
LSP 1.20 DaVinci Linux Previewer Driver

User's Guide

Literature Number: SPRUFE9
March 2008



1 Overview

1.1 System Requirements

1.2 Modules

1.3 Layers

2 Installation Guide

User's Guide
SPRUFE9–March 2008

LSP 1.20 DaVinci Linux Previewer Driver

This guide introduces the DaVinci Linux Previewer Driver by providing a brief overview of the driver and
specifics concerning its use within a hardware/software environment. For LSP 1.20, the Previewer Driver
is supported on the following EVMs: DM644x.

The Previewer Driver provides the following functional services:
• The Previewer driver is a loadable module.
• The Previewer driver supports input image in bayer pattern.
• The Previewer driver supports input from SDRAM or DDRAM.
• The Previewer driver converts input image in bayer pattern to image in YCbCr 4:2:2 format.

The driver is supported on DaVinci EVM Boards with Monta Vista Linux 2.6.10 software.

The Previewer Driver is sub-divided into following vertical modules:
• Initialization

This module handles all the initialization activities including driver registration, driver un-registration,
channel creation, and channel deletion.

• Configuration and Control
This module handles all configurations and previewing functionality of the driver.

• Interrupt Handling
This is the interrupt handler for the driver. It handles interrupts generated by Previewer hardware for
various events.

• Buffer Management
This module handles all buffer management activities including buffer creation, maintaining open
buffers, and mapping/un-mapping of the physical buffer to/from the applications memory area.

The Previewer driver is divided into two horizontal layers:
• Functional Layer: implements all the functionalities and application interface.
• Hardware Configuration Layer: contains functions to configure the hardware. These functions are used

by the functional layer for configuration and control.

This section discusses installation of the Previewer Driver, what software and hardware components are
available, and how to make these components available in order to complete a successful installation of
the driver.

2 LSP 1.20 DaVinci Linux Previewer Driver SPRUFE9–March 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFE9


www.ti.com

2.1 List of Installable Components

2.2 Component Folder

2.3 Development Tools

2.4 Build

2.4.1 Build Options

2.4.2 Build Steps

2.5 Steps to Load/Unload the Previewer Driver

3 Run-Time Interfaces/Integration Guide

Run-Time Interfaces/Integration Guide

A patch containing Previewer Driver code, Makefile, and Kconfig files.

The Previewer Driver can be found in the following directory after final installation into the system:
montavista/pro/devkit/lsp/ti-davinci/drivers/char

Install the following tools, in the order listed below, to set up the development environment:
• MVL401, version 2.6.10
• MontaVista Linux Toolchain - arm_v5t_le-

This section describes the steps required to build the device driver.

This driver does not have any specific build options at this time.

Access to the Previewer Driver is provided through the /dev/davinci_previewer device file. The
/dev/davinci_previewer device file is a character device that provide read/write access.

Use the following steps to enable the Previewer support in the system:
Step 1. Choose your default kernel configuration by entering the command:

make davinci_xxxx_defconfig.
Step 2. Choose the driver specific kernel configuration options by entering the command:

make menuconfig.
Step 3. Select the Device Drivers option. From the screen that appears next, select the Character

Devices option.
Step 4. At this point, the driver can be built as static or as a module.

a. To make a static build, choose the <*> DaVinci Previewer Driver Support option.
b. To build as a module, choose the <M> DaVinci Previewer Driver Support option.

Step 5. Save your kernel configration options and build the kernel by entering the following
command: make uImage modules.

To load the driver module using dynamically loadable modules, copy the modules (.ko files) to the target
filesystem.

Execute the following command to load the Previewer Driver:
• insmod davinci_previewer_driver.ko

Execute the following command to unload the Previewer Driver:
• rmmod davinci_previewer_driver.ko

This section discusses the Previewer Driver run-time interfaces that comprise the API classification and
usage scenarios and the API specification, itself, in association with its data types and structure
definitions.

SPRUFE9–March 2008 LSP 1.20 DaVinci Linux Previewer Driver 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFE9


www.ti.com

3.1 Symbolic Constants and Enumerated Data Types

3.2 Data Structures

Run-Time Interfaces/Integration Guide

This section summarizes all the symbolic constants specified as #define macros and/or enumerated C
data types. Described in Table 1 alongside the macro or enumeration is the symbolic constant name and
description. It is typical to classify the data types into logical groups and list them in alphabetical order for
ease of use.

Table 1. Symbolic Constants and Enumerated Data Types
Group or Enumeration

Class Symbolic Constant Name Description or Evaluation
Macro MAX_BUFFERS Maximum numbers of buffers that can be allocated is restricted

to 8.
Macro PREV_BUF_IN Indicates that buffer asked is an input buffer. Its value is

represented by 0
Macro PREV_BUF_OUT Indicates that buffer asked is an output buffer. Its value is

represented by 1
Macro PREV_INPUT_FORMATTER Enabled the support of Input formatter component.
Macro PREV_INVERSE_ALAW Enables support of Inverse A-Law
Macro PREV_HORZ_MEDIAN_FILTER Enabled Support of Horizontal Median Filter
Macro PREV_NOISE_FILTER Enabled Support of Noise Filter
Macro PREV_CFA Enabled Support of CFA Interpolation Filter
Macro PREV_GAMMA Enabled Support of Gamma Correction
Macro PREV_LUMA_ENHANCE Enabled Support of Luminance Enhance
Macro PREV_CHROMA_SUPPRESS Enabled Support of Chrominance Suppression
Macro PREV_DARK_FRAME_SUBTRACT Enabled Support of Dark Frame Subtract.
Macro PREV_LENS_SHADING Enabled Support of Lens shading.
Macro PREV_INWIDTH_8BIT Indicates that the input image’s pixel width is 8 bits.
Macro PREV_INWIDTH_10BIT Indicates that the input image’s pixel width is 10 bits.
Macro LUMA_TABLE_SIZE Size of the Luminance Enhancement table. Its value is 128.
Macro GAMMA_TABLE_SIZE Size of the Gamma Correction Coefficient’s table. Its value is

1024.
Macro CFA_COEFF_TABLE_SIZE Size of the CFA Interpolation Coefficient’s table. Its value is 576.
Macro NOISE_FILTER_TABLE_SIZE Size of the Noise Filter Coefficients table. Its value is 256.
Macro MAX_IMAGE_WIDTH Maximum image width supported by the driver. Its value is 1280.
Macro MAX_IMAGE_HEIGHT Maximum image height supported by the driver. Its value is

1920.
enum prev_pixorder PREV_PIXORDER_YCBYCR Indicates pixel output format is Y0, Cb0, Y1 and Cr0 from lower

address to higher
enum prev_pixorder PREV_PIXORDER_YCRYCB Indicates pixel output format is Y0, Cr0, Y1 and Cb0 from lower

address to higher
enum prev_pixorder PREV_PIXORDER_CBYCRY Indicates pixel output format is Cb0, Y0, Cr0 and Y1 from lower

address to higher
enum prev_pixorder PREV_PIXORDER_CRYCBY Indicates pixel output format is Cr0, Y0, Cb0 and Y1 from lower

address to higher
Macro PREV_DARK_FRAME_CAPTURE Enable support of dark frame capture

This section summarizes all user-visible data structures elements pertaining to the Previewer Driver
run-time interfaces.
1. Buffer-allocation structure:

struct prev_reqbufs
{

int buf_type; /* type of frame buffer */
int size; /* size of the frame buffer to be allocated */

4 LSP 1.20 DaVinci Linux Previewer Driver SPRUFE9–March 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFE9


www.ti.com

Run-Time Interfaces/Integration Guide

int count; /* number of frame buffer to be allocated */
}

2. Buffer-status query structure
struct prev_buffer
{

unsigned char index; /* index number, 0 -> N-1 */
unsigned char buf_type; /* buffer type, input or output */
unsigned long offset; /* physical address of the buffer used in the

mmap() system call */
unsigned short size; /* size of the buffer */

};

3. Configuration and parameter structure
struct prev_params
{
unsigned short features; /* Set of features enabled */
prev_size_params size_params; /* size parameters */
prev_white_balance white_balance_params; /* white balancing parameters */
prev_black_adjst black_adjst_params; /* black adjustment parameters */
prev_rgbblending regblending_params; /* rgb blending parameters */
prev_rgb2ycbcr_coeffs rgb2ycbcr_params; /* rgb to ycbcr parameters */
unsigned char sample_rate; /* down sampling rate for averager */
short hmf_threshold; /* horizontal median filter threshold */
prev_cfa_coeffs cfa_coeffs; /* CFA coefficients */
prev_gamma_coeffs gamma_coeffs; /* gamma coefficients */
prev_noiseflt_coeffs nf_coeffs; /* noise filter coefficients */
unsigned int luma_enhance[128]; /* luma enhancement coeffs*/
prev_chroma_spr chroma_suppress_params;/* chroma suppression coefficients */
void *dark_frame_addr; /* dark frame address for dark frame
subtract */
unsigned short dark_frame_pitch; /* line offset for dark frame */
unsigned char lens_shading_sift; /* number of bits to be shifted for lens
shading */
prev_pixorder pix_fmt; /* output pixel format */
int contrast /* Contrast */
int brightness /* Brightness */
};

4. Size-parameter structure
struct prev_size_params
{

unsigned int hstart; /* starting pixel */
unsigned int hstart; /* starting line */
unsigned int hsize; /* width of input image */
unsigned int vsize; /* height of input image */
unsigned char pixsize; /* pixel size of the image in terms of bits */
unsigned short in_pitch; /* input image line offset */
unsigned short out_pitch; /* output image line offset */

};

5. White-balance parameters structure
struct prev_white_balance
{

unsigned short wb_dgain; /* white balance common gain */
unsigned char wb_gain[4]; /* individual color gains */
unsigned char wb_coefmatrix[4][4];/* 16 position, out of 4 values */

};

6. Black-adjustment parameter structure
struct prev_black_adjst /* black adjustments for three colors */
{

char redblkadj; /* black adjustment offset for RED color */
char greenblkadj; /* black adjustment offset for GREEN color */
char blueblkadj; /* black adjustment offset for BLUE color */

}

7. RGB-blending parameter structure

SPRUFE9–March 2008 LSP 1.20 DaVinci Linux Previewer Driver 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFE9


www.ti.com

Run-Time Interfaces/Integration Guide

struct prev_rgbblending
{

short blending[3][3]; /* color correlation 3x3 matrix */
short offset[3]; /* color correlation offsets */

}

8. RGB-to-YCbCr parameter structure
struct prev_rgb2ycbcr_coeffs
{

short coeff[3][3]; /* color conversion gains in a 3x3 matrix */
short offset[3]; /* color conversion offsets */

}

9. CFA-interpolation parameter structure
struct prev_cfa_coeffs
{

char hthreshold, vthreshold; /* horizontal an vertical threshold */
int coeffs[576]; /* cfa coefficients */

}

10. Gamma-coefficients structure
struct prev_gamma_coeffs
{

unsigned char red[1024]; /* table of gamma correction values for
red color */

unsigned char green[1024]; /* table of gamma correction values for
green color */

unsigned char blue[1024]; /* table of gamma correction values for blue
color */

};

11. Noise-coefficients structure
struct prev_noise_coeffs
{

unsigned char noise[256];/* noise filter table */
unsigned char strength; /* to find out weighted average */

}

12. Chroma-suppression parameters structure
struct prev_chroma_suppress
{

char hpfy; /* whether to use high passed version of Y or
normal Y */

char threshold; /* threshold for chroma suppression */
unsigned char gain; /* chroma suppression gain */

}

13. Previewing structure
struct prev_convert
{

struct prev_buffer in_buf; /* address of the input buffer */
struct prev_buffer out_buf; /* address of the output buffer */

};

14. Preview-status structure
struct prev_status
{

unsigned char hw_busy; /* 1: hardware is busy, 0: hardware is not busy
};

15. Preview-cropsize structure
struct prev_cropsize
{

unsigned int hcrop; /* number of pixels per line cropped in output
image */

unsigned int vcrop; /* number of lines cropped in output image */
};

LSP 1.20 DaVinci Linux Previewer Driver6 SPRUFE9–March 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFE9


www.ti.com

3.3 API Classification

3.3.1 Configuration

3.3.2 Creation

3.3.3 Initialization

3.3.4 Control

3.3.5 Data Acquisition/Processing

3.3.6 Termination

3.4 API Usage Scenarios/Integration Example

Run-Time Interfaces/Integration Guide

This section introduces the Application Programming Interface (API) for the Previewer Driver.

This section contains Previewer Driver APIs that allow you to specify the desired configuration
parameters. IOCTLs like PREV_SET_PARAMS help you to customize the Previewer Driver parameters.
Section 3.5.2 elaborates on each such mechanism in greater detail.

This section contains all Previewer Driver APIs that are intended for use in component creation. The term
creation is indicative of possible need to allocate system resources, typically memory.

IOCTLs like PREV_REQBUFF and PREV_QUERYBUFF, and APIs like mmap are used for creating
different components statically and dynamically. Section 3.5.2 elaborates on each such mechanism in
greater detail.

This section contains the Previewer Driver APIs that are intended for use in component initialization.

The API open is used for initializing of the Previewer Driver

This section contains Previewer Driver APIs that are intended for use in controlling the functioning the
Previewer Driver during run time. The IOCTL PREV_PREVIEW starts the previewing task by enabling
previewing in the register.

This section contains the list of the Previewer Driver APIs that help to output parameters from the
Previewer Driver.

IOCTLs like PREV_GET_STATUS are used to get the status of the hardware.

The IOCTL PREV_GET_PARAMS is used to get the previewing parameters configuration.

This section contains the Previewer Driver APIs that help in gracefully terminating the deployed driver
run-time entities. The API close is used to free all the resources that are being acquired at the time of
initialization and creation.

The following figures show the usage scenarios for the Previewer Driver. Figure 1 shows a simple
single-pass previewing task. Figure 2 shows multiple previewing tasks to be submitted to the Previewer
driver.

SPRUFE9–March 2008 LSP 1.20 DaVinci Linux Previewer Driver 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFE9


www.ti.com

Start

Call PREV_REQBUF ioctl
to Request Input/Output Buffers

Insert Driver Using insmod

Open the Previewer Driver

Call PREV_QUERYBUF ioctl
to Get Physical Address of

Input/Output Buffers

Call mmap System Call
to Map Buffer in User Space

Call close to Close the Driver

End

Set Input/Output Buffer's Index
in the prev_convert structure's

Object

Call PREV-SET_PARAMS ioctl
to Configure Hardware

Call PREV_PREVIEW ioctl
to Submit Previewing Task

Call munmap System Call
to unmap Input/Output Buffers

Run-Time Interfaces/Integration Guide

Figure 1. Function Flow Diagram

8 LSP 1.20 DaVinci Linux Previewer Driver SPRUFE9–March 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFE9


www.ti.com

Start

Call PREV_REQBUF ioctl
to Request Input/Output Buffers

Insert Driver Using insmod

Open the Previewer Driver

Call PREV_QUERYBUF ioctl
to Get Physical Address of

Input/Output Buffers

Call mmap System Call
to Map Buffer in User Space

Call close to Close the Driver

End

Set Input/Output Buffer's Offsets
in the prev_convert
Structure's Object

Call PREV-SET_PARAMS ioctl
to Configure Hardware

Call PREV_PREVIEW ioctl
to Submit Previewing Task

Calculate Offsets for
Input/Output Buffers

Considering Cropping Size

Last
Pass

?

Call munmap System Call
to Unmap Input/Output Buffers

Yes

No

Run-Time Interfaces/Integration Guide

Figure 2. Function Flow Diagram for Multiple Passes

SPRUFE9–March 2008 LSP 1.20 DaVinci Linux Previewer Driver 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFE9


www.ti.com

3.5 API Specification

3.5.1 Naming Conventions

3.5.2 Previewer Driver Functions

Run-Time Interfaces/Integration Guide

This section describes the APIs and IOCTLs used in the driver.

The naming conventions are followed as per the Linux standard.

The detailed descriptions of the APIs discussed above are described below, in alphabetical order.

API close

Prototype int close(int fd)

Description Closes the device driver that was opened with file descriptor.

Arguments

Arg1 int fd
Arg2 NA
Arg3 NA

Return Value Zero on success or -1, if an error occurred.

Calling Constraints None

Example close(fd);

Side Effects None

See Also None

Errors None

10 LSP 1.20 DaVinci Linux Previewer Driver SPRUFE9–March 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFE9


www.ti.com

Run-Time Interfaces/Integration Guide

IOCTL PREV_GET_PARAMS

Prototype int ioctl(int fd, int command, struct prev_params *arg)

Description Gets the Previewer driver hardware parameters.

Arguments

Arg1 int fd
Arg2 int request
Arg3 struct prev_params *argp

Return Value Zero on success or -1, if an error occurred.

Calling Constraints None

Example ioctl(fd, PREV_GET_PARAM, &params);

Side Effects None

See Also None

Errors None

IOCTL PREV_GET_STATUS

Prototype int ioctl(int fd, int command, struct prev_status *arg)

Description Gets the current status of the hardware.

Arguments

Arg1 int fd
Arg2 int request
Arg3 struct prev_status *argp

Return Value Zero on success or -1, if an error occurred.

Calling Constraints None

Example ioctl(fd, PREV_GET_STATUS, &status);

Side Effects None

See Also None

Errors None

SPRUFE9–March 2008 LSP 1.20 DaVinci Linux Previewer Driver 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFE9


www.ti.com

Run-Time Interfaces/Integration Guide

IOCTL PREV_PREVIEW

Prototype int ioctl(int fd, int command, struct prev_convert *arg)

Description Submits a previewing task to the hardware.

Arguments

Arg1 int fd
Arg2 int request
Arg3 struct prev_convert *argp

Return Value Zero on success or -1, if an error occurred.

Calling Constraints It should be called after the parameters are configured.

Example ioctl(fd, PREV_PREVIEW, &convert);

Side Effects None

See Also None

Errors None

IOCTL PREV_REQBUF

Prototype int ioctl(int fd, int command, struct prev_reqbufs *arg)

Description Requests frame buffers to be allocated by the Previewer module.

Arguments

Arg1 int fd
Arg2 int request
Arg3 struct prev_reqbufs *argp

Return Value Zero on success or -1, if an error occurred.

Calling Constraints The number of buffers requested cannot be greater than 8.

Example ioctl(fd, PREV_REQBUF, &req_buf);

Side Effects None

See Also None

Errors None

12 LSP 1.20 DaVinci Linux Previewer Driver SPRUFE9–March 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFE9


www.ti.com

Run-Time Interfaces/Integration Guide

IOCTL PREV_SET_EXP

Prototype int ioctl(int fd, int command, int *arg)

Description Sets the allowable delay between consecutive read requests from the Previewer module.

Arguments

Arg1 int fd
Arg2 int request
Arg3 int *argp

Return Value Zero on success or -1, if an error occurred.

Calling Constraints All mandatory components of the hardware should be configured.

Example ioctl(fd, PREV_SET_EXP, &arg);

Side Effects None

See Also None

Errors None

IOCTL PREV_SET_PARAMS

Prototype int ioctl(int fd, int command, struct prev_params *arg)

Description Sets the Previewer hardware parameters.

Arguments

Arg1 int fd
Arg2 int request
Arg3 struct prev_params *argp

Return Value Zero on success or -1, if an error occurred.

Calling Constraints All mandatory components of the hardware should be configured.

Example ioctl(fd, PREV_SET_PARAM, &params);

Side Effects None

See Also None

Errors None

SPRUFE9–March 2008 LSP 1.20 DaVinci Linux Previewer Driver 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFE9


www.ti.com

Run-Time Interfaces/Integration Guide

IOCTL PREV_QUERYBUF

Prototype int ioctl(int fd, int command, struct prev_buffer *arg)

Description Requests the physical address of buffers allocated by the PREV_REQBUF ioctl.

Arguments

Arg1 int fd
Arg2 int request
Arg3 struct prev_buffer *argp

Return Value Zero on success or -1, if an error occurred.

Calling Constraints None

Example ioctl(fd, PREV_QUERYBUF, &buff);

Side Effects None

See Also None

Errors None

IOCTL PREV_GET_CROPSIZE

Prototype int ioctl(int fd, int command, struct prev_cropsize *arg)

Description Returns the size reduction in the output image compared to the input image, in terms of
number of pixels per line and number of lines, depending on which features are enabled.

Arguments

Arg1 int fd
Arg2 int request
Arg3 struct prev_cropsize *argp

Return Value Zero on success or -1, if an error occurred.

Calling Constraints None

Example ioctl(fd, PREV_GET_CROPSIZE, &buff);

Side Effects None

See Also None

Errors None

14 LSP 1.20 DaVinci Linux Previewer Driver SPRUFE9–March 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFE9


www.ti.com

Run-Time Interfaces/Integration Guide

API MMAP

Prototype void *mmap(void *start, size_t length, int prot, int flags, int fd, off_t offset)

Description Maps the frame buffers allocated by the Previewer module in kernel space to user
space.

Arguments

Arg1 void *start
Arg2 size_t length
Arg3 int prot
Arg 4 int flags (Only MAP_SHARED is supported)
Arg 5 int fd
Arg 6 off_t offset

Return Value Zero on success or -1, if an error occurred.

Calling Constraints None

Example mmap(0, image_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, offset);

Side Effects None

See Also None

Errors None

API MUNMAP

Prototype int munmap(void *start, int length)

Description Unmaps the frame buffers that were previously mapped to user space using mmap().

Arguments

Arg1 void *start
Arg2 size_t length
Arg3 NA

Return Value Zero on success or -1, if an error occurred.

Calling Constraints None

Example munmap(offset, image_size)

Side Effects None

See Also None

Errors None

SPRUFE9–March 2008 LSP 1.20 DaVinci Linux Previewer Driver 15
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFE9


www.ti.com

3.6 API Usage Recommendations

Run-Time Interfaces/Integration Guide

API open

Prototype int open(char *name, int mode)

Description Opens the driver in the mode specified in the last parameter.

Arguments

Arg1 char *name
Arg2 int mode
Arg3 NA

Return Value File descriptor on success or -1, if an error occurred.

Calling Constraints None

Example open(“/dev/davinci_previewer”, O_RDWR)

Side Effects None

See Also None

Errors None

This section provides recommendations on how to use the provided APIs for achieving the best results on
different aspects: performance, overall system stability, and balance, etc.
• Optimum performance can be achieved if line offsets are 256 bytes aligned.

16 LSP 1.20 DaVinci Linux Previewer Driver SPRUFE9–March 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFE9


IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Clocks and Timers www.ti.com/clocks Digital Control www.ti.com/digitalcontrol
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
RFID www.ti-rfid.com Telephony www.ti.com/telephony
RF/IF and ZigBee® Solutions www.ti.com/lprf Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://www.ti.com/clocks
http://www.ti.com/digitalcontrol
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless

	1  Overview
	1.1 System Requirements
	1.2  Modules
	1.3  Layers

	2 Installation Guide
	2.1  List of Installable Components
	2.2 Component Folder
	2.3 Development Tools
	2.4  Build
	2.4.1  Build Options
	2.4.2 Build Steps

	2.5 Steps to Load/Unload the Previewer Driver

	3 Run-Time Interfaces/Integration Guide
	3.1 Symbolic Constants and Enumerated Data Types
	3.2 Data Structures
	3.3 API Classification
	3.3.1  Configuration
	3.3.2  Creation
	3.3.3  Initialization
	3.3.4  Control
	3.3.5 Data Acquisition/Processing
	3.3.6 Termination

	3.4 API Usage Scenarios/Integration Example
	3.5  API Specification
	3.5.1  Naming Conventions
	3.5.2  Previewer Driver Functions

	3.6  API Usage Recommendations




