e e eerbaaaaas \Y;
ADDIEVIALIONS ... Vi
TEXE CONVENTIONS ...ttt e e e e e e e e e e e e e e e e e Vil
ProdUCT SUPPOI ... vii
LI = 10 1= 4 F= U Vil

(70 01 1T 01 £ R UURRURRRS iX

o =P Xi

L= 101 L= RSP EPP PP Xiii

TN Ao Yo [UTod 1o o [P UUUPPUPRTPPRRN 1-1
1.1 Overview of XDAIS and XDM........ccooiiiiiiiiiiiiiii 1-2

L1.1.1 XDAIS OVEIVIEW ..t 1-2
11,2 XDM OVEIVIEW ..t c ettt et e ettt et e et e aaaaaaaas 1-2
1.2 Overview Of AAC ENCOETuiiiii e 1-4
1.3 Supported Services and FEAIUIEScccuuiiiieiieee e 1-4

INSTAIALION OVEIVIEW ...ttt eeb bbb ee bt ebebbsbeesnesnneenneennes 2-1

2.1 SyStEM REQUITEIMENTSeiiiiiiiiiiiiiiiii ettt e e e e eeaeeeas 2-2
A I O o - 0 1117 T PP O PPPPRT 2-2
2.1.2 SOMWAIE .ot ———————— 2-2

2.2 Installing the COMPONENL.........coii i e e 2-2

2.3 Before Building the Sample Test Applicationccccoevvevviieviieiiieeeieeieeeeeeee, 2-3
2.3.1 Installing DSP/BIOSotiiiiiiiee it e e e e ere e e e e e e s s snnbeaeeeaeeesennnes 2-3

2.4 Building and Running the Sample Test Applicationccccccevviiiiiiiinereennnnnns 2-4

2.5 Configuration FilESooiiiiiiiiiiiiiiiiiee e 2-4
2.5.1 Generic Configuration Fileccuuiiiiiee i 2-5
2.5.2 Encoder Configuration File...........occuuiiiiiie i e e 2-5

2.6 Standards Conformance and User-Defined INputscccccvvvvvviiviieeiieeieeeneee, 2-6

2.7 Uninstalling the COMPONENTuuiiiiiiiie e 2-6

SAMPIE USAGE... .ottt ettt e e e e e 3-1

3.1 Overview of the Test ApPliCatioN...........cccevvvieiiiiiiiiiiiieieeeeeeeeeeeee e 3-2
3. 1.1 Parameter SEUUPccooiiiiiiiiiieee ettt e e 3-3
3.1.2 Algorithm Instance Creation and Initialization..............ccccccoiviiiieiniiine e 3-3
3.1.3 ProCeSS Call......ooooiiiiii s 3-4
3.1.4 Algorithm INStance DeItioNuuuiiiiiiiiiiiiiie e 3-5

AP REIBIENCE ... et e et e e e e e e e et e e e e e e e e araaaans 4-1
4.1 Symbolic Constants and Enumerated Data TYPES.......ccovvvvviiiiiiiierreeeiiiiiieeeeeea, 4-2
N B T = Y1 0o 0] €= 4-7

4.2.1 Common XDM Data StrUCLUIES.euiuieiiiiiieiiieieieiereieierererererererernrerarereeereeaees 4-7
4.2.2 AAC Encoder Data SITUCTUIEScooiuuiiiieieee et 4-14
4.3 INterface FUNCHONSuiiiiiiiiiiiiiiiiiiiiii e 4-18

43.1
4.3.2
4.3.3
4.3.4
4.3.5

(@1 LoT-1a[0] Y 4-18

LaTLE =YL= 1o] a1 2N md 4-20
(@00] 011 £0] 172N =4 T 4-21
Data Processing APooo o 4-23
TermMINALION AP ...t e e e e e e e e e st e e e eraaas 4-25

Figures

Figure 2-1. Component Directory StruCtUIeooviiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeee 2-2
Figure 3-1. Test Application Sample Implementation..........ccccccceeviieiiiiiiiiiin e, 3-2

Xi

This page is intentionally left blank

Xii

Tables

Table 1-1. List of AbDreviationS ... e e Vi
Table 2-1. ComMPONENt DIir€CIOITES ... i i i e e e e e e e e eeees 2-3
Table 4-1. List of Enumerated Data TYPeS ..., 4-2
Table 4-2. AAC Encoder Error StatUS.......ccuuuiiiiiiiiiieeeeiein et e e arn e 4-5

xiii

This page is intentionally left blank

Xiv

Chapter 1

Introduction

This chapter provides a brief introduction to XDAIS and XDM. It also
provides an overview of TI's implementation of the AAC Encoder on the
C64x+ platform and its supported features.

Topic Page
1.1 Overview of XDAIS and XDM 11
1.2 Overview of AAC Encoder 1-4
1.3 Supported Services and Features 1-4

1-1

Introduction

1.1 Overview of XDAIS and XDM

TI's multimedia codec implementations are based on the eXpressDSP
Digital Media (XDM) standard. XDM is an extension of the eXpressDSP
Algorithm Interface Standard (XDAIS).

1.1.1 XDAIS Overview

An eXpressDSP-compliant algorithm is a module that implements the
abstract interface IALG. The IALG API takes the memory management
function away from the algorithm and places it in the hosting framework.
Thus, an interaction occurs between the algorithm and the framework. This
interaction allows the client application to allocate memory for the algorithm
and also share memory between algorithms. It also allows the memory to
be moved around while an algorithm is operating in the system. In order to
facilitate these functionalities, the IALG interface defines the following
APIs:

Q algAlloc()
algInit ()
algActivate ()

algDeactivate ()

0O 0 0 O

algFree ()

The algalloc () API allows the algorithm to communicate its memory
requirements to the client application. The algInit () API allows the
algorithm to initialize the memory allocated by the client application. The
algFree () API allows the algorithm to communicate the memory to be
freed when an instance is no longer required.

Once an algorithm instance object is created, it can be used to process
data in real-time. The algactivate () API provides a notification to the
algorithm instance that one or more algorithm processing methods is about
to be run zero or more times in succession. After the processing methods
have been run, the client application calls the algbeactivate () API prior
to reusing any of the instance’s scratch memory.

The IALG interface also defines three more optional APIs algControl (),
algNumAlloc (), and algMoved (). For more details on these APIs, see
TMS320 DSP Algorithm Standard API Reference (literature number
SPRU360).

1.1.2 XDM Overview

In the multimedia application space, you have the choice of integrating any
codec into your multimedia system. For example, if you are building a
video decoder system, you can use any of the available video decoders
(such as MPEG4, H.263, or H.264) in your system. To enable easy
integration with the client application, it is important that all codecs with
similar functionality use similar APIs. XDM was primarily defined as an
extension to XDAIS to ensure uniformity across different classes of codecs

1-2

Introduction

(for example audio, video, image, and speech). The XDM standard defines
the following two APIs:

Q control ()
Q process|()

The control () API provides a standard way to control an algorithm
instance and receive status information from the algorithm in real-time. The
control () API replaces the algControl () API defined as part of the
IALG interface. The process () API does the basic processing
(encode/decode) of data.

Apart from defining standardized APIs for multimedia codecs, XDM also
standardizes the generic parameters that the client application must pass
to these APIs. The client application can define additional implementation
specific parameters using extended data structures.

The following figure depicts the XDM interface to the client application.

Client Application

XDM Interface

XDAIS Interface (IALG)

TI's Codec Algorithms

As depicted in the figure, XDM is an extension to XDAIS and forms an
interface between the client application and the codec component. XDM
insulates the client application from component-level changes. Since TI's
multimedia algorithms are XDM-compliant, it provides you with the
flexibility to use any Tl algorithm without changing the client application
code. For example, if you have developed a client application using an
XDM-compliant MPEG4 video decoder, then you can easily replace
MPEG4 with another XDM-compliant video decoder, say H.263, with
minimal changes to the client application.

For more details, see eXpressDSP Digital Media (XDM) Standard API
Reference (literature number SPRUECS).

1-3

Introduction

1.2 Overview of AAC Encoder

AAC is one of the most popular audio compression standards across wide
spectrum of application ranging from portable player, cell phones, music
systems, internet, and so forth.

1.3 Supported Services and Features

This user guide accompanies TI's implementation of AAC Encoder on the
C64x+ platform.

This version of the codec has the following supported features:

O Supports 16-bit and 32-bit PCM samples as input. In case of 32-bit
PCM it takes the most significant 16-bits as input internally.

O Supports constant bit-rate (CBR) encoding and variable bit-rate (VBR)
encoding

O Supports input sampling frequencies from 8 kHz to 96 kHz
O Supports only AAC-LC output format
Q Supports mono, stereo and dual mono input files

O Supports bit rates based on sampling frequency and number of
channels

O Supports Audio Data Interchange Format (ADIF), Audio Data Transport
Stream (ADTS), and raw output format

O Compliant with the ISO/IEC 14496-3 (MPEG 4 AAC) and ISO/IEC
13818-7 (MPEG 2-AAC) standards

O eXpressDSP compliant

O eXpressDSP Digital Media (XDM) compliant

1-4

Chapter 2

Installation Overview

This chapter provides a brief description on the system requirements and
instructions for installing the codec component. It also provides information
on building and running the sample test application.

Topic Page
2.1 System Requirements 2-2
2.2 Installing the Component 2-2
2.3 Before Building the Sample Test Application 2-3
2.4 Building and Running the Sample Test Application 2-4
2.5 Configuration Files 2-4
2.6 Standards Conformance and User-Defined Inputs 2-6
2.7 Uninstalling the Component 2-6

2-1

Installation Overview

2.1 System Requirements

This section describes the hardware and software requirements for the
normal functioning of the codec component.

2.1.1 Hardware

This codec has been built and tested on the DM6437 EVM with XDS560
USB.

2.1.2 Software

The following are the software requirements for the normal functioning of
the codec:

O Development Environment: This project is developed using Code
Composer Studio version 3.2.37.12.

O Code Generation Tools: This project is compiled, assembled,
archived, and linked using the code generation tools version 6.0.8.

2.2 Installing the Component

The codec component is released as a compressed archive. To install the

codec, extract the contents of the zip file onto your local hard disk. The zip
file extraction creates a top-level directory called 100_A_AAC_E_1 00_00,
under which another directory named DM6437_LC is created.

Figure 2-1 shows the sub-directories created in the DM6437_LC directory.

E”:I Client

=1 Buid

-] Map

{1 obj

P {1 ot

= Test

":l Inc

£ Sic

=] Testvecs
:I Config
1 mput
3 Cukpuk
3 Reference

Figure 2-1. Component Directory Structure

Table 2-1 provides a description of the sub-directories created in the
DM6437_LC directory.

2-2

Installation Overview

Table 2-1. Component Directories

Sub-Directory

Description

\Inc

\Lib
\Docs
\Client\Build

\Client\Build\Map

\Client\Build\Obj

\Client\Build\Out

\Client\Test\Src
\Client\Test\Inc
\Client\Test\TestVecs\Input
\Client\Test\TestVecs\Output

\Client\Test\TestVecs\Reference

\Client\Test\TestVecs\Config

Contains XDM related header files which allow interface to the
codec library

Contains the codec library file
Contains user guide, datasheet, and release notes
Contains the sample test application project (.pjt) file

Contains the memory map generated on compilation of the
code

Contains the intermediate .asm and/or .obj file generated on
compilation of the code

Contains the final application executable (.out) file generated
by the sample test application

Contains application C files

Contains header files needed for the application code
Contains input test vectors

Contains output generated by the codec

Contains read-only reference output to be used for verifying
against codec output

Contains configuration parameter files

2.3 Before Building the Sample Test Application

This codec is accompanied by a sample test application. To run the sample
test application, you need DSP/BIOS.

This version of the codec has been validated with DSP/BIOS version 5.31.

2.3.1 Installing DSP/BIOS

You can download DSP/BIOS from the Tl external website:

https://www-a.ti.com/downloads/sds support/targetcontent/bios/index.html

Install DSP/BIOS at the same location where you have installed Code
Composer Studio. For example:

<install directory>\CCStudio _v3.2

The sample test application uses the following DSP/BIOS files:

O Header file, bcache.h available in the
<install directory>\CCStudio_v3.2\<bios_directory>\packages
\ti\bios\include directory.

2-3

https://www-a.ti.com/downloads/sds_support/targetcontent/bios/index.html

Installation Overview

Q Library file, biosDM420.a64P available in the
<install directory>\CCStudio_v3.2\<bios_directory>\packages
\ti\bios\lib directory.

2.4 Building and Running the Sample Test Application

The sample test application that accompanies this codec component will
run in TI's Code Composer Studio development environment. To build and
run the sample test application in Code Composer Studio, follow these
steps:

1) Verify that you have an installation of TI's Code Composer Studio
version 3.2.37.12 and code generation tools version 6.0.8.

2) Verify that the codec object library aacenc_tii_Ic.I64P exists in the \Lib
sub-directory.

3) Open the test application project file, TestAppEncoder.pjt in Code
Composer Studio. This file is available in the \Client\Build sub-
directory.

4) Select Project > Build to build the sample test application. This
creates an executable file, TestAppEncoder.out in the \Client\Build\Out
sub-directory.

5) Select File > Load, browse to the \Client\Build\Out sub-directory,
select the codec executable created in step 4, and load it into Code
Composer Studio in preparation for execution.

6) Select Debug > Run to execute the sample test application.

The sample test application takes the input files stored in the
\Client\Test\TestVecs\Input sub-directory, runs the codec, and dumps
the output in the \Client\Test\TestVecs\Output directory.

2.5 Configuration Files
This codec is shipped along with:

O A generic configuration file (Testvecs.cfg) — specifies input and output
files for the sample test application.

O A Encoder configuration file (Testparams.cfg) — specifies the
configuration parameters used by the test application to configure the
Encoder.

2-4

Installation Overview

2.5.1 Generic Configuration File

The sample test application shipped along with the codec uses the
configuration file, Testvecs.cfg for determining the input and output files for
running the codec. The Testvecs.cfq file is available in the
\Client\Test\TestVecs\Config sub-directory.

The format of the Testvecs.cfqg file is:

Input
Output

where:
O Input isthe input file name (use complete path).
O output is the output file name.

A sample Testvecs.cfq file is as shown:

- \\. .\\Test\\TestVecs\\Input\\input.wav
- \\. .\\Test\\TestVecs\\Output\\output.aac

2.5.2 Encoder Configuration File

The encoder configuration file, Testparams.cfg contains the configuration
parameters required for the encoder. The Testparams.cfg file is available in
the \Client\Test\TestVecs\Config sub-directory.

A sample Testparams.cfg file is as shown:

Input File Format is as follows
<ParameterName> <ParameterValue> /* Comment */
#
HHHHH
Parameters
HHH R R R R R R R R R R R R
-b 128000 /* bit rate */
-m O /* dual Mono */
-c 0 /* CRC flag */
-t 1 /* TNS flag */
-p 1 /* PNS flag */
-d 0 /* downmix flag */
-0 2 /* Output Object type */
/* 2 = LC */
/* 5 = HE */
/* 29 = HEv2 */
-f 2 /* Output File type */
/* 0 = Raw */
/* 1 = ADIF */
/* 2 = ADTS */
-v 1 /* 0 = CBR, 1 = VBR Mode 1 */
/* 2 = VBR Mode 2 */
/* 3 = VBR Mode 3 */
/* 4 = VBR Mode 4 */
/* 5 = VBR Mode 5 */

2-5

Installation Overview

Any field in the IAACENC Params Structure (see Section 4.2.2.1) can be
set in the Testparams.cfg file using the syntax shown above. If you specify
additional fields in the Testparams.cfg file, ensure to modify the test
application appropriately to handle these fields.

Note:

In case of VBR mode,
Q VBR Mode 1 => Low quality
O VBR Mode 5 =>Very high quality.

The quality and the bit-rate increases from VBR Mode 1 to VBR Mode 5.

2.6 Standards Conformance and User-Defined Inputs

To check the conformance of the codec for the default input file shipped
along with the codec, follow the steps as described in Section 2.4.

To check the conformance of the codec for other input files of your choice,
follow these steps:

O Copy the input files to the \Client\Test\TestVecs\Inputs sub-directory.

O Copy the reference files to the \Client\Test\TestVecs\Reference sub-
directory.

O Edit the configuration file, Testvecs.cfg available in the
\Client\Test\TestVecs\Config sub-directory. For details on the format of
the Testvecs.cfg file, see Section 2.5.1.

O Execute the sample test application.

You can use any standard file comparison utility to compare the codec
output with the reference output and check for conformance.

2.7 Uninstalling the Component

2-6

To uninstall the component, delete the codec directory from your hard disk.

Chapter 3

Sample Usage

This chapter provides a detailed description of the sample test application
that accompanies this codec component.

3-1

Sample Usage

3.1 Overview of the Test Application

The test application exercises the IAACENC base class of the AAC
Encoder library. The main test application files are TestAppEncoder.c and
TestAppEncoder.h. These files are available in the \Client\Test\Src and
\Client\Test\Inc sub-directories respectively.

Figure 3-1 depicts the sequence of APIs exercised in the sample test

application.
Test Application XDAIS-XDM Interface Codec Library
o}
©
E o
© S
]
[a N dp]
c : !
S < ' ;
= O : :
3 I —— algNumAllo¢() ——
O = ! 1
EgE L algAlloc) — >
= % < | . |
X = ——— alglnit() _—
< £ i :
————— algActivate >
(2] | |
7 ——— control() >,
S = : :
=5 —————— process() >
—— control() >,
~—— algDeactivate() >
£ | .
£8s — algNumAlloc() >,
IS : |
5% 2 — algFree) —————>
< £Aa : '

Figure 3-1. Test Application Sample Implementation

Note:

Audio codecs do not use algActivate () and algbeactivate () APIs.

3-2

Sample Usage

The test application is divided into four logical blocks:
Q Parameter setup

Q Algorithm instance creation and initialization

O Process call

Q Algorithm instance deletion

3.1.1 Parameter Setup

Each codec component requires various codec configuration parameters to
be set at initialization. For example, a video codec requires parameters
such as video height, video width, etc. The test application obtains the
required parameters from the Encoder configuration files.

In this logical block, the test application does the following:

1) Opens the generic configuration file, config.txt and reads the
compliance checking parameter, input file name, and output file name.

For more details on the configuration files, see Section 2.5.
2) Reads the input bit stream into the application input buffer.

After successful completion of the above steps, the test application does
the algorithm instance creation and initialization.

3.1.2 Algorithm Instance Creation and Initialization

In this logical block, the test application accepts the various initialization
parameters and returns an algorithm instance pointer. The following APIs
are called in sequence:

1) algNumalloc () - To query the algorithm about the number of memory
records it requires.

2) algAlloc () - To query the algorithm about the memory requirement
to be filled in the memory records.

3) algInit () - Toinitialize the algorithm with the memory structures
provided by the application.

A sample implementation of the create function that calls algNumaAlloc (),
algAlloc (), and algInit () in sequence is provided in the
ALG create () function implemented in the alg_create.c file.

3-3

Sample Usage

3.1.3 Process Call

3-4

After algorithm instance creation and initialization, the test application does
the following:

1) Sets the dynamic parameters (if they change during run time) by
calling the control () function with the XbM SETPARAMS command.

2) Sets the input and output buffer descriptors required for the
process () function call. The input and output buffer descriptors are
obtained by calling the control () function with the XDM GETBUFINFO
command.

3) Calls the process () function to encode/decode a single frame of data.
The behavior of the algorithm can be controlled using various dynamic
parameters (see Section 4.2.1.5). The inputs to the process ()
function are input and output buffer descriptors, pointer to the
IAACENC InArgs and IAACENC OutArgs Structures.

There could be any ordering of control () and process () functions. The
following APls are called in sequence:

1) control () (optional) - To query the algorithm on status or setting of
dynamic parameters etc., using the six available control commands.

2) process () - To call the Encoder with appropriate input/output buffer
and arguments information.

3) control () (optional) - To query the algorithm on status or setting of
dynamic parameters etc., using the six available control commands.

The do-while loop encapsulates frame level process () call and updates
the input buffer pointer every time before the next call. The do-while loop
breaks off either when an error condition occurs or when the input buffer
exhausts. It also protects the process () call from file operations by
placing appropriate calls for cache operations as well. The test application
does a cache invalidate for the valid input buffers before process () and a
cache write back invalidate for output buffers after process ().

In the sample test application, after calling process (), the output data is
either dumped to a file or compared with a reference file.

Sample Usage

3.1.4 Algorithm Instance Deletion

Once encoding/decoding is complete, the test application must delete the
current algorithm instance. The following APls are called in sequence:

1) algNumAlloc () - To query the algorithm about the number of memory
records it used.

2) algFree () - To query the algorithm to get the memory record
information.

A sample implementation of the delete function that calls algNumaAlloc ()
and algFree () in sequence is provided in the ALG delete () function
implemented in the alg_create.c file.

3-5

Sample Usage

This page is intentionally left blank

3-6

Chapter 4

APl Reference

This chapter provides a detailed description of the data structures and
interfaces functions used in the codec component.

Topic Page
4.1 Symbolic Constants and Enumerated Data Types 4-2
4.2 Data Structures 4-6
4.3 Interface Functions 4-17

4-1

API| Reference

4.1 Symbolic Constants and Enumerated Data Types

This section summarizes all the symbolic constants specified as either
#define macros and/or enumerated C data types. Described alongside the
macro or enumeration is the semantics or interpretation of the same in
terms of what value it stands for and what it means.

Table 4-1. List of Enumerated Data Types

Group or Enumeration Symbolic Constant Name Description or Evaluation
Class
IAUDIO ChannelId IAUDIO_ MONO Single channel
IAUDIO_STEREO Two channels
IAUDIO THREE_ZERO Three channels.
Not supported in this version of AAC
Encoder.
IAUDIO_FIVE_ZERO Five channels.
Not supported in this version of AAC
Encoder.
IAUDIO_FIVE ONE 5.1 channels.
Not supported in this version of AAC
Encoder.
IAUDIO_SEVEN_ ONE 7.1 channels.
Not supported in this version of AAC
Encoder.
IAUDIO_PcmFormat IAUDIO BLOCK Left channel data followed by right channel
data.

Note: For single channel (mono), right
channel data will be same as left channel
data.

IAUDIO_INTERLEAVED Left and right channel data interleaved.

Note: For single channel (mono), right
channel data will be same as left channel

data.
XDM_DataFormat XDM_BYTE Big endian stream
XDM LE 16 16-bit little endian stream
XDM_LE 32 32-bit little endian stream
XDM_CmdId XDM_GETSTATUS Query algorithm instance to fill Status
structure
XDM_SETPARAMS Set run time dynamic parameters via the

DynamicParams structure

4-2

API Reference

Group or Enumeration
Class

Symbolic Constant Name

Description or Evaluation

AACENC OBJ TYP

AACENC_BITRATE MO
DE

AACENC_TRANSPORT _

TYPE

AACENC_BOOL TYPE

XDM_ErrorBit

XDM_RESET

XDM_SETDEFAULT

XDM_FLUSH

XDM_GETBUFINFO

AACENC OBJ TYP LC

AACENC OBJ TYP HEAAC

AACENC OBJ TYP_PS

AACENC_BR MODE_CBR

AACENC_BR_MODE VBR 1

AACENC_BR_MODE_VBR 2

AACENC BR MODE VBR_3

AACENC BR MODE VBR 4

AACENC BR MODE_VBR_5

AACENC_TT RAW
AACENC_TT ADIF
AACENC_TT ADTS
AACENC_FALSE

AACENC_TRUE

Reset the algorithm

Initialize all fields in Params structure to
default values specified in the library

Handle end of stream conditions. This
command forces algorithm instance to output
data without additional input.

Query algorithm instance regarding the
properties of input and output buffers

AAC low complexity.
Q 2 - Low complexity

AAC Encoder with SBR capability.
Q 5 - SBR capability

AAC Encoder with SBR and PS.
Q 29 - SBR and PS capability

Constant Bit rate mode
Q 0 - Constant bit-rate

Variable bit-rate mode-1
O 1-VBRModel

Variable Bit-rate Mode-2
O 2-VBR Mode 2

Variable Bit-rate Mode-3
O 3-VBR Mode 3

Variable Bit-rate Mode-4
O 4-VBR Mode 4

Variable Bit-rate Mode-5
O 5-VBR Mode 5

Q 0 - Raw output format
Q 1 - ADIF file format

a 2-ADTS file format
Q 0-False

Q 1-True

The bit fields in the 32-bit error code are
interpreted as shown.

API Reference

Group or Enumeration Symbolic Constant Name Description or Evaluation
Class

XDM_APPLIEDCONCEALMENT Bit 9
Q 1- Applied concealment
a O-Ignore

Not applicable for AAC Encoder.

XDM_INSUFFICIENTDATA Bit 10

Q 1 - Insufficient input data

a O0-lgnore
XDM_CORRUPTEDDATA Bit 11

Q 1-Invalid data

a O0-lgnore
XDM_CORRUPTEDHEADER Bit 12

Q 1 - Corrupted frame header

a O0-lgnore
XDM_UNSUPPORTEDINPUT Bit 13

Q 1 - Unsupported feature/parameter in

input

a O0-lIgnore

XDM_UNSUPPORTEDPARAM Bit 14

Q 1 - Unsupported input parameter or
configuration
a O0-lgnore

XDM_FATALERROR Bit 15
Q 1- Fatal error (stop decoding)
Q 0 - Recoverable error

Note:

The remaining bits that are not mentioned in XDM_ErrorBit are
interpreted as:

Q Bit 16-32: Reserved
Q Bit 8: Reserved

Q Bit 0-7: Codec and implementation specific (see Table 4-2)

The algorithm can set multiple bits to 1 depending on the error condition.

The AAC Encoder specific error status messages are listed in Table 4-2.
The value column indicates the decimal value of the last 8-bits reserved for
codec specific error statuses.

4-4

API Reference

Table 4-2. AAC Encoder Error Status

Group or Symbolic Constant Name Value Description or Evaluation

Enumeration

Class

XDM_ErrorBit AACENC_INVALID PARAM 1 Invalid parameter for the encoder
AACENC_INVALID FREQ 2 Invalid input sampling frequency
AACENC INVALID BITRATE 3 Invalid output bit rate
AACENC_INVALID_ CHANNELS 4 Invalid number of channels
AACENC INVALID ELTYPE 5 Invalid element type
AACENC INSUFFICIENT INPUT 6 Insufficient input PCM data
AACENC_WRITEBITSTREAM ERR 7 Error during writing bit stream
OR
AACENC_ANCILLARYDATA ERRO 8 Error in ancillary data parameters
R
AACENC INVALID OUTFORMAT 9 Invalid output format
AACENC_INVALID BLOCK 10 Invalid block type
AACENC_DIV_BY ZERO 11 Divide by zero error
AACENC_NULL_ POINTER 12 Null pointer error
AACENC_CRC_ERROR 13 Cyclic redundancy check error
AACENC_TNS_ ERROR 14 TNS error
AACENC_INVALID SFB 15 Invalid scale factor band
AACENC_QUANTIZATION ERROR 16 Quantization error
AACENC _PSY THRESHOLD_ ERRO 17 Psychoacoustic threshold
R calculation error
AACENC_DYNAMICBITCOUNT ER 18 Dynamic bit count calculation error
ROR
AACENC WRITEADTSHEADER ER 19 Error while writing ADTS header
ROR
AACENC WRITEADIFHEADER ER 20 Error while writing ADIF header
ROR
AACENC_OUTBUF_TOO_ SMALL 21 Number of output bytes is greater

than output buffer size

AACENC_ERROR 22 Unspecified error

4-5

API Reference

The following errors are fatal errors and the application has to reset the
encoder with correct dynamic parameter values.

AACENC WRITEBITSTREAM ERROR
AACENC DIV BY ZERO

AACENC NULL_POINTER

AACENC ERROR

AACENC INVALID BLOCK
AACENC DIV BY ZERO
AACENC_TNS ERROR

AACENC INVALID SFB
AACENC_QUANTIZATION ERROR
AACENC_PSY THRESHOLD ERROR
AACENC_DYNAMICBITCOUNT ERROR

AACENC_WRITEADTSHEADER ERROR

o 0000000 00D 0 D O

AACENC_WRITEADIFHEADER ERROR

4-6

API| Reference

4.2 Data Structures

This section describes the XDM defined data structures that are common
across codec classes. These XDM data structures can be extended to
define any implementation specific parameters for a codec component.

4.2.1 Common XDM Data Structures
This section includes the following common XDM data structures:
XDM_BufDesc
XDM_AlgBufinfo
IAUDENC_Fxns
IAUDENC_Params
IAUDENC_DynamicParams
IAUDENC_InArgs

IAUDENC_Status

I I I e E N = =

I1AUDENC_OutArgs

4-7

API Reference

4211 XDM_BufDesc

| Description

This structure defines the buffer descriptor for input and output buffers.
| Fields
Field Datatype Input/ Description

Output

**pbufs XDAS_Int8 Input Pointer to the vector containing buffer addresses
numBufs XDAS_Int32 Input Number of buffers
*bufSizes XDAS_Int32 Input Size of each buffer in bytes

4.2.1.2 XDM_AlgBufinfo

| Description
This structure defines the buffer information descriptor for input and output
buffers. This structure is filled when you invoke the control () function
with the XDM_GETBUFINFO command.
| Fields
Field Datatype Input/ Description
Output
minNumInBufs XDAS_Int32 Output Number of input buffers
minNumOutBufs XDAS_Int32 Output Number of output buffers
minlnBufSize[XDM_ XDAS_Int32 Output Size in bytes required for each input buffer
MAX_10_BUFFERS]
minOutBufSize[XDM XDAS_Int32 Output Size in bytes required for each output buffer

_MAX_10_BUFFERS]

4-8

API| Reference

Note:

For AAC Encoder, the buffer details are:
Q Number of input buffer required is 1.

Q Number of output buffer required is 1.

input PCM samples is present in the input buffer. The input buffer
size (in words) is 1024 samples per channel.

Q The output buffer size (in bytes) for worst case is 1536 bytes.

on the format of the bit stream.

Q The size of the input buffer should be such that, atleast one frame of

These are the maximum buffer sizes but you can reconfigure depending

4.2.1.3 |IAUDENC_Fxns

| Description
This structure contains pointers to all the XDAIS and XDM interface
functions.
|| Fields
Field Datatype Input/ Description
Output
ialg IALG_Fxns Input Structure containing pointers to all the XDAIS
interface functions.
For more details, see TMS320 DSP Algorithm
Standard API Reference (literature number
SPRU360).
*process XDAS_Int32 Input Pointer to the process () function
*control XDAS_Int32 Input Pointer to the control () function

4-9

API Reference

4.2.1.4 |AUDENC_Params

| Description
This structure defines the creation parameters for an algorithm instance
object. Set this data structure to NULL, if you are unsure of the values to
specify for these parameters.
| Fields
Field Datatype Input/ Description
Output
size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.
encodingPreset XDAS_Int32 Input O XDM DEFAULT - Default setting of encoder
Q XDM HIGH_ QUALITY - High quality encoding
Q XDM HIGH_SPEED - High speed encoding
O XDM USER _DEFINED - User defined
configuration
See XDM_EncodingPreset enumeration for
details.
maxSampleRate XDAS_Int32 Input Maximum sampling frequency in Hertz.
maxBitrate XDAS_Int32 Input Maximum bit rate in bits per second.
maxNoOfCh XDAS Int32 Input Maximum channels. See TAUDIO ChannelId
enumeration for details.
dataEndianness XDAS Int32 Input Endianness of output data. See XDM_DataFormat
enumeration for details.
Note:

4-10

0O 0o 0 O

Q Currently, the AAC Encoder implementation supports XbM _LE 16
and xbpM_LE 32 format.

Q For the supported maxBitrate and maxSampleRate values, see
the standard documents listed in the Related Documentation
section.

The supported maxBitrate is 576 kbps.
The supported maxSampleRate is 96 kHz.
Supports a maximum of two input channels.

encodingPreset is not supported in this version of AAC Encoder.
The value of encodingPreset is ignored by the encoder

API Reference

4.2.1.5 |AUDENC_DynamicParams

| Description
This structure defines the run time parameters for an algorithm instance
object. Set this data structure to NULL, if you are unsure of the values to
be specified for these parameters.
| Fields
Field Datatype Input/ Description
Output
size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.
inputFormat XDAS_Int32 Input Input PCM format. See TAUDIO PcmFormat
enumeration for details.
bitRate XDAS_Int32 Input Average bit rate in bits per second.
sampleRate XDAS_Int32 Input Sampling frequency in Hertz.
numChannels XDAS Int32 Input Number of channels. See TAUDIO ChannelId
enumeration for details.
numLFEChannels XDAS Int32 Input Number of LFE channels in the stream.
inputBitsPerSam XDAS Int32 Input Number of bits per input PCM Sample

ple

Note:

Q Currently, the AAC Encoder does not support change in bit rate,
sample rate, and number of channels in between frames. All these
should be set at the start of encoding using IAACENC Params
structure or by using the reset command.

Q Currently this encoder supports 16-bit per input sample and 32-bit
per input sample. In case of 32-bits per input sample only the MSB
16-bits are considered

O numLFEChannels is ignored by the encoder

4-11

API Reference

4.2.1.6 |AUDENC_InArgs

| Description
This structure defines the run time input arguments for an algorithm
instance object.
| Fields
Field Datatype Input/ Description
Output
size XDAS_Int32 Input Size of the basic or extended (if being used) data

structure in bytes.

4.2.1.7 |AUDENC_Status

| Description
This structure defines parameters that describe the status of the algorithm
instance object.
|| Fields
Field Datatype Input/ Description
Output
size XDAS Int32 Input Size of the basic or extended (if being
used) data structure in bytes.
extendedError XDAS_Int32 Output Extended error enumeration for XDM
compliant encoders and decoders. See
XDM_ErrorBit enumeration for details.
frameLen XDAS Int32 Output Number of samples encoded per encode
call.
bufInfo XDM_AlgBufInfo Output Input and output buffer information. See
XDM_AlgBufInfo data structure for
details.

4-12

API Reference

4.2.1.8 |AUDENC_OutArgs

| Description
This structure defines the run time output arguments for the algorithm
instance object.
| Fields
Field Datatype Input/ Description
Output
size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.
extendedError XDAS_Int32 Output Extended error enumeration for XDM compliant
encoders and decoders. See XDM_ErrorBit
enumeration for details.
bytesGenerated XDAS_Int32 Output Bytes generated during the process call.

4-13

API Reference

4.2.2 AAC Encoder Data Structures

This section includes the following AAC Encoder specific extended data

structures:

Q 1AACENC_Params

0o 0o 0 O

4.2.2.1 |IAACENC_Params

IAACENC_DynamicParams
IAACENC_InArgs
IAACENC_Status
IAACENC_OutArgs

| Description
This structure defines the creation parameters and any other
implementation specific parameters for the AAC Encoder instance object.
The creation parameters are defined in the table below.
|| Fields
Field Datatype Input/ Description
Output
audenc_params IAUDENC_ Params Input See IAUDENC Params data structure for
details.
outObjectType AACENC OBJ_ TYP Input Output object type LC, HE or HEv2. See
AACENC_OBJ_TYP enumeration for details.
outFileFormat AACENC_ TRANSPORT Input Output file format. See
_TYPE AACENC_TRANSPORT TYPE enumeration for
details.
useCRC AACENC_BOOL_TYPE Input Flag for inserting CRC bits. See
AACENC_BOOL_TYPE enumeration for details.
useTns AACENC_BOOL_TYPE Input Flag for activating TNS feature. See
AACENC BOOL_TYPE enumeration for details.
usePns AACENC BOOL_TYPE Input Flag for activating PNS feature. See
AACENC_BOOL_TYPE enumeration for details.
downMixFlag AACENC_BOOL_TYPE Input Flag for enabling down mixing of channels. See
AACENC_BOOL_TYPE enumeration for details.
bitRateMode AACENC_BITRATE M Input Flag for indicating CBR and VBR modes
ODE
bitRate XDAS_ Int32 Input Input bit rate in bits per second.
sampleRate XDAS_Int32 Input Input sampling rate in Hertz.

4-14

API Reference

Field Datatype Input/ Description
Output
nbInChannels XDAS Int32 Input Enumerated type for number of input channels:
Q TIAUDIO_MONO - Single Channel
QO TIAUDIO_STEREO - Two Channels
dualMono AACENC BOOL_TYPE Input Flag to indicate dual mono stream. See
AACENC_BOOL_TYPE enumeration for details.
ancFlag AACENC_BOOL_TYPE Input Ancillary data flag. See AACENC_BOOL_TYPE
enumeration for details.
ancRate XDAS Int32 Input Ancillary data rate.
Note:

O outFileFormat supports Audio Data Interchange Format (ADIF),
Audio Data Transport Stream (ADTS), and raw output format.

O Incase of VBR mode,
VBR Mode 1 => Low quality
VBR Mode 5 =>Very high quality

The quality and the bit-rate increases from VBR Mode 1 to VBR
Mode 5.

O ancRate should be less than or equal to 15% of bitRate, subject
to an absolute maximum value of 19199.

4.2.2.2 |AACENC_DynamicParams

| Description
This structure defines the run time parameters and any other
implementation specific parameters for the AAC Encoder instance object.
The run time parameters are defined in the table below.
| Fields
Field Datatype Input/ Description
Output
audenc_dynamicpara IAUDENC_DynamicParams Input See TAUDENC_ DynamicParams
ms data structure for details.
dualMono AACENC_BOOL_TYPE Input Flag to indicate dual Mono input.
See AACENC BOOL_TYPE
enumeration for details.
useTns AACENC_BOOL_TYPE Input Flag for activating TNS feature.

See AACENC_BOOL_TYPE
enumeration for details.

4-15

API Reference

Field Datatype Input/ Description
Output
usePns AACENC_BOOL_TYPE Input Flag for activating PNS feature.
See AACENC BOOL_TYPE
enumeration for details.
useCRC AACENC_BOOL_TYPE Input Flag for inserting CRC bits. See
AACENC BOOL_TYPE
enumeration for details.
downMixFlag AACENC_BOOL_TYPE Input Flag for enabling down sampling.
See AACENC_BOOL_TYPE
enumeration for details.
outObjectType AACENC_OBJ_TYP Input Output object type LC/HE/HEV2.
See AACENC_OBJ TYP
enumeration for details.
outFileFormat AACENC_TRANSPORT TYPE Input Output file format. See
AACENC TRANSPORT TYPE
enumeration for details.
ancFlag AACENC_BOOL_TYPE Input Ancillary data flag. See
AACENC BOOL_TYPE
enumeration for details.
ancRate XDAS Int32 Input Ancillary data rate.
Note:
ancRate should be less than or equal to 15% of bitRate, subjectto an
absolute maximum value of 19199.
4.2.2.3 |AACENC_InArgs
| Description
This structure defines the run time input arguments for the AAC Encoder
instance object.
| Fields
Field Datatype Input/ Description
Output
audenc_inArgs IAUDENC_ InArgs Input See IAUDENC InArgs data structure for
details.
numInSamples XDAS Int32 Input Number of input PCM samples per channel.
*ancData XDAS _UInts8 Input Pointer to ancillary data.
numAncBytes XDAS Int32 Input Number of ancillary bytes.

4-16

API| Reference

4.2.2.4 |AACENC_Status
| Description

This structure defines parameters that describe the status of the AAC

Encoder and any other implementation specific parameters. The status

parameters are defined in the table below.
| Fields
Field Datatype Input/ Description

Output
audenc_status IAUDENC_Status Output See IAUDENC_ Status data structure for
details.
outputObjectTy AACENC_OBJ_ TYP Output Output object type LC, HE or HEV2. See
pe AACENC_OBJ_TYP enumeration for details.
bitRate XDAS_Int32 Output Output bit rate of the AAC stream.
outFileFormat AACENC_TRANSPO Output Output file format. See
RT_TYPE AACENC TRANSPORT TYPE enumeration for
details.
isvalid AACENC_BOOL_TY Output Flag to indicate status validity. See
PE AACENC_BOOL_TYPE enumeration for details.

4225 |AACENC_OutArgs
| Description

This structure defines the run time output arguments for the AAC Encoder

instance object.
| Fields
Field Datatype Input/ Description

Output

audenc_outArgs IAUDENC_OutArgs Output See IAUDENC OutArgs data structure for

details.

4-17

API| Reference

4.3

Interface Functions

This section describes the Application Programming Interfaces (APIs) used
in the AAC Encoder. The APIs are logically grouped into the following

categories:

O Creation —algNumAlloc (), algAlloc ()

O Initialization —algInit ()

a Control — control ()

O Dataprocessing —algActivate (), process (), algDeactivate ()
O Termination —algFree ()

You must call these APIs in the following sequence:

1)
2)
3)
4)
5)
6)
7

algNumAlloc ()
algAlloc()
algInit ()
algActivate ()
process ()
algDeactivate ()

algFree ()

control () can be called any time after calling the alginit () API.

algNumAlloc (), algAlloc (), algInit (), algActivate(),
algDeactivate (), and algFree () are standard XDAIS APIs. This
document includes only a brief description for the standard XDAIS APIs.
For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

Note:

Audio codecs do not use algActivate () and algDeactivate () APIs.

4.3.1 Creation APIs

4-18

Creation APIs are used to create an instance of the component. The term
creation could mean allocating system resources, typically memory.

API| Reference

| Name

| Synopsis

[| Arguments

| Return Value

| Description

| See Also

algNumAlloc () — determine the number of buffers that an algorithm
requires

XDAS Int32 algNumAlloc (Void) ;

Void

XDAS Int32; /* number of buffers required */

algNumAlloc () returns the number of buffers that the algalloc ()
method requires. This operation allows you to allocate sufficient space to
call the algalloc () method.

algNumAlloc () may be called at any time and can be called repeatedly
without any side effects. It always returns the same result. The
algNumAlloc () APl is optional.

For more details, see TMS320 DSP Algorithm Standard APl Reference
(literature number SPRU360).

algAlloc()

4-19

API| Reference

| Name

| Synopsis

| Arguments

| Return Value

| Description

| See Also

algAlloc () — determine the attributes of all buffers that an algorithm
requires

XDAS Int32 algAlloc(const IALG Params *params, IALG Fxns
**parentFxns, IALG_MemRec memTab[]) ;

IALG Params *params; /* algorithm specific attributes */

IALG Fxns **parentFxns;/* output parent algorithm
functions */

IALG_MemRec memTab[]; /* output array of memory records */

XDAS Int32 /* number of buffers required */

algAlloc () returns a table of memory records that describe the size,
alignment, type, and memory space of all buffers required by an algorithm.
If successful, this function returns a positive non-zero value indicating the
number of records initialized.

The first argument to algAlloc () is a pointer to a structure that defines
the creation parameters. This pointer may be NULL; however, in this case,
algAlloc () must assume default creation parameters and must not fail.

The second argument to algAlloc () is an output parameter.

algAlloc () may return a pointer to its parent’s IALG functions. If an
algorithm does not require a parent object to be created, this pointer must
be set to NULL.

The third argument is a pointer to a memory space of size

nbufs * sizeof (IALG MemRec) where, nbufs is the number of buffers
returned by algNumAlloc () and IALG MemRec is the buffer-descriptor
structure defined in ialg.h.

After calling this function, memTab [] is filled up with the memory
requirements of an algorithm.

For more details, see TMS320 DSP Algorithm Standard APl Reference
(literature number SPRU360).

algNumAlloc (), algFree()

4.3.2 Initialization API

4-20

Initialization API is used to initialize an instance of the algorithm. The
initialization parameters are defined in the Params Structure (see Data
Structures section for details).

API| Reference

| Name

| Synopsis

| Arguments

| Return Value

| Description

| See Also

4.3.3 Control API

algInit () — initialize an algorithm instance

XDAS Int32 algInit (IALG Handle handle, IALG MemRec
memTab [], IALG Handle parent, IALG Params *params) ;

IALG Handle handle; /* algorithm instance handle*/
IALG memRec memTab[]; /* array of allocated buffers */
IALG Handle parent; /* handle to the parent instance */

IALG Params *params; /* algorithm initialization
parameters */

IALG EOK; /* status indicating success */

IALG _EFAIL; /* status indicating failure */

algInit () performs all initialization necessary to complete the run time
creation of an algorithm instance object. After a successful return from
algInit (), the instance object is ready to be used to process data.

The first argument to algInit () is a handle to an algorithm instance. This
value is initialized to the base field of memTab [0] .

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers allocated
for an algorithm instance. The number of initialized records is identical to
the number returned by a prior call to algAlloc ().

The third argument is a handle to the parent instance object. If there is no
parent object, this parameter must be set to NULL.

The last argument is a pointer to a structure that defines the algorithm
initialization parameters.

For more details, see TMS320 DSP Algorithm Standard APl Reference
(literature number SPRU360).

algAlloc (), algMoved()

Control API is used for controlling the functioning of the algorithm instance
during run time. This is done by changing the status of the controllable
parameters of the algorithm during run time. These controllable parameters
are defined in the status data structure (see Data Structures section for
details).

4-21

API Reference

| Name

| Synopsis

[| Arguments

| Return Value

| Description

4-22

control () — change run time parameters and query the status

XDAS Int32 (*control) (IAUDENC Handle handle, IAUDENC Cmd
id, IAUDENC DynamicParams *params, IAUDENC Status
*status) ;

IAUDENC Handle handle; /* algorithm instance handle */
IAUDENC Cmd id; /* algorithm specific control commands*/

IAUDENC DynamicParams *params /* algorithm run time
parameters */

IAUDENC Status *status /* algorithm instance status
parameters */

IALG EOK; /* status indicating success */

IALG EFAIL; /* status indicating failure */

This function changes the run time parameters of an algorithm instance
and queries the algorithm’s status. control () must only be called after a
successful call to algInit () and must never be called after a call to
algFree().

The first argument to control () is a handle to an algorithm instance.

The second argument is an algorithm specific control command. See
XDM_CmdId enumeration for details.

The third and fourth arguments are pointers to the
IAUDENC DynamicParams and IAUDENC_ Status data structures
respectively.

Note:

If you are using extended data structures, the third and fourth arguments
must be pointers to the extended DynamicParams and Status data
structures respectively. Also, ensure that the size field is set to the size
of the extended data structure. Depending on the value set for the size
field, the algorithm uses either basic or extended parameters.

API| Reference

| Preconditions

The following conditions must be true prior to calling this function;
otherwise, its operation is undefined.

O control () can only be called after a successful return from
algInit () and algActivate().

Q If algorithm uses DMA resources, control () can only be called after
a successful return from DMAN3 init ().

O handle must be a valid handle for the algorithm’s instance object.
| Postconditions

The following conditions are true immediately after returning from this
function.

Q If the control operation is successful, the return value from this
operation is equal to IALG EOK; otherwise it is equal to either
IALG EFAIL or an algorithm specific return value.

Q If the control command is not recognized, the return value from this
operation is not equal to IALG EOK.
| Example

See test application file, TestAppEncoder.c available in the \Client\Test\Src
sub-directory.
| See Also

algInit (), algActivate (), process ()

Note:

Audio codecs do not use algActivate (), algDeactivate (), and
DMAN3 init () APIs.

4.3.4 Data Processing API

Data processing APl is used for processing the input data.

4-23

API Reference

| Name

| Synopsis

[| Arguments

| Return Value

| Description

4-24

process () — basic encoding/decoding call

XDAS Int32 (*process) (IAUDENC Handle handle, XDM BufDesc
*inBufs, XDM BufDesc *outBufs, IAUDENC InArgs *inargs,
IAUDENC_OutArgs *outargs) ;

IAUDENC Handle handle; /* algorithm instance handle */

XDM BufDesc *inBufs; /* algorithm input buffer descriptor
*/

XDM_BufDesc *outBufs; /* algorithm output buffer descriptor
*/

IAUDENC InArgs *inargs /* algorithm runtime input
arguments */

IAUDENC OutArgs *outargs /* algorithm runtime output
arguments */

IALG _EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */

This function does the basic encoding/decoding. The first argument to
process () is a handle to an algorithm instance.

The second and third arguments are pointers to the input and output buffer
descriptor data structures respectively (see XDM BufDesc data structure
for details).

The fourth argument is a pointer to the IAUDENC InArgs data structure
that defines the run time input arguments for an algorithm instance object.

The last argument is a pointer to the IAUDENC_ OutArgs data structure that
defines the run time output arguments for an algorithm instance object.

Note:

If you are using extended data structures, the fourth and fifth arguments
must be pointers to the extended InArgs and outArgs data structures
respectively. Also, ensure that the size field is set to the size of the
extended data structure. Depending on the value set for the si ze field,

the algorithm uses either basic or extended parameters.

API| Reference

| Preconditions

The following conditions must be true prior to calling this function;
otherwise, its operation is undefined.

Q

| Postconditions

process () can only be called after a successful return from
algInit () and algActivate().

If algorithm uses DMA resources, process () can only be called after
a successful return from DMAN3 init ().

handle must be a valid handle for the algorithm’s instance object.
Buffer descriptor for input and output buffers must be valid.

Input buffers must have valid input data.

The following conditions are true immediately after returning from this
function.

Q

| Example

If the process operation is successful, the return value from this
operation is equal to IALG EOK; otherwise it is equal to either
IALG EFAIL or an algorithm specific return value.

After successful return from process () function, algDeactivate ()
can be called.

See test application file, TestAppEncoder.c available in the \Client\Test\Src
sub-directory.

| See Also

algInit (), algDeactivate (), control ()

a

a

Note:

Audio codecs do not use algActivate (), algDeactivate (), and
DMAN3 init ()APIs.

AAC Encoder supports 16-bit and 32-bit PCM samples in litte endian
format as input.

4.3.5 Termination API

Termination API is used to terminate the algorithm instance and free up the
memory space that it uses.

4-25

API Reference

| Name

| Synopsis

| Arguments

| Return Value

| Description

| See Also

4-26

algFree () — determine the addresses of all memory buffers used by the
algorithm

XDAS Int32 algFree (IALG Handle handle, IALG MemRec
memTab []) ;

IALG Handle handle; /* handle to the algorithm instance */

IALG MemRec memTab[]; /* output array of memory records */

XDAS Int32; /* Number of buffers used by the algorithm */

algFree () determines the addresses of all memory buffers used by the
algorithm. The primary aim of doing so is to free up these memory regions
after closing an instance of the algorithm.

The first argument to algFree () is a handle to the algorithm instance.

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers previously
allocated for the algorithm instance.

For more details, see TMS320 DSP Algorithm Standard APl Reference
(literature number SPRU360).

algAlloc()

Appendix A

AAC Encoder Bit-rate and Sampling
Frequency Combination

The following table contains information on AAC Encoder bit rate and

sampling frequency combination.

Sampling frequency | Mono/Stereo | Min-Bit rate | Max-Bit rate
8000 Mono 8000 42000
8000 Stereo 16000 84000
16000 Mono 8000 84000
16000 Stereo 16000 168000
22050 Mono 8000 116000
22050 Stereo 16000 232000
32000 Mono 8000 160000
32000 Stereo 16000 320000
44100 Mono 8000 160000
44100 Stereo 16000 320000
48000 Mono 8000 288000
48000 Stereo 16000 576000
96000 Mono 16000 288000
96000 Stereo 20000 576000

A-1

	AAC Encoder on C64x+
	Read This First
	Contents
	Figures
	Tables
	Introduction
	1.1 Overview of XDAIS and XDM
	1.1.1 XDAIS Overview
	1.1.2 XDM Overview
	1.2 Overview of AAC Encoder
	1.3 Supported Services and Features

	Installation Overview
	2.1 System Requirements
	2.1.1 Hardware
	2.1.2 Software

	2.2 Installing the Component
	2.3 Before Building the Sample Test Application
	2.3.1 Installing DSP/BIOS

	2.4 Building and Running the Sample Test Application
	2.5 Configuration Files
	2.5.1 Generic Configuration File
	2.5.2 Encoder Configuration File

	2.6 Standards Conformance and User-Defined Inputs
	2.7 Uninstalling the Component

	Sample Usage
	3.1 Overview of the Test Application
	3.1.1 Parameter Setup
	3.1.2 Algorithm Instance Creation and Initialization
	3.1.3 Process Call
	3.1.4 Algorithm Instance Deletion

	API Reference
	4.1 Symbolic Constants and Enumerated Data Types
	4.2 Data Structures
	4.2.1 Common XDM Data Structures
	4.2.1.1 XDM_BufDesc
	4.2.1.2 XDM_AlgBufInfo
	4.2.1.3 IAUDENC_Fxns
	4.2.1.4 IAUDENC_Params
	4.2.1.5 IAUDENC_DynamicParams
	4.2.1.6 IAUDENC_InArgs
	4.2.1.7 IAUDENC_Status
	4.2.1.8 IAUDENC_OutArgs

	4.2.2 AAC Encoder Data Structures
	4.2.2.1 IAACENC_Params
	4.2.2.2 IAACENC_DynamicParams
	4.2.2.3 IAACENC_InArgs
	4.2.2.4 IAACENC_Status
	4.2.2.5 IAACENC_OutArgs

	4.3 Interface Functions
	4.3.1 Creation APIs
	4.3.2 Initialization API
	4.3.3 Control API
	4.3.4 Data Processing API
	4.3.5 Termination API

