

ABSTRACT

This technical User's Guide describes the hardware architecture of the AM62x SKEVM, a low cost Starter Kit built around the AM62x SoC. The AM62x processor comprises of a Quad-Core 64-bit Arm[®]-Cortex[®] A53 microprocessor, Single-core Arm Cortex-R5F MCU and an Arm Cortex-M4F MCU.

The SKEVM allows the user to experience great dual display feature through HDMI (over DPI) and LVDS, as well as industrial communication solutions using serial, Ethernet, USB and other interfaces.

The SKEVM can be used for your display application(for example a HMI or control panel) with either a HDMI display or an external LVDS panel, up to 2K resolution. It's high performance (up to) Quad-A53 ARM cores at 1.4GHz, with rich industrial interfaces, offer control and communication capabilities for a wide ranges of applications, such as PLC, automation control and monitor/supervisor systems. In addition, SKEVM can communicate with other processors or systems, and act as a communication gateway. The embedded emulation logic allows for emulation and debugging using standard development tools such as Code Composer Studio[™] from TI.

Note

This evaluation board is a pre-production release and has several known issues that should not be copied into a production system. E1 EVM Shown in product photos.

Table of Contents

1 EVM Revisions and Assembly Variants	4
2 System Description	
2.1 Key Features	
2.2 Functional Block Diagram (SK-AM62 and SK-AM62B)	9
2.3 Functional Block Diagram (SK-AM62-P1 and SK-AM62B-P1)	
2.4 AM62x SKEVM Interface Mapping	13
2.5 Power ON/OFF Procedures	
2.6 Peripheral and Major Component Description	15
3 Known Issues and Modifications	

1

3.1 Issue 1 - HDMI/DSS Incorrect Colors on E1	65
3.2 Issue 2 - J9 and J10 Header Alignment on E1	65
3.3 Issue 3 - USB Boot descoped on E1	66
3.4 Issue 4 - OLDI Connector Orientation and Pinout	66
3.5 Issue 5 - Bluetooth descoped on E2 EVMs	66
3.6 Issue 6 - Ethernet PHY CLK Skew Default Strapping Changes	
3.7 Issue 7 - TEST POWERDOWN changes	
3.8 Issue 8 - MMC1 SDCD spurious interrupts	67
3.9 Issue 9 - PD Controller I2C2 IRQ Not Pinned Out	
3.10 Issue 10 - INA Current Monitor Adress Changes	67
3.11 Issue 11 - Test Automation I2C Buffer Changes	67
Regulatory Compliance	
Revision History	

List of Figures

Figure 2-1. SK-AM62 Top View	5
Figure 2-2. SK-AM62 Back View	6
Figure 2-3. Functional Block Diagram of the SK-AM62 Board	9
Figure 2-4. Functional Block Diagram of the SK-AM62B Board	10
Figure 2-5. Functional Block Diagram of the SK-AM62-P1 Board with TPS65219 PMIC	11
Figure 2-6. Functional Block Diagram of the SK-AM62B-P1 Board with TPS65219 PMIC	12
Figure 2-7. SD Bootmode Switch Setting Example (From E2)	14
Figure 2-8. SD Bootmode Switch Setting Example (E1)	14
Figure 2-9. Clock Architecture of AM62x SKEVM	16
Figure 2-10. SoC WKUP Domain	16
Figure 2-11. MMC2 - Wilink Interface on SK-AM62 and SK-AM62-P1	35
Figure 2-12. MMC2 - M.2 Connector Interface on SK-AM62B and SK-AM62B-P1	<mark>36</mark>
Figure 2-13. Power Supply Block Diagram	46
Figure 2-14. Power Up Sequence	47
Figure 2-15. Power Down Sequence	48
Figure 2-16. Power Sequence Block Diagram	49
Figure 2-17. Bootmode Switch Configuration for SD Boot (From E2)	51
Figure 2-18. Bootmode Switch Configuration for SD Boot (E1)	52
Figure 3-1. PRU Connector Missalignment on E1 Boards	
Figure 3-2. Schematic of I2C Buffer Section	<mark>68</mark>
Figure 3-3. Location on AM62x SK E3 (Bottom Side)	<mark>68</mark>

List of Tables

Table 1-1. SK EVM PCB design revisions, and asssembly variants	4
Table 2-1. Interface Mapping	13
Table 2-2. Power Test Points	15
Table 2-3. Clock Table	17
Table 2-4. Display Connector Pinout (As used by display and the E3 EVM)	.18
Table 2-5. Display Connector Pinout (E1/E2)	. 19
Table 2-6. CSI Camera Connector J19 Pin-out	20
Table 2-7. JTAG Connector (J17) Pin-out	.23
Table 2-8. Test Automation Connector (J23) Pin-out	
Table 2-9. UART Port Interface	.26
Table 2-10. IO Expander Signal Detail	.39
Table 2-11. GPIO Mapping	.41
Table 2-12. Type-C port Power roles	
Table 2-13. Recommended External Power Supply	
Table 2-14. SoC Power Supply	
Table 2-15. INA I2C Device Address (E1)	50
Table 2-16. INA I2C Device Address (E2)	50
Table 2-17. BOOT-MODE Pin Mapping	
Table 2-18. PLL Reference Clock Selection BOOTMODE [2:0]	
Table 2-19. Boot Device Selection BOOT-MODE [6:3]	.53
Table 2-20. Backup Boot Mode Selection BOOT-MODE [12:10]	.53
Table 2-21. Primary Boot Media Configuration BOOT-MODE [9:7]	. 53
Table 2-22. Backup Boot Media Configuration BOOT-MODE [13]	54
Table 2-23. User test LEDs	.54

Table 2-24. PRU Header (J10) Pin-out	55
Table 2-25. 40 Pin User Expansion Connector	56
Table 2-26. Pin MCU Connector (J9)	58
Table 2-27. EVM Push Buttons	60
Table 2-28. I2C Mapping Table (SK-AM62 E3 and SK-AM62-P1 Variants)	
Table 2-29. I2C Mapping Table (SK-AM62 E2)	<mark>63</mark>
Table 3-1. AM62x SK EVM Known Issues and Modifications	

Trademarks

Sitara[™] is a trademark of Texas Instruments.

Arm[®] and Cortex[®] are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All trademarks are the property of their respective owners.

1 EVM Revisions and Assembly Variants

The various AM62x SK EVM PCB design revisions, and asssembly variants are listed in the table below. Specific PCB revision is indicated in silkscreen on the PCB. Specific assembly variant is indicated with additional sticker label.

OPN	PCB Revison	Assembly Variant	Revision and Assembly Variant Description
SK-AM62	PROC114E1	N/A (single variant produced)	First prototype, early release revision of the AM62x SK EVM. Implements the Sitara [™] AM62x MPU with a discrete power solution
SK-AM62	PROC114E2	N/A	Second prototype, early release revision of the AM62x SK EVM. Implements a number of changes and bug fixes focused on enabling 24 bit RGB output via HDMI.
SK-AM62	PROC114E3	N/A	Third prototype, early release revision of the AM62x SK EVM. Implements a number of changes around LVDS and multimedia peripherals.
SK-AM62B	PROC114A	002	Production release of AM62x SK EVM discrete version. Implements HS-FS version of SoC.
SK-AM62-P1	PROC142E1	N/A	First prototype, early release version of the AM62x SK EVM. implementing the TPS65219 PMIC.
SK-AM62B-P1	PROC142A	002	Production release of AM62x SK EVM PMIC version. Implements HS-FS version of SoC.

Table 1-1. SK EVM PCB design revisions, and asssembly variants

2 System Description

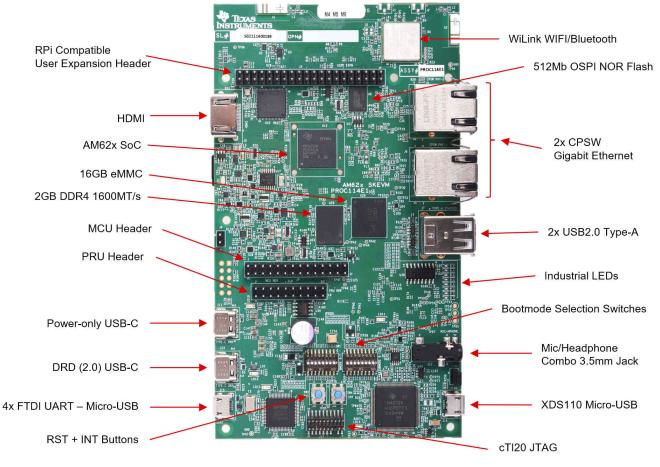


Figure 2-1. SK-AM62 Top View

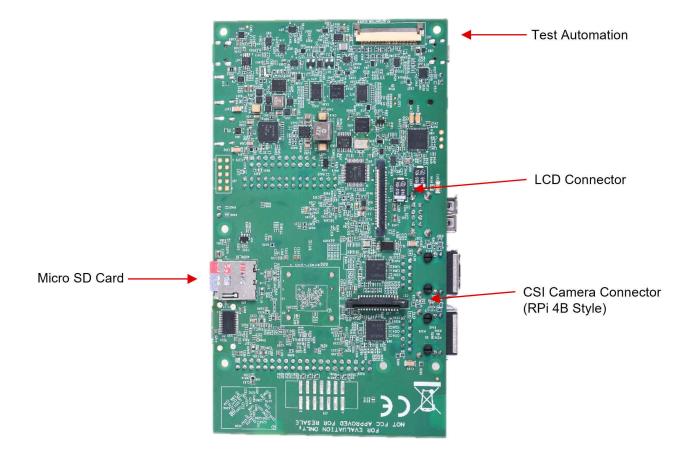
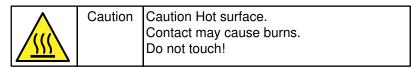


Figure 2-2. SK-AM62 Back View


2.1 Key Features

The AM62x SKEVM is a high performance, standalone development platform that enables users to evaluate and develop industrial applications for the Texas Instrument's AM62x System-on-Chip (SoC).

The following sections discuss the SKEVM's key features.

2.1.1 Thermal Compliance

There is elevated heat on the processor, use caution particularly at elevated ambient temperatures! Although the processor is not a burn hazard, caution should be used when handling the EVM due to increased heat in the area of the SoC.

2.1.2 Processor

• AM62x SoC, 13 mm x 13 mm, 0.5 mm pitch, 423-pin VCA FBGA

2.1.3 Power Supply

- Two USB Type-C ports (5V-15V input range)
- Optimized Power Solution with Discrete Regulators and LDOs for the Processor and Peripherals

2.1.4 Memory

- 2GB DDR4 supporting data rate up to 1600MT/s.
- Micro SD Card slot with UHS-1 support

- 512Mbit Octal SPI Flash memory
- 512 Kbit Inter-Integrated Circuit (I2C) board ID EEPROM
- 16GB eMMC Flash

2.1.5 JTAG/Emulator

- XDS110 On-Board Emulator
- Supports 20-pin JTAG connection from external emulator

2.1.6 Supported Interfaces and Peripherals

- 1x USB2.0 Type C Interface, support DFP and UFP roles
- 1x USB2.0 Host Interface, Type A
- 1x HDMI Interface
- Audio Line in and Mic + Headphone out
- Wilink WL1837 Module with support for Wi-Fi and Bluetooth
- 2x Gigabit Ethernet ports supporting 10/100/1000 Mbps data rate on two RJ45 connectors.
- Quad port UART to USB circuit over microB USB connector
- Industrial Ethernet LEDs
- INA devices for current monitoring
- 2x Temperature Sensors near SoC and DDR4 for thermal monitoring

2.1.7 Expansion Connectors/Headers to Support Application Specific Add-On Boards

- CSI Camera Header
- LVDS Display connector
- User Expansion connector
- PRU Header
- MCU Header

2.2 Functional Block Diagram (SK-AM62 and SK-AM62B)

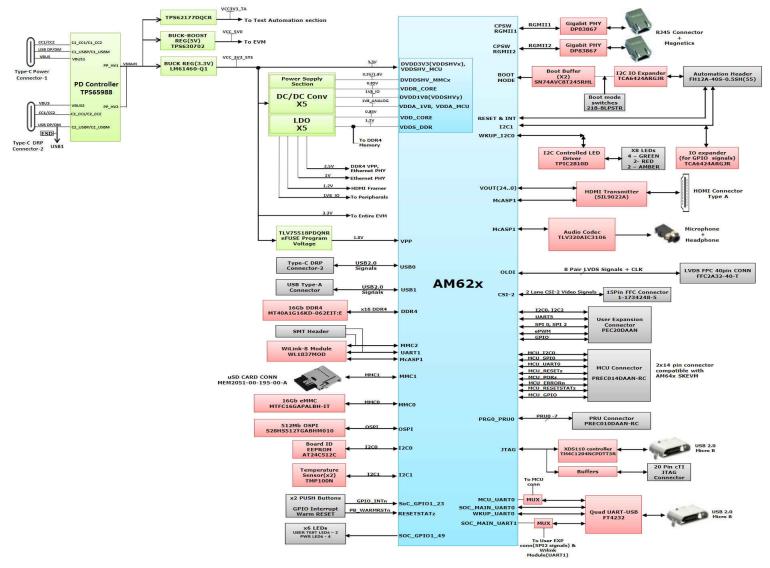


Figure 2-3. Functional Block Diagram of the SK-AM62 Board

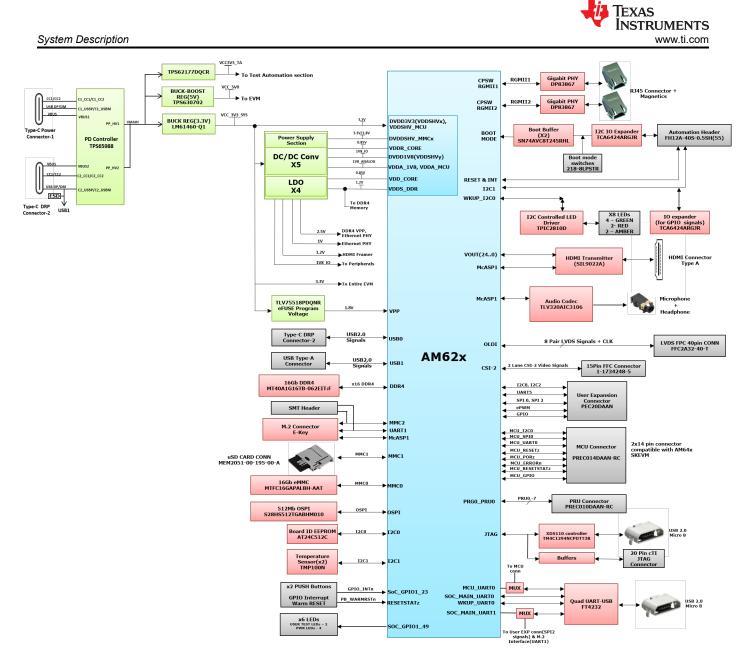
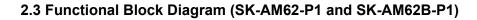



Figure 2-4. Functional Block Diagram of the SK-AM62B Board

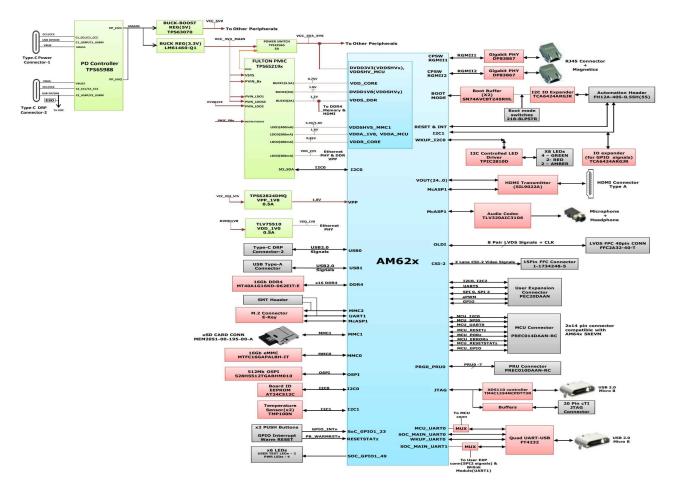


Figure 2-5. Functional Block Diagram of the SK-AM62-P1 Board with TPS65219 PMIC

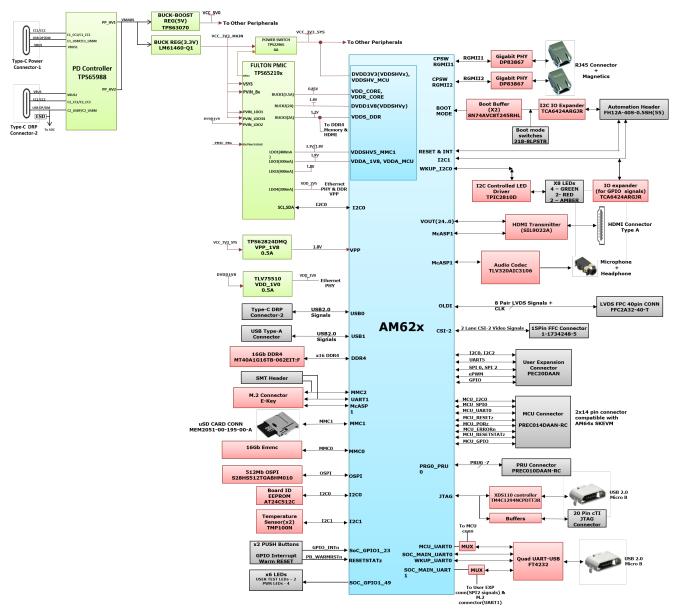


Figure 2-6. Functional Block Diagram of the SK-AM62B-P1 Board with TPS65219 PMIC

2.4 AM62x SKEVM Interface Mapping

Table 2-1 is provided below.

Table 2-1. Interface Mapping			
Interface Name	Port on SoC	Device Part Number	
Memory – DDR4	DDR0	MT40A1G16KD-062E:E	
Memory – OSPI	OSPI0	S28HS512TGABHM010	
Memory – Micro SD Socket	MMC1	MEM2051-00-195-00-A	
Memory – eMMC	MMC0	MTFC16GAPALBH-IT	
Memory – Board ID EEPROM	SoC_I2C0	AT24C512C-MAHM-T	
Ethernet 1 – RGMII	SoC_RGMII1	DP83867IRRGZ	
Ethernet 2 – RGMII	SoC_RGMII2	DP83867IRRGZ	
LED Driver – 8 Communication LEDs	WKUP_I2C0	TPIC2810D	
PRU Header – 2x10 HDR	PR0_PRU0_GPO and SoC_I2C0	PREC010DAAN-RC	
User Expansion Connector – 2x20 HDR	SPI0, SPI2, UART5, SoC_I2C0, SoC_I2C2 and GPIOs	PEC20DAAN	
MCU Header – 2x14 HDR	MCU_UART0, MCU_MCAN0, MCU_SPI0, MCU_I2C0 and MCU GPIOs	PREC014DAAN-RC	
USB – 2.0 Type C	USB0	TUSB4020BIPHP + AU-Y1008-2	
USB – 2.0 Type A	USB1	-	
LVDS Display Connector	Display Connector OLDI0		
CSI Interface	CSI0	1-1734248-5	
HDMI	VOUT0	Sil9022ACNU + TPD12S016PWR + 10029449-001RLF	
Audio Codec	McASP2 and SoC_I2C1	TLV320AIC3106IRGZT + SJ-43514-SMT	
GPIO Port Expander	SoC_I2C1	TCA6424ARGJR	
UART Terminal (UART-to-USB)	SoC_UART [1:0], WKUP_UART0 and MCU_UART0	FT4232HL + 629105150521	
Test Automation Header	SoC_I2C1	FH12A-40S-0.5SH	
Temperature Sensors	SoC_I2C1	TMP100NA/3K	
Current Monitors	SoC_I2C1	INA231AIYFDR	
Connectivity – Wilink Module MMC2, McASP2 and SoC UART2		WL1837MODGIMOCT	

2.5 Power ON/OFF Procedures

Power to the EVM is provided through an external power supply providing PD voltage and current to the either of the two USB Type-C Ports.

2.5.1 Power-On Procedure

- 1. Place the SKEVM boot switch selectors (SW1, SW2) into selected boot mode. Example boot-modes for SD card and no-boot are shown below.
- 2. Connect your boot media (if applicable).
- 3. Attach the PD capable USB Type-C cable to the SKEVM Type-C (J11 or J13) Connector.
- 4. Connect the other end of the Type-C cable to the source, either AC Power Adapter, or Type C source device (such as a Laptop computer).
- 5. Visually inspect that either LD10 or LD12 LED are illuminated.
- 6. XDS110 JTAG and UART debug console output are routed to micro-USB ports J16 and J15, respectively.

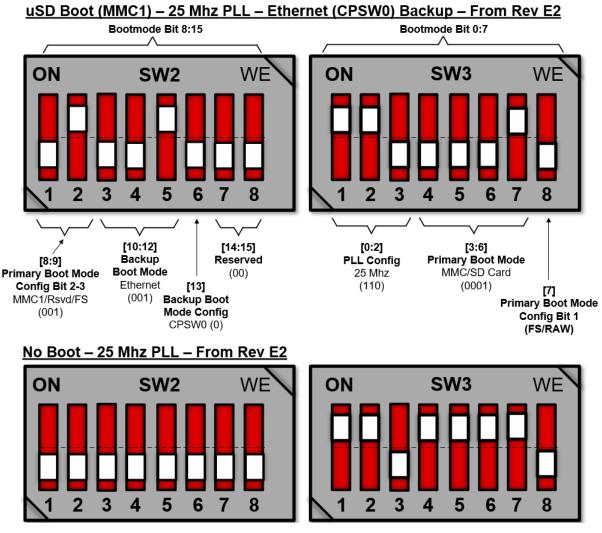
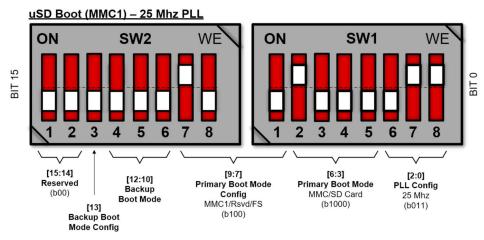



Figure 2-7. SD Bootmode Switch Setting Example (From E2)

Note: Actual Board Silkscreen May Appear Inverted in this Orientation. Follow Physical Switch Text

Figure 2-8. SD Bootmode Switch Setting Example (E1)

2.5.2 Power-Off Procedure

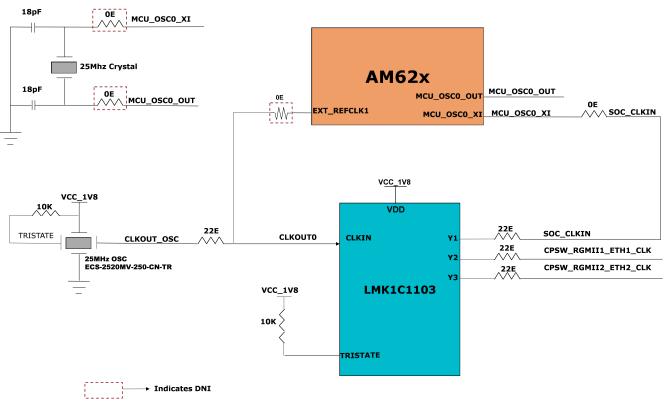
- 1. Disconnect AC power from AC/DC converter.
- 2. Remove the USB Type-C cable from the SKEVM.

2.5.3 Power Test Points

Test points for each power output on the board is mentioned in Table 2-2.

SI #	Power Supply	Test Point	Voltage
1	VBUS_TYPEC1	C398.1	5V-15V
2	VBUS_TYPEC2	C415	5V-15V
3	VMAIN	TP95	5V-15V
4	VCC_5V0	TP70	5V
5	VCC_3V3_SYS	TP51	3.3V
6	VDD_2V5	TP42	2.5V
7	VPP_1V8	TP31	1.8V
8	VDD_1V0	TP33	1.0V
9	VDD_1V1	TP44	1.1V
10	VDD_1V2	TP10	1.2V
11	VDDA1V8	TP36	1.8V
12	VCC_1V8	TP41	1.8V
13	VDDSHV_SDIO	TP29	1.8V/3.3V
14	VCC1V2_DDR	TP40	1.2V
15	VCC_CORE	TP45	0.85V
16	VDD_CORE	TP46	0.85V
17	VCC_0V85	TP39	0.85V
18	VDDR_CORE	TP38	0.85V
19	DDR_VREFCA	TP43	0.6V
20	VCC3V3_TA	TP87	3.3V
21	VCC3V3_XDS	TP77	3.3V
22	VCC_3V3_FT4232	C482.1	3.3V

Table 2-2. Power Test Points


2.6 Peripheral and Major Component Description

The following sections provide an overview of the different interfaces and circuits on the AM62x SK EVM.

2.6.1 Clocking

Figure 2-9 shows the clock architecture of AM62x SKEVM.

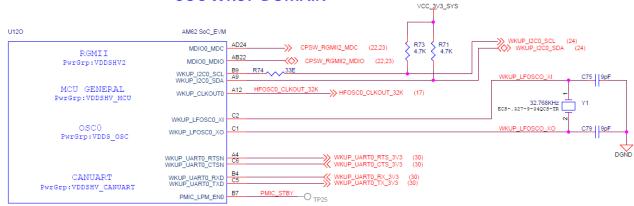


Figure 2-9. Clock Architecture of AM62x SKEVM

A clock generator of part number LMK1C1103PWR is used to drive the 25 MHz clock to the SoC and two Ethernet PHYs. LMK1C1103PWR is a 1:4 LVCMOS clock buffer, which takes the 25 MHz crystal/LVCMOS reference input and provides three 25 MHz LVCMOS clock outputs. The source for the clock buffer shall be either the CLKOUT0 pin from the SoC or a 25 MHz oscillator, the selection is made using a set of resistors. By default, an oscillator is used as input to the clock buffer on the AM62x SKEVM. Output Y2 and Y3 of the clock buffer are used as reference clock inputs] for two Gigabit Ethernet PHYs.

There is one external crystal attached to the AM62x SoC to provide clock to the WKUP domain of the SoC (32.768 KHz).

SOC WKUP DOMAIN

2.6.1.1 Peripheral Ref Clock

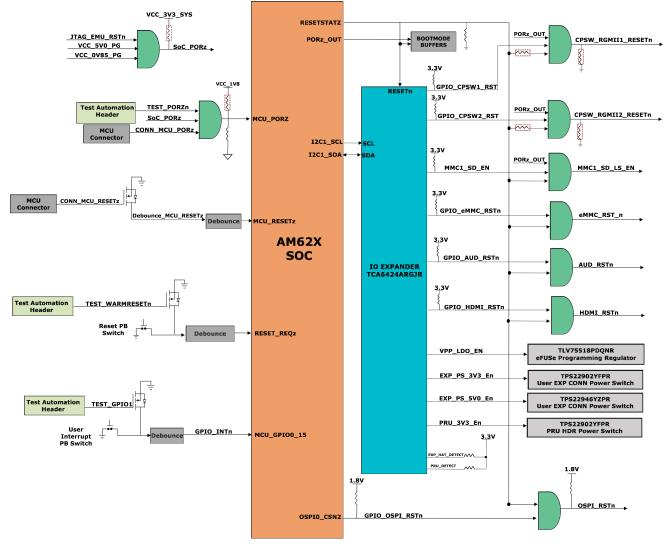
Clock inputs required for peripherals such as XDS110, USB HUB, FT4232, HDMI Transmitter and Audio Codec are generated locally using separate crystals or oscillators. Crystals or Oscillators used to provide the reference clocks to the EVM peripherals are shown in the table bellow.

Peripheral	Mfr. Part No.	Description	Frequency	
XDS110 emulator	ECS327-9-34QCS-TR	CRY 32.768 KHz 9pF SMD	32.768 KHz	
FT4232 Bridge	ECS-120-18-30B-AGN-TR	CRY 12.000 MHz 18pF SMD	12.000 MHz	
Audio Codec	KC2520Z12.2880C1KX00	OSC 12.288 MHz CMOS SMD	12.288 MHz	
USB HUB (E1 Only)	ECS-240-20-30B-AGL-TR	CRY 24.000 MHz 20pF SMD	24.000 MHz	
HDMI Transmitter	KC2520Z12.2880C1KX00	OSC 12.288 MHz CMOS SMD	12.288 MHz	

Table 2-3. Clock Table

The clock required by the HDMI Transmitter can be provided by either the on board oscillator or the SoC's AUDIO_EXT_REFCLK1, which can be selected through a resistor mux. SoC's EXT_REFCLK1 is used to provide clock to the User Expansion Connector on the SKEVM. The 32 KHz clock to the Wilink module is provided by WKUP_CLKOUT0 of AM62x SoC through a voltage translational buffer.

2.6.2 Reset


The Reset Architecture of AM62x SKEVM is shown below.

The SoC has the following resets:

- RESETSTATz is the Main domain warm reset status output
- PORz_OUT is the Main domain power ON reset status output
- RESET_REQz is the Main domain warm reset input
- MCU_PORz is the MCU domain power ON/ Cold Reset input
- MCU_RESETz is the MCU domain warm reset input
- MCU_RESETSTATz is the MCU domain warm reset status output

Upon Power on Reset, all peripheral devices connected to the main domain get reset by RESETSTATz.

2.6.3 OLDI Display Interface

The OLDI0 Display interface of the AM62x SoC is connected to a 40 pin LVDS display connector (J21) Mfr Part# FFC2A32-40-T from GCT. The OLDI Interface supports dual channel 8 bit LVDS output. The pinout and connector orientation is common between E1 and E2 boards but differs from the future 'final' E3 boards. Adapters are available to update the E1/E2 wiring to E3. Do not attempt to connect a display designed for E3 EVMs to the E1/E2 EVM without this adapter.

The Pin-out details of the Display connector are given in Table 2-5.

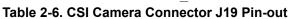
Pin no.	Signal	Pin no.	Signal
1	VCC_3V3_SYS(EEPROM_VDD)	21	CH1_LVDS_A2P
2	SoC_I2C0_SCL	22	GND
3	SoC_I2C0_SDA	23	CH1_LVDS_A3N
4	NC	24	CH1_LVDS_A3P
5	NC	25	GND
6	GND	26	CH1_LVDS_A0N
7	GND	27	CH2_LVDS_A0P
8	OLDI_RESETn	28	GND
9	TS_INT#	29	CH2_LVDS_A1N
10	GND	30	CH2_LVDS_A1P

Table 2-4. Display Connector Pinout (As used by display and the E3 EVM) (continued)

Pin no.	Signal	Pin no.	Signal
11	CH1_LVDS_A0N	31	GND
12	CH1_LVDS_A0P	32	CH2_LVDS_CLKN
13	GND	33	CH2_LVDS_CLKP
14	CH1_LVDS_A1N	34	GND
15	CH1_LVDS_A1P	35	CH2_LVDS_A2N
16	GND	36	CH2_LVDS_A2P
17	CH1_LVDS_CLKN	37	GND
18	CH1_LVDS_CLKP	38	CH2_LVDS_A3N
19	GND	39	CH2_LVDS_A3P
20	CH1_LVDS_A2N	40	GND

Table 2-5. Display Connector Pinout (E1/E2)

Pin no.	Signal		Signal
40	VCC_3V3_SYS(EEPROM_VDD)	20	CH1_LVDS_A2P
39	GND	19	GND
38	SoC_I2C0_SCL	18	GND
37	SoC_I2C0_SDA	17	CH1_LVDS_A3N
36	NC	16	CH2_LVDS_A0N
35	NC	15	CH1_LVDS_A3P
34	NC	14	CH2_LVDS_A0P
33	TS_INT	13	GND
32	TS_RST	12	GND
31	GND	11	CH2_LVDS_A1N
30	GND	10	CH2_LVDS_CLKN
29	CH1_LVDS_A0N	9	CH2_LVDS_A1P
28	CH1_LVDS_A1N	8	CH2_LVDS_CLKP
27	CH1_LVDS_A0P	7	GND
26	CH1_LVDS_A1P	6	GND
25	GND	5	CH2_LVDS_A2N
24	GND	4	CH2_LVDS_A3N
23	CH1_LVDS_CLKN	3	CH2_LVDS_A2P
22	CH1_LVDS_A2N	2	CH2_LVDS_A3P
21	CH1_LVDS_CLKP	1	GND


2.6.4 CSI Interface

The CSI-2 interface from the AM62x SoC is terminated to a 15 pin Camera FPC connector 1-1734248-5 compatible with the RPi Camera Modules. These modules support 2 Lane CSI RX signals. While the SoC supports 4 CSI RX Lanes, only two are pinned out on the SKEVM

The CSI connector pin-out is compatible with the RPi camera connector. The Table 2-6 contains 15 pin CSI Connector pin-out. SoC I2C1 signals are also connected to the CSI Header. IO Expander GPIO signals are connected to the camera GPIO's.

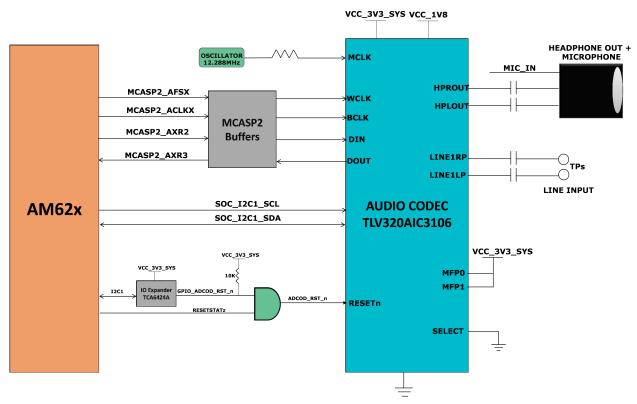
VCC_3V3_SYS 15 CSI0_RXN0 CSI0_RXP0 CSI0 RXN1 CSI0_RXP1 **CSI Connector** AM62x CSI0_RXCLKN 15 pin FFC **CSIO** 1-1734248-5 CSI0 RXCLKP 500E CSI0_RXRCALIB 10

Pin No Pin Description					
FIIINO					
1	Ground				
2	CSI0_RXN0				
3	CSI0_RXP0				
4	Ground				
5	CSI0_RXN1				
6	CSI0_RXP1				
7	Ground				
8	CSI0_RXCLKN				
9	CSI0_RXCLKP				
10	Ground				
11	CSI_GPI01				
12	CSI_GPIO2				
13	SoC_I2C1_SCL				
14	SoC_I2C1_SDA				
15	VCC_3V3_SYS				

2.6.5 Audio Codec Interface

AM62x SKEVM has TI's Low-Power TLV320AIC3106 Stereo Audio Codec to interface with AM62x via McASP.

TLV320AIC3106 is a low-power stereo audio codec with stereo headphone amplifier, as well as multiple inputs and outputs programmable in single ended or fully differential configurations. The record path of the TLV320AIC3106 contains integrated microphone bias, digitally controlled stereo microphone preamplifier and automatic gain control (AGC) with mix/Mux capability among the multiple analog inputs. The stereo audio DAC supports sampling rates from 8 kHz to 96 kHz.


1x Standard 3.5 mm TRRS Audio Jack connector Mfr. Part# SJ-43514 shall be provided for MIC and Headphone output. Audio Codec's Line inputs are terminated to Testpoints.

SELECT pin shall be held LOW to select I2C as control interface. Codec can be configured over I2C interface, where I2C address can be set by driving pins MFP0 and MFP1 pin either high or low. Both these pins are set to high, so the Device address is set to 0x1B. Unused inputs and outputs of the Audio Codec are connected to ground.

The Controller Clock input, MCLK to the Audio Codec is provided through a 12.288MHz Oscillator. Audio serial data bus bit clock BCLK of the codec is driven by the AM62x SoC through a buffer. Audio serial data bus input and output DIN, DOUT are connected to SoC's MCASP2_AXR2 and MCASP2_AXR3 through buffers. An AND output of RESETSTATz and a GPIO sourced via IO expander are used to reset the Audio codec.

The TLV320AIC3106 is powred by an analog supply of 3.3 V, a digital core supply of 1.8 V, and a digital I/O supply 3.3 V.

2.6.6 HDMI Display Interface

The DSS (Display Sub system) interface from AM62x SoC is used on the SKEVM to provide a HDMI Interface through a standard Type-A Connector. The SKEVM features a SiI9022A HDMI Transmitter from Lattice semiconductors to convert the 24bit Parallel RGB DSS output stream as well as a McASP to a HDMI-compliant digital audio and video signal.

The Data mapping format used is RGB888. The data bus width is 24-bits.

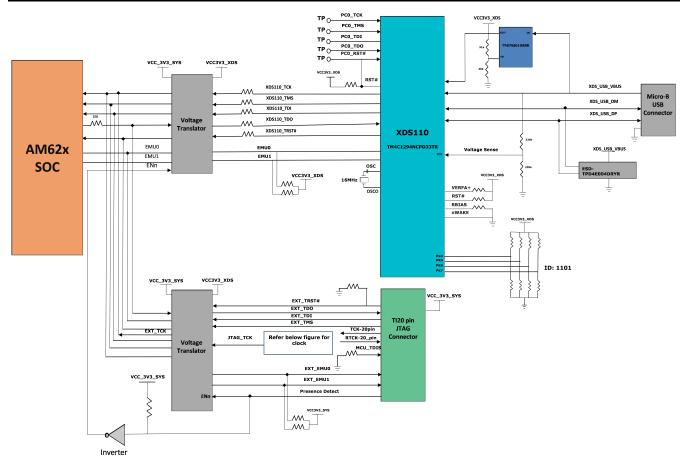
SoC_I2C1 is connected to the HDMI Transmitter to access the compatible mode registers, the TPI registers, and the CPI registers. In order to use the SiI9022A, the SoC needs to setup the device. This is done via the I2C interface between the SoC and the SiI9022A. Audio Data is sent from SoC to HDMI transmitter through the McASP1 instance. HDMI_I2C Bus accesses the EDID and HDCP data on an attached sink device.

TMDS Differential data pairs along with the differential clock signals from the transmitter are connected to the HDMI connector through HDMI ESD device Mfr Part# TPD12S016PWR which also acts as a load switch to limit current supplied to the HDMI connector from board 5 V supply.

The HDMI Framer is powered using 3.3 V Board IO Supply and 1.2 V by a dedicated LDO Mfr Part# TLV75512PDQNR.

Note

Please see the Known Issues section of this document. The SK-AM62 E1 board was intended to feature 16bit YUV 422 video output but was wired incorrectly. E2 and newer variants of SK-AM62 as well as all variants of SK-AM62-P1 feature the full 24 bit Parallel RGB888 Interface.



2.6.7 JTAG Interface

AM62x SKEVM board include XDS110 class on board emulation. The connection for the emulator uses an USB 2.0 micro-B connector and the circuit acts as a Bus powered USB device. The VBUS power from the connector will be used to power the emulation circuit such that connection to the emulator is not lost when the power to the SKEVM is removed. Voltage translation buffers are used to isolate the XDS110 circuit from the rest of the SKEVM.

Optionally, JTAG Interface on SKEVM is also provided through 20 Pin Standard JTAG cTI Header J17. This allows the user to connect an external JTAG Emulator Cable. Voltage translation buffers are used to isolate the JTAG signals from cTI header from the rest of the SKEVM. The output from the voltage translators from XDS110 Section and cTI Header Section are muxed and connected to AM62x JTAG Interface. If a connection to the cTI 20 Pin JTAG connector is sensed using a presence detect circuit, the mux will be set to route the 20 pin signals from the cTI connector to the AM62x SoC in place of the on-board emulation circuit.

The pin-outs of the cTI 20 pin JTAG connector are given in Table 2-7. A ESD protection part number TPD4E004 is provided on USB signals to steer ESD current pulses to VCC or GND. TPD4E004 protects against ESD pulses up to ±15-kV Human-Body Model (HBM) as specified in IEC 61000-4-2 and provides ±8-kV contact discharge and ±12- kV air-gap discharge.

Pin No.	Signal
1	JTAG_TMS
2	JTAG_TRST#
3	JTAG_TDI
4	JTAG_TDIS
5	VCC3V3_SYS
6	NC
7	JTAG_TDO
8	SEL_XDS110_INV
9	JTAG_cTI_RTCK
10	DGND
11	JTAG_cTI_TCK
12	DGND
13	JTAG_EMU0
14	JTAG_EMU1
15	JTAG_EMU_RSTn

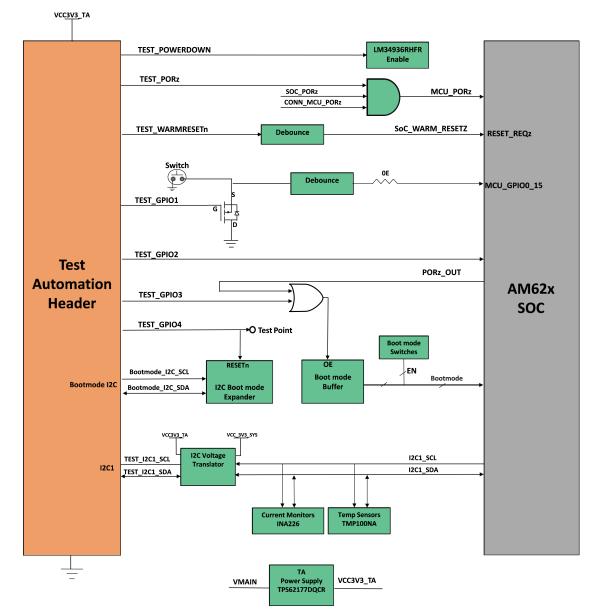
Table 2-7.	JTAG Connec	tor (J17)	Pin-out
------------	-------------	-----------	---------

Table 2-7. JTAG Connector (J17) Pin-out (continued)

Pin No.	Signal
16	DGND
17	NC
18	NC
19	NC
20	DGND

2.6.8 Test Automation Header

AM62x SKEVM has a 40 pin test automation header (FH12A-40S-0.5SH) to allow an external controller to manipulate some basic operations like Power Down, POR, Warm Reset, Boot Mode control, and so forth.


The Test Automation Circuit is powered by the 3.3 V supply generated by a dedicated regulator Mfr. Part# TPS62177DQCR. The SoC's I2C1 is connected to the test automation header. Another I2C instance (BOOTMODE_I2C) from the Test Automation Header is connected to the 24-bit I2C boot mode IO Expander of Mfr. Part# TCA6424ARGJR to allow control of the boot modes for the AM62x SoC.

The test automation circuit has voltage translation circuits so that the controller is isolated from the IO voltages used by the AM62x. Boot mode for the AM62x must be controlled by either the user using DIP Switches or the test automation header through the I2C IO Expander. Boot Mode Buffers are used to isolate the Boot Mode controls driven through DIP Switches or I2C IO Expander. The boot mode is controlled by the user using two 8-bit DIP switches on the board, which will connect a pull-up resistor to the output of a buffer when the switch is set to the ON position and to weaker pull-down resistor when set to the OFF position. The output of the buffer is connected to the boot mode pins on the AM62x SoC and the output is enabled when the boot mode is needed during a reset cycle.

When boot mode is to be set through Test Automation header, the required switch values are set at the I2C IO expander output, which overwrites the DIP switch values to give the desired boot values to the SoC. The pins used for boot mode also have other functions which will be isolated by disabling the boot mode buffer during normal operation.

The power down signal from the Test automation header instructs the SKEVM to power down all the rails except for dedicated power supplies on the board. Similarly PORZn signal is also provided to give a hard reset to the SoC and WARM_RESETn for warm reset of the SoC. One Interrupt signal from the Test Automation header is going to the SoC GPIO (MCU_GPIO0_15) for providing an external Interrupt.

Table 2-8. Test Automation Connector ((J23)	Pin-out
--	-------	---------

Pin No.	Signal	IO Direction	Pin No.	Signal	IO Direction
1	VCC3V3_TA	Power	21	NC	NA
2	VCC3V3_TA	Power	22	NC	NA
3	VCC3V3_TA	Power	23	NC	NA
4	NC	NA	24	NC	NA
5	NC	NA	25	DGND	Power
6	NC	NA	26	TEST_POWERDOWN	Input
7	DGND	Power	27	TEST_PORZn	Input
8	NC	NA	28	TEST_WARMRESETn	Input
9	NC	NA	29	NC	NA
10	NC	NA	30	TEST_GPIO1	Bidirectional
11	NC	NA	31	TEST_GPIO2	Bidirectional
12	NC	NA	32	TEST_GPIO3	Input
13	NC	NA	33	TEST_GPIO4	Input

Pin Pin					
No.	Signal	IO Direction	No.	Signal	IO Direction
14	NC	NA	34	DGND	Power
15	NC	NA	35	NC	NA
16	DGND	Power	36	SoC_I2C1_TA_SCL	Bidirectional
17	NC	NA	37	BOOTMODE_I2C_SCL	Bidirectional
18	NC	NA	38	SoC_I2C1_TA_SDA	Bidirectional
19	NC	NA	39	BOOTMODE_I2C_SDA	Bidirectional
20	NC	NA	40	DGND	Power

Table 2-8. Test Automation Connector (J23) Pin-out (continued)

2.6.9 UART Interface

The four UART ports of the SoC (MCU UART0, WKUP UART0, SoC UART0 and SoC UART1) provided by the AM62x are interfaced with an FTDI FT4232HL for UART-to-USB functionality and terminated on a USB micro-B connector (J15) on board. When the AM62X SKEVM is connected to a Host using USB cable, the computer can establish a Virtual Com Port which can be used with any terminal emulation application. The FT4232HL is bus powered.

Since the circuit is powered through BUS power, the connection to the COM port will not be lost when the SKEVM power is removed.

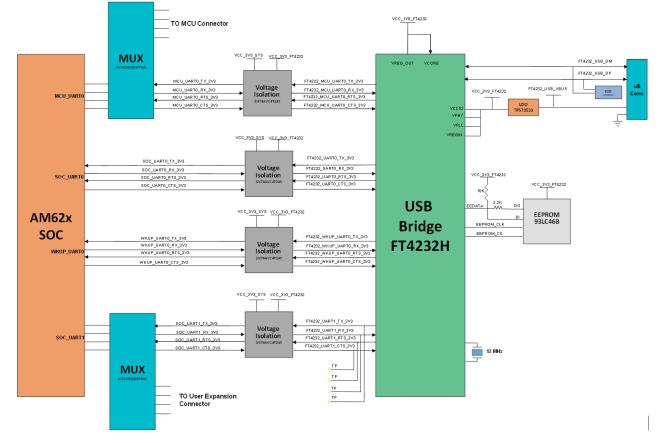

UART Port	USB to UART Bridge	USB Connector	COM Port
SoC_UART0	FT4232HL	J15	COM1
SoC_UART1			COM2
WKUP_UART0			COM3
MCU_UART0			COM4

Table 2-9. UART Port Interface

The FT4232 chip is configured to operate in 'Single chip USB to four channel UART' mode and will take the configuration file from the external SPI EEPROM connected to it. The EEPROM (93LC46B) supports 1Mbit/s clock rate. The EEPROM is programmable in-circuit over USB using a utility program called FT_PROG available from FTDI's web site. The FT_PROG is also used for programming the board serial number for users to identify the connected COM port with board serial number when one or more boards are connected to the computer.

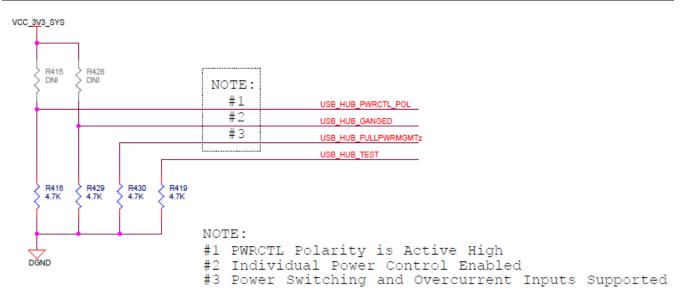
Note

Starting with version E2 of the SK-AM62 EVM (and all revisions of SK-AM62-P1), SoC UART0 is no longer connected for Hardware Flow Control as the CTS/RTS pins were re-purposed for other uses. Additionally, UART1 is selectable between the Expansion Connector, the FT4232 (Default) or the Wilink Bluetooth UART.

2.6.10 USB Interface

2.6.10.1 USB 2.0 Type A Interface

The USB 2.0 HOST Interface is offered through a USB Type-A Port on the USB1 controller on the AM62x SoC.


The USB Signals are connected on E1 to a USB 2.0 HUB Mfr Part# TUSB4020BI to provide two USB 2.0 Host ports. TUSB4020BI is a two port USB 2.0 HUB, which provides USB high-speed/full-speed connections on the upstream port and provides USB high-speed, full-speed, or low-speed connections on the downstream ports. On-chip 24 MHz crystal is used to provide clock to the USB HUB. USB0_DRVVBUS from SoC is connected to USB_VBUS pin of the HUB through resistor divider network to limit the voltage level below 1.155 V. The Reset to the HUB is given by SoC RESETSTATz output.

The GANGED/SMBA2/HS_UP pin and FULLPWRMGMTz/ SMBA1 pin of USB HUB are pulled down to enable individual power control of the ports when power switching is enabled. The PWRCTL_POL pin of USB HUB is pulled down to make PWRCTL polarity active high. The PWRCTL1/BATEN1 pin and PWRCTL2/BATEN2 pin of HUB is connected to enable pins of Current limit switches for VBUS supply control on downstream ports. The USB2.0 ports shall provide maximum of 500 mA, 5 V to the devices as per USB2.0 specifications. The USB HUB strapping options are provided as follows.

On E2 and future revisions, the USB Hub has been dropped in favor of connecting the onboard USB Controller directly to a single Type-A connector.

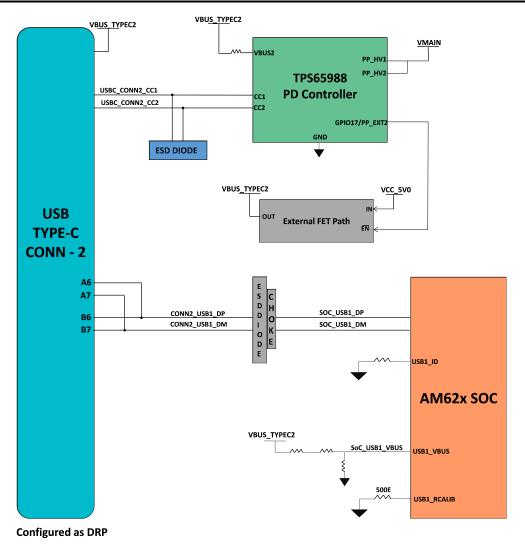
Note

Please see Section 3.3 for details on the differences between SK-AM62 E1 and latter implementation of the USB Subsystem.

USB Data lines from Type-A connectors are connected to the Current Limit Load Switch and ESD Protection IC Mfr Part# TPD3S014DBVR. This switch limits the current to 500mA and dissipates the ESD strikes above the maximum level specified in the IEC 61000-4-2.

The USB HUB is powered by 3.3V from board IO supply and the 1.1V supply from Dedicated LDO Mfr Part# TLV75511PDQNR.

2.6.10.2 USB 2.0 Type C Interface


On SKEVM, USB 2.0 Interface is offered through USB Type-C Connector J13 Mfr part# 2012670005 that supports data rate up to 480 Mbps. J13 is used for Data communication and also as power connector. It is configured as DRP port using PD controller TPS65988DHRSHR IC, so it can act as either Host or Device. The role of the port depends on the type of the device getting connected on the connector and its ability to either sink or source. When the port is acting as DFP, it can source up to 5V@500mA.

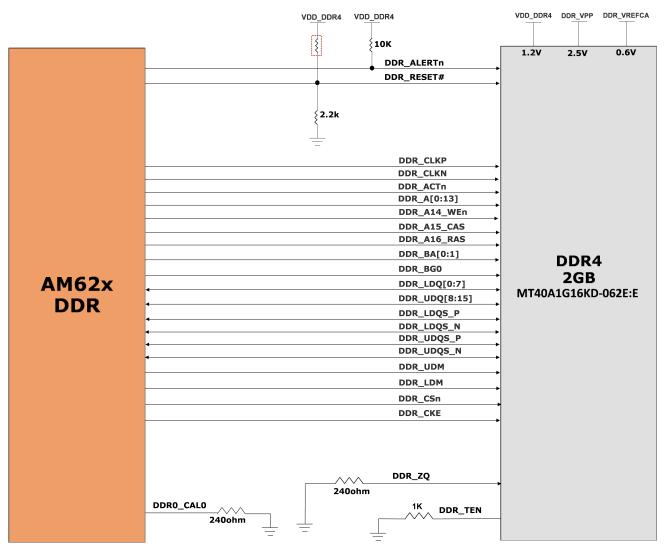
USB 2.0 Data lines DP and DM from J13 are connected to the USB0 interface of AM62x SoC via choke and ESD protection device. USB0_VBUS to the SoC is provided through a resistor divider network.

A common mode choke of Mfr Part# DLW21SZ900HQ2B is provided on USB Data lines to take care of EMI/ EMC. An ESD protection device of part number ESD122DMXR is included to dissipate ESD strikes on USB2.0 DP/DM Signals. An ESD protection device of part number TPD1E01B04DPLT is included on CC signals and TVS2200DRVR IC is included on VBUS rail of Type-C Connector J13 to dissipate ESD strikes.

Note

Please see Section 3.3 for details on the differences between E1 and latter implementation of the USB Subsystem.

2.6.11 Memory Interfaces


2.6.11.1 DDR4 Interface

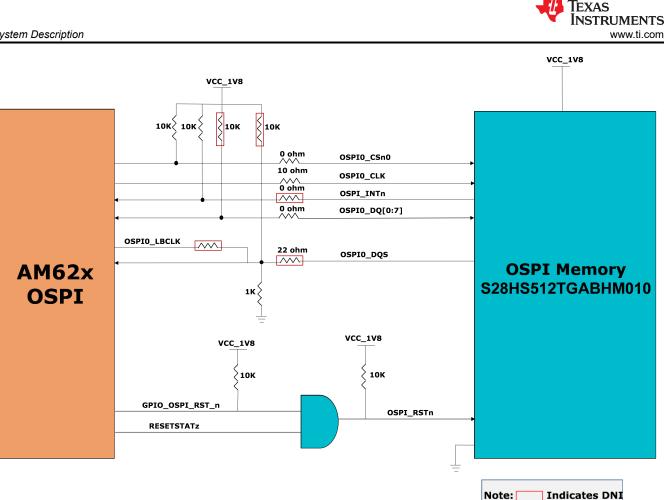
AM62x SKEVM has 2GB, 16-bit wide DDR4 memory with operating speed of up to 1600MT/s. Micron's MT40A1G16KD-062E:E is used. This uses two x8 8Gb Micron dies to make one x16 interface. The DDR memory is mounted on-board (single chip). The Placement and routing of DDR4 device is point to point.

The SK-AM62B and SK-AM62B-P1 RevA EVMs have Micron's MT40A1G16TB-062E:F part due to EOL issue.

The DDR4 requires 1.2 V and thus reduces power demand. The devices require I/O power of 1.2 V, DRAM activating power supply of 2.5 V and 0.6 V reference voltage for control, command and address pins.

DDR4 reset is an active low signal, which is controlled by SoC and the signal is pulled down to set the default active state. A footprint for pull up is also provided.

2.6.11.2 OSPI Interface


AM62x SKEVM board has a 512-Mbit OSPI memory device from Cypress Part# S28HS512TGABHM010 which is connected to the OSPI0 interface of the AM62x SoC. The OSPI interface supports single and double data rates with memory speeds up to 200 MBps SDR and 400 MBps DDR (200 MHz clock speed).

OSPI & QSPI implementation: 0 ohm resistors are provided for DATA[7:0], DQS, INT# and CLK signals. Footprints to mount external pull up resistors are provided on DATA[7:0] to prevent bus floating. The footprint for the OSPI memory also allows the installation of either a QSPI memory or an OSPI memory. The 0 ohm series resistors provided for pins OSPI_DATA[4:7] will be removed if QSPI flash is to be mounted.

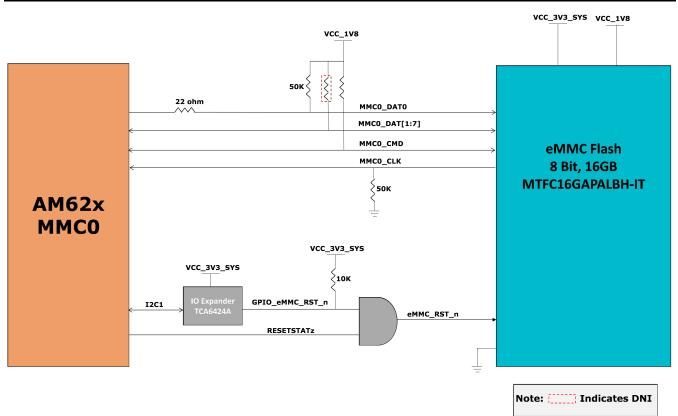
Reset: The reset for the OSPI flash is connected to a circuit that ANDs the RESETSTATz from the AM62x with the signal GPIO_OSPI_RSTn from the SoC GPIO. This will apply reset for warm and cold reset. A pull-up is provided on GPIO_OSPI_RSTn coming from SoC pin to set the default active state.

Power: The OSPI flash is powered by 1.8 V IO supply. The 1.8 V supply is provided to both VCC and VCCQ pins of the OSPI flash memory.

The OSPI interface of the SoC is powered by VDDSHV1 Power group of SoC and is connected to 1.8V IO supply.

2.6.11.3 MMC Interfaces

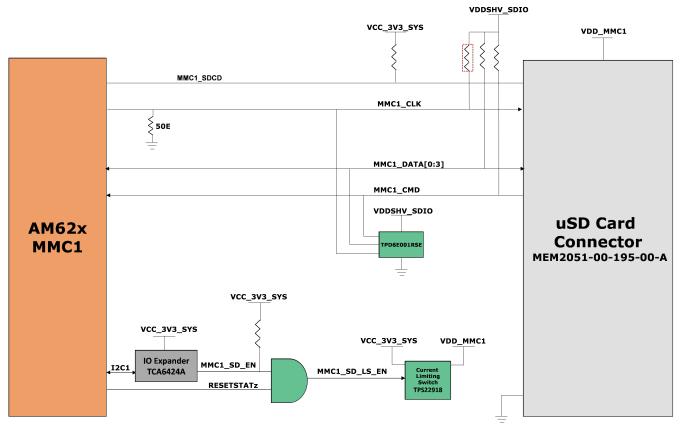
AM62x SoC has three MMC (MMC0, MMC1 and MMC2) ports. MMC0 is connected to eMMC flash, MMC1 is interfaced with Micro SD Socket on the board and MMC2 is connected to Wilink module for WiFi Interface


2.6.11.3.1 MMC0 - eMMC Interface

The SKEVM board contains 16GB of eMMC flash memory from Micron Part# MTFC16GAPALBH-IT connected to MMC0 port of the AM62x SoC. The flash is connected to 8 bits of the MMC0 interface supporting HS400 double data rates up to 200 MHz.

The SK-AM62B RevA and SK-AM62B-P1 RevA revision boards are upgraded to 32GB of eMMC flash memory from Micron Part# MTFC32GAZAQHD-IT.

The eMMC device requires two power supplies, 3.3 V for NAND memory and 1.8 V for the eMMC interface. The MMC0 interface of the SoC is powered by the VDDSHV4 power domain, which is connected to 1.8 V IO supply.



2.6.11.3.2 MMC1 - Micro SD Interface

The SKEVM board provides a micro SD card interface connected to the MMC1 port of the AM62x SoC. The Micro SD card socket of Mfr. Part# MEM2051-00-195-00-A is used to interface with the MMC1 port of the AM62x SoC. UHS1 operation is supported, including IO operations at both 1.8 V and 3.3 V. The Micro SD card interface is set to operate in SD mode by default. For high-speed cards, the ROM Code of the SoC attempts to find the fastest speed that the card and controller can support and can have a transition to 1.8 V.

The SD Card connector power is provided using a load switch of Mfr. Part # TPS22918DBVR, which is controlled by ANDing the output of RESETSTATz, PORz_OUT and a GPIO from an IO Expander. An ESD protection device of part number TPD6E001RSE is provided for data, clock, and command signals. TPD6E001RSE is a line termination device with integrated TVS diodes providing system-level IEC 61000-4-2 ESD protection, ± 8-kV contact discharge and ± 15kV air-gap discharge.

2.6.11.3.3 MMC2 - Wilink Interface

AM62x SKEVM has a WiLink Module of part number WL1837MODGIMOCT from TI connected to MMC2, UART2 instances and McASP2 interface through buffers. The Module is connected to 4-bit IO of the MMC2 interface supporting IEEE standard 802.11a/b/g/n data rates with 20 or 40-MHz SISO or 20-MHz MIMO. The Module requires two power supplies, 3.3V for VBAT_IN and 1.8V for VIO_IN. Power to WiLink module is supplied from on board Power supply rails.

The MMC2 interface of the SoC is powered by the VDDSHV6 power domain, which is connected to 1.8 V IO supply.

The WiLink module is removed from SK-AM62B and SK-AM62B-P1 RevA EVMs and M.2 connector is implemented expansion modules. This expansion interface is primarily used for Wi-Fi/BT modules, and supports the following interfaces: Secure Data/Secure Digital IO (SDIO), Universal Asynchronous Receiver/Transmitter (UART) and Multi-Channel Audio Serial Port (McASP).

Note: An example add-on wireless network module for this interface is the Embedded Artist EAR00388 WiFi and Bluetooth module.

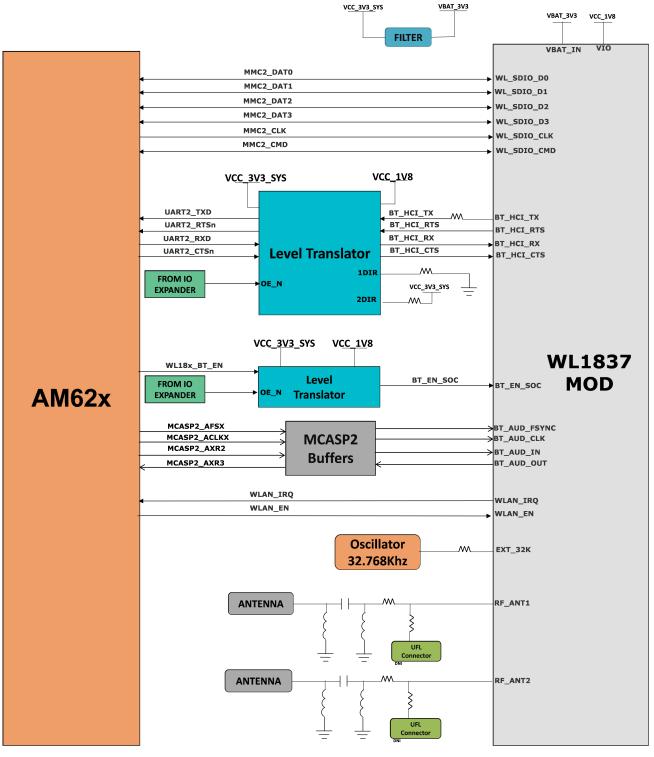
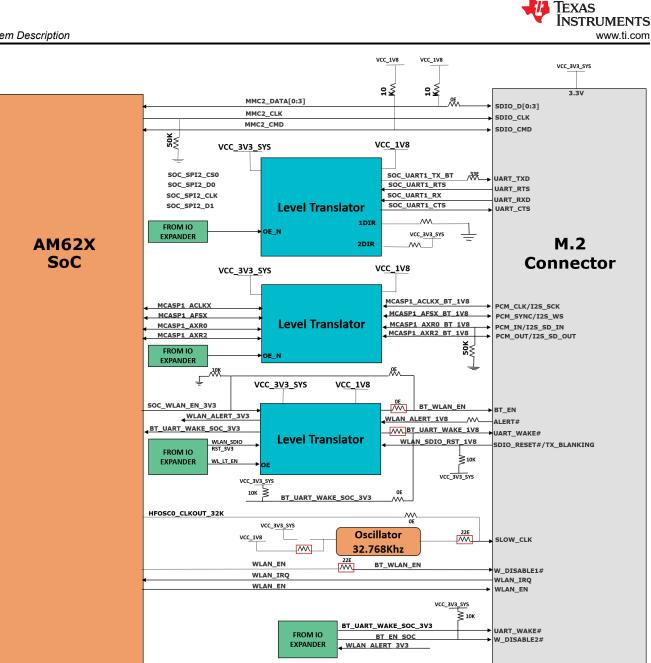
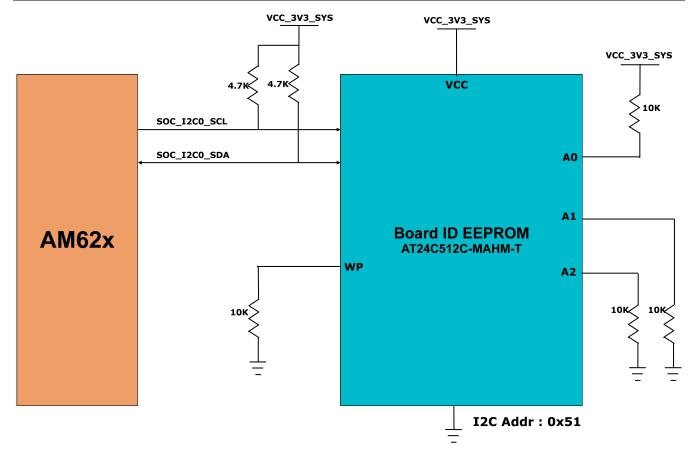



Figure 2-11. MMC2 - Wilink Interface on SK-AM62 and SK-AM62-P1

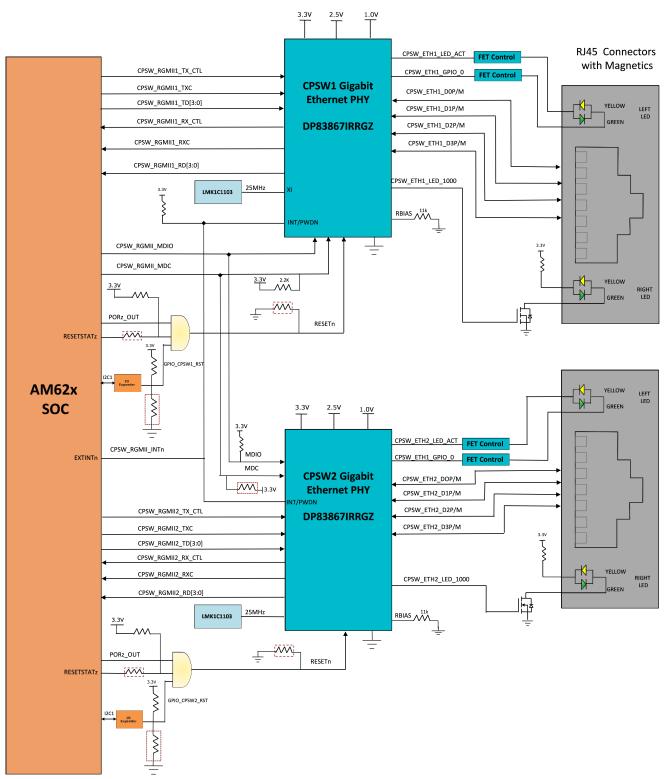

2.6.11.4 EEPROM

AM62x SKEVM boards are identified by their version and serial number, which are stored on the onboard EEPROM. The EEPROM is accessible from SoC I2C0 port of AM62x SoC.

The Board ID EEPROM I2C address is set to 0x51.

AM62x SKEVM includes an AT24C512C-MAHM-T 512kb EEPROM. The first 259 bytes of memory are preprogrammed with identification information for each board. The remaining 65277 bytes are available to the user for data or code storage.

2.6.12 Ethernet Interface


The AM62x SKEVM offers two Ethernet Ports of 1 Gigabit Speed for external Communication. Two channels of RGMII Gigabit Ethernet CPSW Ports from AM62x SoC are connected to separate Gigabit Ethernet PHY Transceivers DP83867, which are finally terminated on two RJ45 connectors with integrated magnetics.

The 48pin version of the PHY DP83867 is configured to advertise 1-Gb operation with the internal delay set to accommodate the internal delay inside the AM62x. CPSW_RGMI1 and CPSW_RGMI12 Ports share a common MDIO Bus to communicate with the external PHY Transceiver.

Two Single port RJ45 Connectors Mfr Part# LPJG16314A4NL from Link-PP are used on the board for Ethernet 10/100/1G Connectivity. RJ45 Connectors have integrated magnetics and LEDs for indicating 1000BASE-T link as well as receive or transmit Activity.

IO supply to the Ethernet PHY is set 3.3V IO level.

2.6.12.1 CPSW Ethernet PHY 2 Default Configuration

CPSW_RGMII2 port of the AM62x SoC is connected to DP83867 whose configuration is as given below:

PHY ADDR: 00001

Auto_neg: Enabled

ANGsel 10/100/1000

RGMII Clk skew Tx: 0ns

38 AM62x SK EVM User's Guide

RGMII Clk skew Rx: 2ns

The interrupts generated from two CPSW RGMII PHYs are tied together and is connected to EXTINTn pin of AM62x SoC.

LED1 is connected to RJ45 Right LED (Green) to indicate 1000MHz link.

LED2 is connected to RJ45 Left LED (Yellow) to indicate transmit/receive activity.

GPIO 0 is connected to RJ45 Left LED (Green) to indicate 10/100MHz link.

LED Control is achieved through an external MOSFET.

2.6.12.2 CPSW Ethernet PHY 1 Default Configuration

The default configuration of the DP83867 is determined using a number of resistor pull-up and pull-down values on specific pins of the PHY. Depending on the values installed, each of the configuration pins can be set to one of four modes by using the pull up and pull down options provided. The AM62x SKEVM uses the 48-pin QFN package which supports the RGMII interface.

The DP83867 PHY uses four level configurations based on resistor strapping which generate four distinct voltages ranges. The resistors are connected to the RX data and control pins which are normally driven by the PHY and are inputs to the processor. The voltage range for each mode is shown below:

Mode 1 - 0 V to 0.3 V

Mode 2 - 0.462 V to 0.6303 V

Mode 3 - 0.7425 V to 0.9372 V

Mode 4 - 2.2902 V to 2.9304 V

Footprint for both pull-up and pull-down is provided on all the strapping pins except LED 0. LED 0 is for Mirror Enable, which is set to mode 1 by default, Mode 4 is not applicable and Mode2, Mode3 option is not desired.

CPSW_RGMI1 port of the AM62x SoC is connected to DP83867 whose configuration is as given below:

PHY ADDR: 00000

Auto neg: Enabled

ANGsel 10/100/1000

RGMII Clk skew Tx: 0 ns

RGMII Clk skew Rx: 2 ns

2.6.13 GPIO Port Expander

The I/O Expander used in the AM62x SKEVM is a 24-Bit I2C based I/O Expander which is used for daughter card plug-in detection and for generating resets and enable signals to various peripheral devices connected to it. The SoC I2C1 bus of the AM62x SoC is used to interface with the I/O Expander. The I2C device address of the I/O Expander is 0x22. See Table 2-10 for the list of signals being controlled by the Expander.

Table 2-10. IO Expander Signal Detail										
Signal	Direction	Device								
GPIO_CPSW2_RST	OUTPUT	CPSW Ethernet PHY-1 Reset Control GPIO								
GPIO_CPSW1_RST	OUTPUT	CPSW Ethernet PHY-2 Reset Control GPIO								
PRU_DETECT	INPUT	PRU Board Detection								
MMC1_SD_EN	OUTPUT	SD Card Load Switch Enable								
VPP_LDO_EN	OUTPUT	SoC eFuse Voltage(VPP=1.8V) Regulator Enable								
EXP_PS_3V3_EN	OUTPUT	EXP CONN 3.3V Power Switch Enable								
EXP_PS_5V0_EN	OUTPUT	EXP CONN 5V Power Switch Enable								
EXP_HAT_DETECT	INPUT	EXP CONN HAT Board Detection								
GPIO_AUD_RSTn	OUTPUT	Audio Codec Reset Control GPIO								
GPIO_eMMC_RSTn	OUTPUT	eMMC Reset control GPIO								
	Signal GPIO_CPSW2_RST GPIO_CPSW1_RST PRU_DETECT MMC1_SD_EN VPP_LDO_EN EXP_PS_3V3_EN EXP_PS_5V0_EN EXP_HAT_DETECT GPIO_AUD_RSTn	SignalDirectionGPIO_CPSW2_RSTOUTPUTGPIO_CPSW1_RSTOUTPUTPRU_DETECTINPUTMMC1_SD_ENOUTPUTVPP_LDO_ENOUTPUTEXP_PS_3V3_ENOUTPUTEXP_PS_5V0_ENOUTPUTEXP_HAT_DETECTINPUTGPIO_AUD_RSTnOUTPUT								

Table 2.40.10 Expander Circle Datail

	Table 2-10. IO Expander Signal Detail (continued)									
Pin No.	Signal	Direction	Device							
P12	UART1_FET_BUF_EN	OUTPUT	Enable for UART1 FET Buffer							
P13	WL_LT_EN	OUTPUT	Enable for Wilink Level Translators							
P14	GPIO_HDMI_RSTn	OUTPUT	HDMI Transmitter Reset Control GPIO (can also be used for OLID_RSTn with resistor stuffing change)							
P15	CSI_GPIO1	NA	Raspberry Pi Camera CSI0 GPIO1							
P16	CSI_GPIO2	NA	Raspberry Pi Camera CSI0 GPIO2							
P17	PRU_3V3_EN	OUTPUT	PRU Power Switch Enable							
P20	HDMI_INTn	INPUT	HDMI Interrupt							
P21	PD_I2C_IRQ	INPUT	Input interrupt from the USB-C Power Delivery Controller							
P22	AUD_BUF_EN	OUTPUT								
P23	WL_BUF_EN	OUTPUT	MCACD Enable and Direction Control							
P24	AUD_BUFF_CLK_DIR	OUTPUT	MCASP Enable and Direction Control							
P25	UART1_FET_SEL	OUTPUT								
P26	TS_INT#	OUTPUT	OLDI Display Touch Screen Interrupt							
P27	IO_EXP_TEST_LED	OUTPUT	GPIO used to control USED TEST LED							

2.6.14 GPIO Mapping

The Table 2-11 describes the detailed GPIO mapping of AM62x SoC with AM62x SKEVM peripherals.

					2-11. GPIO Ma	Direction With			Voltage on SoC	
SI.No	GPIO Description	GPIO NETNAME	Functionality	GPIO Used	Name	Respect to Control	Default State	Active State	Side	Voltage on SK-EVM
1	Enable for WLAN Interface	WLAN_EN	ENABLE	GPIO0_71	MMC2_SDCD	OUTPUT	LOW	HIGH	VDDSHV6	SoC_DVDD1V8
2	WLAN Interrupt	WLAN_IRQ	INTERRUPT	GPIO0_72	MMC2_SDWP	INPUT	HIGH	LOW	VDDSHV6	SoC_DVDD1V8
3	Enable for BT Interface	BT_EN_SOC	ENABLE	MCU_GPIO0_1	MCU_SPIO_CS0	OUTPUT	LOW	HIGH	VDDSHV_MCU	SoC_DVDD3V3
4	CPSW Ethernet PHY Interrupt PRU Connector Interrupt	CPSW_RGMII_INTn/ PRu_INTn	INTERRUPT	GPIO1_31	EXTINTn	INPUT	HIGH	LOW	VDDSHV0	SoC_DVDD3V3
5	OSPI Reset Control GPIO	GPIO_OSPI_RSTn	RESET	GPIO0_12	OSPI0_CSn1	OUTPUT	HIGH	LOW	VDDSHV1	SoC_DVDD1V8
6	OSPI Interrupt	OSPI_INTn	INTERRUPT	GPIO0_13	OSPI0_CSn2	INPUT	HIGH	LOW	VDDSHV1	SoC_DVDD1V8
7	SD Card IO Voltage Select	VSEL_SD	ENABLE	GPIO0_31	GPMC0_CLK	OUTPUT	LOW	HIGH	VDDSHV3	SoC_DVDD3V3
8	IO Expander Interrupt									
9	TEST GPI01 from Test Automation Connector/User Interrupt	MCU_GPIO0_15	INTERRUPT	MCU_GPIO0_15	MCU_MCAN1_TX	INPUT	HIGH	LOW	VDDSHV_CANUART	SoC_DVDD3V3
10	USER Test LED 1	SOC_GPIO_49	GPIO	GPIO1_49	MMC1_SDWP	OUTPUT	LOW	HIGH	VDDSHV0	SoC_DVDD3V3
					IO EXPANDER - 01	1				1
1	eMMC Reset control GPIO	GPIO_eMMC_RSTn	RESET	IO EXPANDER - P00		OUTPUT	HIGH	LOW	VDDSHV0	SoC_DVDD3V3
2	CPSW Ethernet PHY-1 Reset control GPIO	GPIO_CPSW1_RST	RESET	IO EXPANDER - P01		OUTPUT	HIGH	LOW	VDDSHV0	SoC_DVDD3V3
3	CPSW Ethernet PHY-2 Reset control GPIO	GPIO_CPSW2_RST	RESET	IO EXPANDER - P02		OUTPUT	HIGH	LOW	VDDSHV0	SoC_DVDD3V3
4	SD Card Load Switch Enable	MMC1_SD_EN	ENABLE	IO EXPANDER - P03		OUTPUT	HIGH	LOW	VDDSHV0	SoC_DVDD3V3
5	SOC eFUSE Voltage(VPP=1.8V) Regulator Enable	VPP_LDO_EN	ENABLE	IO EXPANDER - P04		OUTPUT	LOW	HIGH	VDDSHV0	SoC_DVDD3V3
6	EXP CONN 3.3V Power Switch Enable	RPI_PS_3V3_EN	ENABLE	IO EXPANDER - P05		OUTPUT	LOW	HIGH	VDDSHV0	SoC_DVDD3V3
7	EXP CONN 5V Power Switch Enable	RPI_PS_5V0_EN	ENABLE	IO EXPANDER - P06		OUTPUT	LOW	HIGH	VDDSHV0	SoC_DVDD3V3
8	Audio Codec Reset Control GPIO	GPIO_AUD_RSTn	RESET	IO EXPANDER - P07		OUTPUT	HIGH	LOW	VDDSHV0	SoC_DVDD3V3
9	EXP CONN HAT Board Detection	RPI_HAT_DETECT	DETECTION	IO EXPANDER - P010		INPUT	HIGH	LOW	VDDSHV0	SoC_DVDD3V3
10	PRU Board Detection	PRU_DETECT	DETECTION	IO EXPANDER - P11		INPUT	HIGH	LOW	VDDSHV0	SoC_DVDD3V3

24

User Test LED 2

IO_EXP_TEST_LED

GPIO

IO EXPANDER - P27

n Descriptio	on								to the second se	EXAS NSTRUMENTS www.ti.com
				Table 2-11. G	PIO Mapping	(continued)				
SI.No	GPIO Description	GPIO NETNAME	Functionality	GPIO Used	SoC Muxed Signal Name	Direction With Respect to Control	Default State	Active State	Voltage on SoC Side	Voltage on SK-EVM
11	SOC UART1 MUX Select	UART1_MUX_SEL	SELECT	IO EXPANDER - P12		OUTPUT	LOW	HIGH	VDDSHV0	SoC_DVDD3V3
12	Enable for Wilink Level Translators	WL_LT_EN	ENABLE	IO EXPANDER - P13		OUTPUT	LOW	HIGH	VDDSHV0	SoC_DVDD3V3
13	HDMI Transmitter Reset Control GPIO	GPIO_HDMI_RSTn	RESET	IO EXPANDER - P14		OUTPUT	HIGH	LOW	VDDSHV0	SoC_DVDD3V3
14	Rasberry Pi Cameraa CSI0 GPIO1	CSI_GPIO1	INPUT/OUTPUT	IO EXPANDER - P15		NA	NA	NA	VDDSHV0	SoC_DVDD3V3
15	Rasberry Pi Cameraa CSI0 GPIO2	CSI_GPIO2	INPUT/OUTPUT	IO EXPANDER - P16		NA	NA	NA	VDDSHV0	SoC_DVDD3V3
16	PRU Power Switch Enable	PRU_3V3_EN	ENABLE	IO EXPANDER - P17		OUTPUT	LOW	HIGH	VDDSHV0	SoC_DVDD3V3
17	HDMI Interrupt	HDMI_INTn	INTERRUPT	IO EXPANDER - P20		INPUT	HIGH	LOW	VDDSHV0	SoC_DVDD3V3
18	TEST GPIO2 from Test Automation Connector	TEST_GPIO2	GPIO for Communications with AM62X	IO EXPANDER - P21		INPUT	HIGH	LOW	VDDSHV0	SoC_DVDD3V3
19		AUD_BUF_EN	ENABLE	IO EXPANDER - P22		OUTPUT	LOW	HIGH	VDDSHV0	SoC_DVDD3V3
20		WL_BUF_EN	ENABLE	IO EXPANDER - P23		OUTPUT	HIGH	LOW	VDDSHV0	SoC_DVDD3V3
21	MCASP2 Enable and Direction Control	AUD_BUF_CLK_DIR	DIRECTION CONTROL	IO EXPANDER - P24		OUTPUT	HIGH	LOW	VDDSHV0	SoC_DVDD3V3
22		WL_BUF_CLK_DIR	DIRECTION CONTROL	IO EXPANDER - P25		OUTPUT	HIGH	LOW	VDDSHV0	SoC_DVDD3V3
23	OLDI Display Backlight Enable	VLED_ENB	ENABLE	IO EXPANDER - P26		OUTPUT	LOW	HIGH	VDDSHV0	SoC_DVDD3V3

OUTPUT

LOW

HIGH

VDDSHV0

SoC_DVDD3V3

2.6.15 Power

2.6.15.1 Power Requirements

AM62x SKEVM can be powered through either of the two USB Type C Connectors -

- Connector 1(J11) Power role SINK, No Data role
- Connector 2(J13) Power role DRP, Data role USB2.0 DFP or UFP

The AM62x SK EVM supports voltage input ranges of 5 V - 15 V and 3A of current. A USB PD controller Mfr. Part# TPS65988DHRSHR is used for PD negotiation upon cable detection to get necessary power required for the board. Connector 1 is configured to be an UFP Port and has no Data role. Connector 2 is configured as a DRP port, it can act as DFP only when the board is being powered by Connector 1. When both the connectors are connected to external power supply, the port with highest PD power contract will be selected to power the board.

J11(UFP)	J13(DRP)	Board Power	Remarks
Plugged in	NC	ON - J11	J11 will be UFP and will only sink power and J13 can act as DFP if a peripheral is connected
NC	Plugged in	ON - J13	J13 will be UFP and can only sink power
Plugged in	Plugged in	ON - J11 or J13	Board will be powered by the port with highest PD power contract

Table 2-12. Type-C port Power roles

The PD IC uses a SPI EEPROM to load the necessary configuration on power up so it can negotiate a power contract with a compatible power source.

The configuration file is loaded to the EEPROM using header J22. Once the EEPROM is programmed the PD obtains the configuration files via SPI communication. Upon loading the configuration files the PD negotiates with the source to obtain the necessary power requirement.

Note

The EEPROM is pre-programmed with the configuration file for the operation of the PD controller.

Power indication LEDs are provided for both the Type-C connectors for the user to identify which connector is powering the SKEVM Board.

An external power supply (Type-C output) can be used to power the EVM but is not included as part of the SKEVM kit.

The external power supply requirements (Type-C) are:

Minimum Voltage: 5 VDC, Recommended Minimum Current: 3000 mA

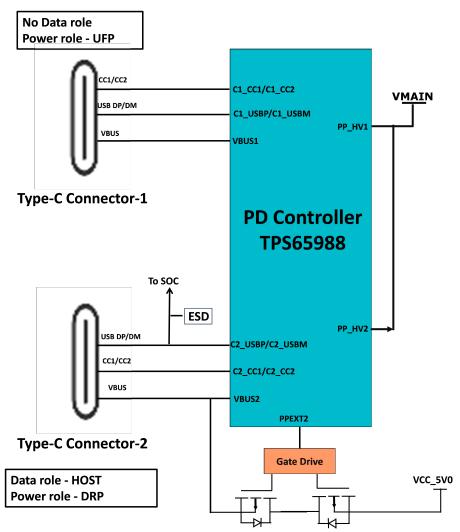
Maximum Voltage: 15VDC, Maximum current: 5000 mA

Table 2-	13. Recommended External Power	Supply

DigiKey Part No.	Manufacturer	Manufacturer Part No.
1939-1794-ND	GlobTek, Inc.	TR9CZ3000USBCG2R6BF2
Q1251-ND	Qualtek	QADC-65-20-08CB

Note

Because SK-AM62 implements USB PD for power, the device is able to negotiate to the highest Voltage/Current combination supported by both the Device and Power Adapter, as such, if the power supply exceeds the maximum voltage and current requirements listed above is acceptable as long as the power adapter is compliant with the USB-C PD specification.


2.6.15.2 Power Input

Both Type-C Connectors (VBUS and CC lines) are connected to a Dual PD controller Mfr Part# TPS65988. The TPS65988 is a stand-alone USB Type-C and Power Delivery (PD) controller providing cable plug and orientation

detection for two USB Type-C Connectors. Upon cable detection, the TPS65988 communicates on the CC wire using the USB PD protocol. When cable detection and USB PD negotiation are complete, the TPS65988 enables the appropriate power path. The two internal power paths of TPS65988 are configured as sink paths for the two Type-C ports and an external FET path is provided for Type-C CONN 2 to source 5 V when acting as DFP. The external FET path is controlled by GPIO17/PP_EXT2 of the PD controller.

TPS65988 PD controller can provide an output of 3A (15 V max) through CC negotiation. The VBUS pins from both the Type C connectors are connected to the VBUS pins of the PD controller. The output of the PD is VMAIN which is given to on board Buck-Boost and Buck regulators to generate fixed 5 V and 3.3 V supply for the SKEVM board.

The following sections describe the power distribution network topology that supplies the SKEVM board, supporting components and reference voltages.

The AM62x SKEVM board includes a power solution based on discrete power supply components. The initial stage of the power supply will be VBUS voltage from either of the two USB Type C connectors J11 and J13. USB Type-C Dual PD controller of Mfr. Part# TPS65988DHRSHR is used for negotiation of the required power to the system.

Buck-Boost controller LM34936RHFR and Buck converter LM61460-Q1 are used for the generation of 5V and 3.3V respectively and the input to the regulators is the PD output. These 3.3 V and 5 V are the primary voltages for the AM62x SKEVM Board power resources.

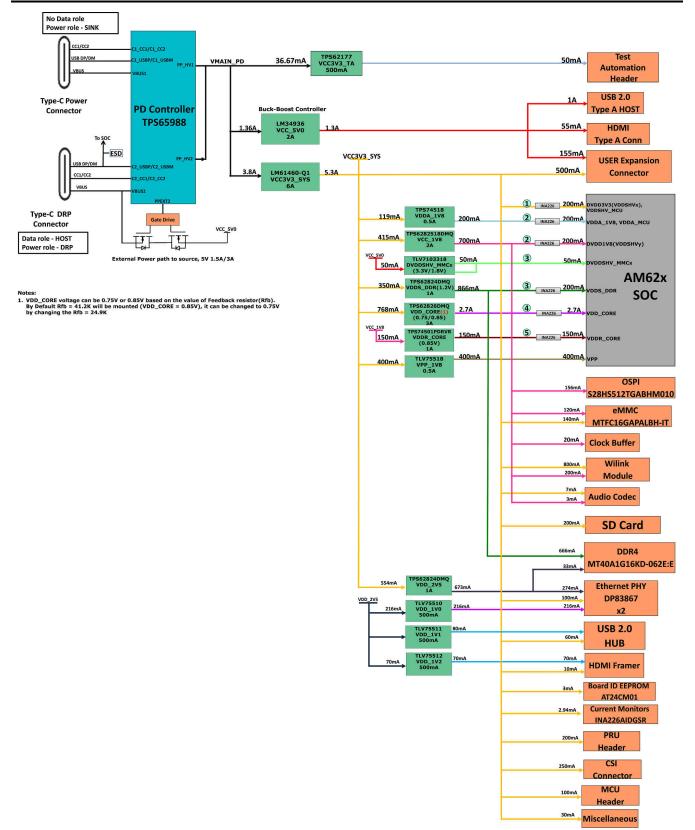
The 3.3 V supply generated from the Buck regulator LM61460-Q1 is the input supply to the Various SoC regulators and LDOs. The 5 V supply generated from the Buck Boost regulator LM34936RHFR is used for powering the onboard peripherals

Voltage divider network is used to provide the DDR_VREFCA (0.6 V) supply for the DDR4.

Discrete regulators and LDOs used on Board are:

- TPS62824DMQR To generate VDD_2V5 rail for PHY and DDR peripherals
- TLV75510PDQNR To generate VDD_1V0 for Ethernet PHYs
- TLV75511PDQNR To generate VDD_1V1 for USB HUB
- TLV75512PDQNR To generate VDD_1V2 for HDMI Transmitter
- TPS74518PQWDRVRQ1 To generate 1.8 V Analog supply for SoC
- TPS6282518DMQR To generate 1.8V IO supply for SoC
- TLV7103318QDSERQ1 To generate VDDSHV5_MMC1(SD interface) supply for SoC
- TPS62824DMQR To generate DDR supply for SoC and DDR
- TPS62826DMQR To generate Core supply for SoC
- TPS74501PDRVR To generate VDDR_CORE supply for SoC

Dedicated regulators are also provided on the board for:


- TPS62177 Regulator Powering the always on circuits of Test Automation Section
- TLV75518 LDO -e-Fuse programming of SoC
- TPS79601 LDO XDS110 On board emulator
- TPS73533 LDO FT4232 UART to USB Bridge

Additionally, GPIO from the test automation header is also connected to the LM34936RHFR Enable to control ON/OFF of the SKEVM via the test automation board. It only disables the VCC_5V0 output of LM34936RHFR from which all other power supplies are derived. SoC has different IO groups. Each IO group is powered by specific power supplies as given in the table below.

2.6.15.3 Power Supply

AM62x SKEVM utilizes an array of DC-DC converters to supply the various memories, clocks, SoC and other components on the board with the necessary voltage and the power required.

The figure below shows the various discrete regulators and LDOs used to generate power rails and the current consumption of each peripheral on AM62x SKEVM board.

Figure 2-13. Power Supply Block Diagram

2.6.15.4 Power Sequencing

The figure below shows the Power Up and Power Down sequence of all the AM62x SKEVM Power supplies. AM62x SoC Power rails are named in red.

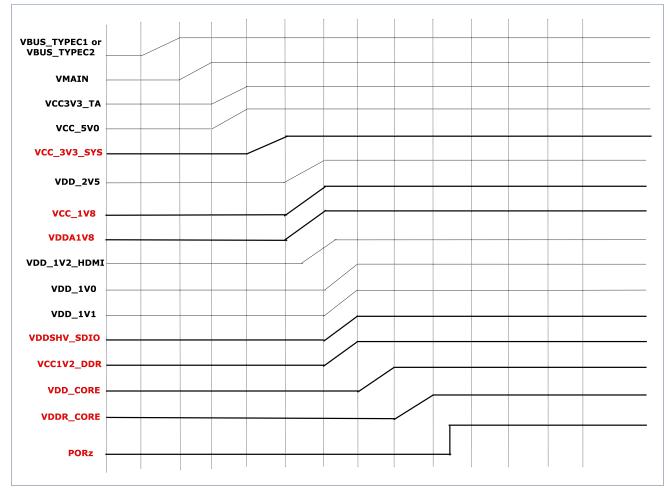


Figure 2-14. Power Up Sequence

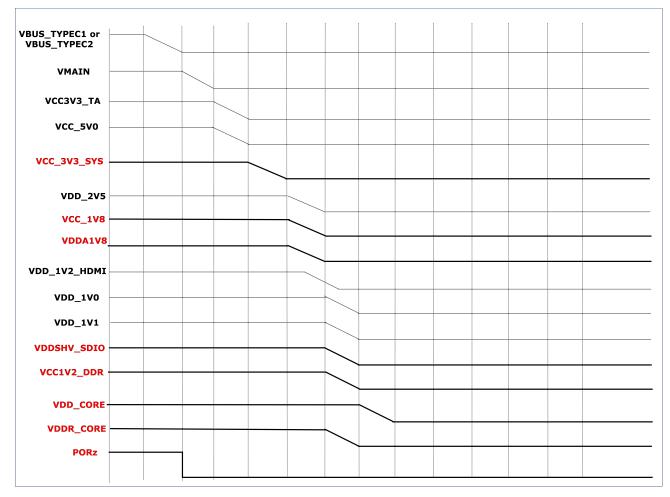


Figure 2-15. Power Down Sequence

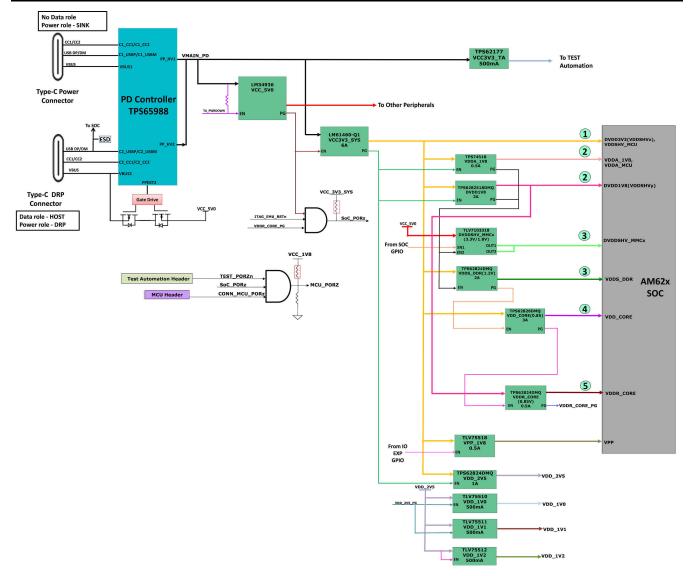


Figure 2-16. Power Sequence Block Diagram

2.6.15.5 AM62x SoC Power

The Core voltage of the AM62x can be 0.75 V or 0.85 V based on the Rfb(R150) Resistor value and on the power optimization requirement. By Default Rfb = 41.2K will be mounted (VDD_CORE = 0.85 V), it can be changed to 0.75 V by changing the Rfb to 24.9K. Current monitors are provided on all the SoC Power rails.

The SoC has different IO groups. Each IO group is powered by specific power supplies as shown in Table 2-14.

	Table 2-14. Soc Power Supply											
SI.No	Power Supply	SoC Supply Rails	IO Power Group	Voltage								
		VDDA_CORE_USB										
1	VDD CORE	VDDA_CORE_CSI		0.85								
	VDD_CORE	VDD_CANUART	CANUART	0.05								
		VDD_CORE	CORE									
2	VDDR_CORE	VDDR_CORE	CORE	0.85								

Table 2-14. SoC Power Supply

		Table 2-14. SoC Power Supp	ly (continued)	
SI.No	Power Supply	SoC Supply Rails	IO Power Group	Voltage
		VDDA_1V8_CSIRX.	CSI	
		VDDA_1V8_USB	USB	
		VDDA_1V8_MCU		
3	VDDA_1V8	VDDA_1V8_OLDI	OLDI	1.8
		VDDA_1V8_OSCO	OSCO	
		VDDA_PLL0, VDDA_PLL1 & VDDA_PLL2		
		VDDS_DDR	DDR0	1.2
4	VDD_DDR4	VDDS_DDR_C	DDR0	1.2
5	VPP_1V8	VPP_1V8		1.8
6	SoC_VDDSHV5_SDIO	VDDSHV5 MMC1		
	VPP_1V8 SoC_VDDSHV5_SDIO	VDDSHV0	General	
		VDDSHV1		
7	SoC_DVDD1V8	VDDSHV4	MMC0	1.8
		VDDSHV6	MMC2	
		VMON_1P8_SOC		
		VDDSHV0	General	
		VDDSHV2	RGMII	
8		VDDSHV3	GPMC	3.3
°	SoC_DVDD3V3	VDDSHV_MCU	MCU General	
		VMON_3P3_SOC		
		VDDA_3P3_USB	USB	

2.6.15.6 Current Monitoring

INA231 power monitor devices are used to monitor current and voltage of various power rails of AM62x processor. The INA231 interfaces to the AM62x through I2C interface (SoC_I2C1). Four terminal, high precision shunt resistors are provided to measure load current.

Source	Supply Net	Device Address	Value of the Shunt Connected to the Supply Rail
VCC_CORE	VDD_CORE	0x40	10mΩ ± 1%
VCC_0V85	VDDR_CORE	0x41	10mΩ ± 1%
VCC_3V3_SYS	SoC_DVDD3V3	0x4C	10mΩ ± 1%
VCC_1V8	SoC_DVDD1V8	0x4B	10mΩ ± 1%
VDDA1V8	VDDA_1V8	0x4E	10mΩ ± 1%
VCC1V2_DDR	VDD_DDR4	0x46	10mΩ ± 1%

Table 2-15. INA I2C Device Address (E1)

Table 2-16. INA I2C Device Address (E2)

		· · · ·	
Source	Supply Net	Device Address	Value of the Shunt Connected to the Supply Rail
VCC_CORE	VDD_CORE	0x40	10mΩ ± 1%
VCC_0V85	VDDR_CORE	0x41	10mΩ ± 1%
VCC_3V3_SYS	SoC_DVDD3V3	0x4C	10mΩ ± 1%
VCC_1V8	SoC_DVDD1V8	0x45	10mΩ ± 1%
VDDA1V8	VDDA_1V8	0x4E	10mΩ ± 1%
VCC1V2_DDR	VDD_DDR4	0x46	10mΩ ± 1%

2.6.16 AM62x SKEVM User Setup/Configuration

2.6.16.1 EVM DIP Switches

AM62x SKEVM has two 8 - position DIP Switch to set the SoC Boot mode and related parameters.

2.6.16.2 Boot Modes

The boot mode for the SK EVM board is defined by two banks of switches SW1 and SW2 or by the I2C buffer connected to the Test automation connector. This allows for AM62x SoC Boot mode control by either the user (DIP Switch Control) or by the Test Automation connector.

All the bits of switch (SW1 and SW2) have week pull down resistor and a strong pull up resistor as shown in below picture. Note that OFF setting provides a low logic level ('0') and an ON setting provides a high logic level ('1').

Note The boot mode orientation has changed between E1 and future revisions. Please follow board silkscreen.

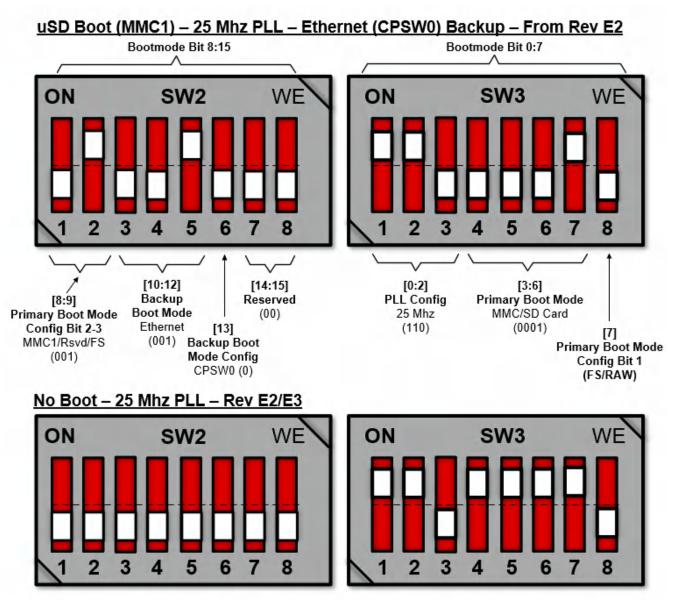
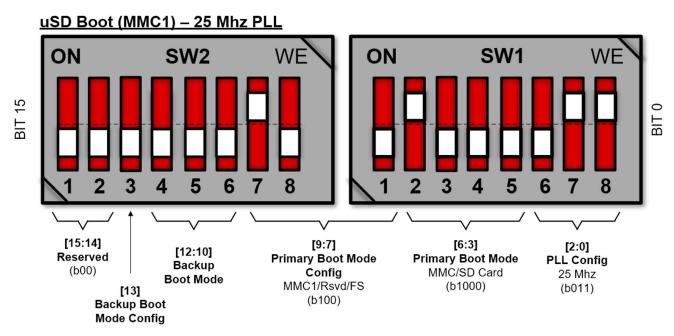



Figure 2-17. Bootmode Switch Configuration for SD Boot (From E2)

Note: Actual Board Silkscreen May Appear Inverted in this Orientation. Follow Physical Switch Text

Figure 2-18. Bootmode Switch Configuration for SD Boot (E1)

The boot mode pins of the SoC have associated alternate functions during normal operation. Hence isolation is provided using Buffer IC's to cater for alternate pin functionality. The output of the buffer is connected to the bootmode pins on the AM62x and the output is enabled when the bootmode is needed during a reset cycle. The input to the buffer is connected to the DIP switch circuit and to the output of an I2C buffer set by the test automation circuit. If the test automation circuit is going to control the bootmode, all the switches will manually be set to the OFF position. The bootmode buffer should be powered by an always ON power supply to ensure that the bootmode remains present even if the SoC power is cycled.

Switch SW1 and SW2 bits [15:0] are used to set the SoC Boot mode.

The switch map to the boot mode functions is provided in the tables below.

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserv ed	Reserv ed	Backup Boot Mode Config uration	Backup	Boot Mo	de	Primary Configu	Boot Mo ration	ode	Primary	Boot Mo	de		PLL Co	nfiguratio	'n

Table 2-17. BOOT-MODE Pin Mapping

BOOT-MODE [0:2] – Denote system clock frequency for PLL configuration. By default, this bits are set for 25 MHz.

Table 2-18 gives details ON PLL reference clock selection.

Table 2-18. PLL Reference Clock Selection BOOTMODE [2:0]				
Bit 2	Bit 1	Bit 0	PLL REF CLK (MHz)	
OFF	OFF	OFF	RSVD	
OFF	OFF	ON	RSVD	
OFF	ON	OFF	24	
OFF	ON	ON	25	
ON	OFF	OFF	26	
ON	OFF	ON	RSVD	

Table 2-18. PLL Reference Clock Selection BOOTMODE [2:0]

Table 2-18. PLL Reference Clock Selection BOOTMODE [2:0] (continued)

Bit 2	Bit 1	Bit 0	PLL REF CLK (MHz)		
ON	ON	OFF	RSVD		
ON	ON	ON	RSVD		

• BOOT-MODE [3:6] – This provides primary boot mode configuration to select the requested boot mode after POR, that is, the peripheral/memory to boot from. Table 2-19 provides primary boot device selection details.

Table 2-19. Boot Device Selection BOOT-MODE [6:3]				
Bit 6	Bit 5	Bit 4	Bit 3	Primary Boot Device Selected
OFF	OFF	OFF	OFF	Serial NAND
OFF	OFF	OFF	ON	OSPI
OFF	OFF	ON	OFF	QSPI
OFF	OFF	ON	ON	SPI
OFF	ON	OFF	OFF	Ethernet RGMII1
OFF	ON	OFF	ON	Ethernet RMII1
OFF	ON	ON	OFF	I2C
OFF	ON	ON	ON	UART
ON	OFF	OFF	OFF	MMC/SD card
ON	OFF	OFF	ON	eMMC
ON	OFF	ON	OFF	USB0
ON	OFF	ON	ON	GPMC NAND
ON	ON	OFF	OFF	GPMC NOR
ON	ON	OFF	ON	Rsvd
ON	ON	ON	OFF	xSPI
ON	ON	ON	ON	No boot/Dev Boot

• BOOT-MODE [10:12] – Select the backup boot mode, that is, the peripheral/memory to boot from, if primary boot device failed.

Table 2-20 provides backup boot mode selection details.

Table 2-20. Backup Boot Mode Selection BOOT-MODE [12:10]

Bit 12	Bit 11	Bit 10	Backup Boot Device Selected
OFF	OFF	OFF	None (No backup mode)
OFF	OFF	ON	USB
OFF	ON	OFF	Reserved
OFF	ON	ON	UART
ON	OFF	OFF	Ethernet
ON	OFF	ON	MMC/SD
ON	ON	OFF	SPI
ON	ON	ON	I2C

 BOOT-MODE [9:7] – These pins provide optional settings and are used in conjunction with the primary boot device selected.

Table 2-21 gives primary boot media configuration details.

Table 2-21. Primary Boot Media Configuration BOOT-MODE [9:7]

	3		<u> </u>
Bit 9	Bit 8	Bit 7	Boot Device
Reserved	Read Mode 2	Read Mode 1	Serial NAND
Speed	Iclk	Csel	OSPI
Reserved	lclk	Csel	QSPI

Table 2-21. Primary Boot Media Configuration BOOT-MODE [9:7] (continued)			
Bit 9	Bit 8	Bit 7	Boot Device
Reserved	Mode	Csel	SPI
Clkout	Delay	Link stat	Ethernet RGMII
Clkout	Clk src	Reserved	Ethernet RMII
Bus Reset	Reserved	Addr	I2C
Rese	erved	Reserved	UART
Port	Reserved	Fs/raw	MMC/ SD card
Rese	erved	voltage	eMMC
Reserved	Reserved Mode		USB0
	Reserved		GPMC NAND
	Reserved		GPMC NOR
	Reserved		Reserved
SFDP	Read Cmd	Mode	xSPI
Rese	erved	No/Dev	No boot/Dev Boot

...

.

• BOOT-MODE [13] – These pins provide optional settings and are used in conjunction with the backup boot device devices. Switch SW2.6 when ON sets 1 and sets 0 if OFF, see the device-specific TRM.

• BOOT-MODE [14:15] – Reserved.

Table 2-22 provides backup boot media configuration options.

.

- - -

Table 2-22. Backup Boot Media Configuration BOOT-MODE [13]

Table 2-22. Backup Boot media configuration Boot-mode [10]		
Bit 13	Boot Device	
Reserved	None	
Mode	USB	
Reserved	Reserved	
Reserved	UART	
IF	Ethernet	
Port	MMC/SD	
Reserved	SPI	
Reserved	I2C	

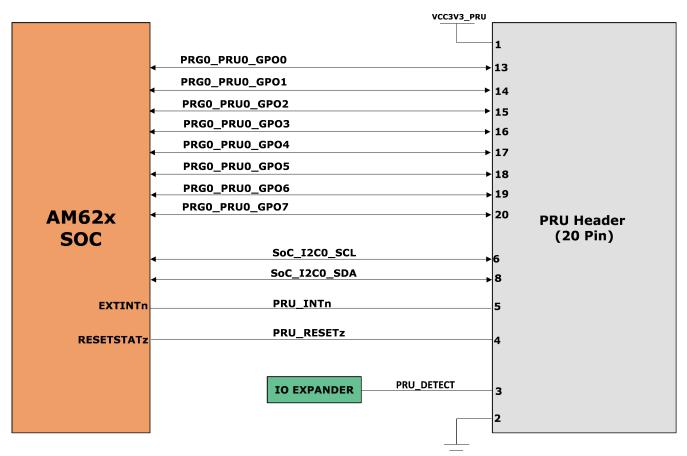
2.6.16.3 User Test LEDs

The AM62x SKEVM board contains two LEDs for user defined functions.

Table 2-23 indicates the User test LEDs and the associated GPIOs used to control it.

Table 2-23. User test LEDs			
SI No.	LED	GPIO Used	SCH Net Names
1	LD1	GPIO1_49	SOC_GPIO1_49
2	LD11	U70.24(P27)	IO_EXP_TEST_LED

2.6.17 Expansion Headers


AM62x SKEVM features three expansion Headers, the 40 pin User expansion connector, 20 pin PRU Header and the 28 pin MCU Header.

2.6.17.1 PRU Connector

AM62x SKEVM has a 20 pin PRU Header which offers Low speed connection to the PRG0 Interface.

PRU_ICSSG signals from PRG0 Port (PRG0_PRU0) are connected to a 10x2 standard 0.1" spaced Receptacle connector Mfr Part # PREC010DAAN-RC. The connector features PR0_PRU0_GPO [0: 7], SoC_I2C0, +3.3V PWR and Ground reference. INTn signal from PRU Header is wired along with the CPSW PHY interrupts and connected to the EXTINTn pin of the SoC.

The 3.3V supply is current limited to 500mA. This is achieved by using load switch TPS22902YFPR. Enable for the load switch is controlled by IO expander. Signals routed from the PRU Connector are listed in Table 2-24

Table 2-24. PRU Header (J10) Pin-out

Pin No.	SoC Ball No.	Net name	Pin Multiplexed signal
1	-	VCC3V3_PRU	
2	-	DGND	
3	-	PRU_DETECT	
4	F22	PRU_RESETz	RESETSTATz
5	D16	PRU_INTn	EXTINTn/ GPIO1_31
6	B16	SoC_I2C0_SCL	I2C0_SCL/ PR0_IEP0_EDIO_DATA_IN_OUT30/ SYNC0_OUT/ OBSCLK0/ UART1_DCDn/ EQEP2_A EHRPWM_SOCA/ GPIO1_26/ ECAP1_IN_APWM_OUT / SPI2_CS0
7	-	NC	
8	A16	SoC_I2C0_SDA	I2C0_SDA/ PR0_IEP0_EDIO_DATA_IN_OUT31/ SPI2_CS2/ TIMER_IO5/ UART1_DSRn/ EQEP2_B/ EHRPWM_SOCB/ GPIO1_27/ ECAP2_IN_APWM_OUT
9		NC	
10	-	NC	
11	-	NC	
12	-	NC	
13	M25	PR0_PRU0_GPO0	GPMC0_AD0/ PR0_PRU1_GP08/ PR0_PRU1_GP18/ MCASP2_AXR4/ PR0_PRU0_GP00/ PR0_PRU0_GP10/ TRC_CLK/ GPI00_15/ DDR0_I0_PLL_TESTOUT0P/ DDR0_I0_PLL_TESTOUT1P/ GPI01_112/ LED_DI00
14	N23	PR0_PRU0_GPO1	GPMC0_AD1/ PR0_PRU1_GPO9/ PR0_PRU1_GPI9/ MCASP2_AXR5/ PR0_PRU0_GPO1/ PR0_PRU0_GPI1/ TRC_CTL/ GPIO0_16/ DDR0_IO_PLL_REFCLK_TEST0P/ DDR0_IO_PLL_REFCLK_TEST1P/ GPIO1_113/ LED_DIO1
15	N24	PR0_PRU0_GPO2	GPMC0_AD2/ PR0_PRU1_GPO10/ PR0_PRU1_GPI10/ MCASP2_AXR6/ PR0_PRU0_GPO2/ PR0_PRU0_GPI2/ TRC_DATA0/ GPI00_17

Table 2-24. PRU Header (J10) Pin-out (continued)	
--	--

Pin No.	SoC Ball No.	Net name	Pin Multiplexed signal
16	N25	PR0_PRU0_GPO3	GPMC0_AD3/PR0_PRU1_GPO11/PR0_PRU1_GPI11/MCASP2_AXR7/PR0_PRU0_GPO3/ PR0_PRU0_GPI3/TRC_DATA1/GPI00_18
17	P24	PR0_PRU0_GPO4	GPMC0_AD4/PR0_PRU1_GPO12/PR0_PRU1_GPI12/MCASP2_AXR8/PR0_PRU0_GPO4/ PR0_PRU0_GPI4/TRC_DATA2/GPI00_19
18	P22	PR0_PRU0_GPO5	GPMC0_AD5/PR0_PRU1_GPO13/PR0_PRU1_GPI13/MCASP2_AXR9/PR0_PRU0_GPO5/ PR0_PRU0_GPI5/TRC_DATA3/GPI00_20
19	P21	PR0_PRU0_GPO6	GPMC0_AD6/PR0_PRU1_GPO14/PR0_PRU1_GPI14/MCASP2_AXR10/PR0_PRU0_GPO6/ PR0_PRU0_GPI6/TRC_DATA4/GPI00_21
20	R23	PR0_PRU0_GPO7	GPMC0_AD7/PR0_PRU1_GPO15/PR0_PRU1_GPI15/MCASP2_AXR11/PR0_PRU0_GPO7/ PR0_PRU0_GPI7/TRC_DATA5/GPI00_22

2.6.17.2 User Expansion Connector

The AM62x SKEVM supports RPi expansion interface using a 40-pin User expansion connector Mfr. Part# PEC20DAAN. Four mounting holes must be oriented with the connector to allow for connection of these boards.

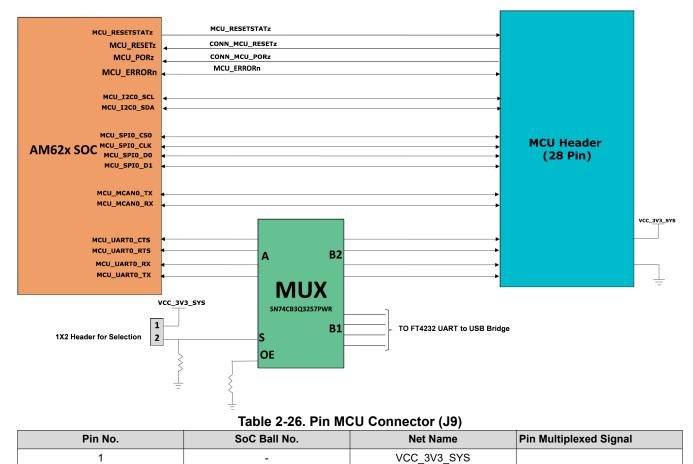
Following interfaces and IOs shall be included on to the 40 pin User Expansion connector.

- 2x SPI : SPI0 with 2 CS and SPI2 with 3 CS
- 2x I2C: SoC_I2C0 and SoC_I2C2
- 1x UART: UART5
- 2x PWM: EHRPWM0_A, EHRPWM1_B
- 1x CLK: CLKOUT0
- 9x GPI0: GPIOs from main domain
- 5V and 3.3V supply (current limited to 155mA and 500mA)

Each of the power supplies 5 V and 3.3 V are current limited to 155 mA and 500 mA, respectively. This is achieved by using two individual load switch TPS22902YFPR and TPS22946YZPR. Enable for the load switches is driven by I2C based GPIO Port expander.

Signals routed from User Expansion connector are listed in Table 2-25.

Table 2-25. 40 Pin User Expansion Connector


Pin No.	SoC Ball	Net Name	Pin Multiplexed Signals
1	-	VCC3V3_EXP	
2	-	VCC5V0_EXP	
3	K24	SoC_I2C2_SDA	GPMC0_CSN3/ GPMC0_A20/ UART4_TXD/ MCASP1_AXR5/ TRC_DATA18/ GPIO0_44/ MCASP1_ACLKR
4	-	VCC5V0_EXP	
5	K22	SoC_I2C2_SCL	GPMC0_CSN2/ MCASP1_AXR4/ UART4_RXD/ PR0_PRU0_GPO19/ PR0_PRU0_GPI19/ TRC_DATA17/ GPI00_43/ MCASP1_AFSR
6	-	DGND	
7	A18	EXP_CLKOUT0	EXT_REFCLK1/ SYNC1_OUT/ SPI2_CS3/ SYSCLKOUT0/ TIMER_IO4/ CLKOUT0/ CP_GEMAC_CPTS0_RFT_CLK/ GPIO1_30/ ECAP0_IN_APWM_OUT
8	E15	EXP_UART5_TXD	UART5_TXD/ TIMER_IO3/ SYNC3_OUT/ UART1_RIn/ EQEP2_S/ PR0_UART0_TXD/ GPIO1_25/ MCASP2_AXR1/ EHRPWM_TZn_IN4
9	-	DGND	
10	C15	EXP_UART5_RXD	UART5_RXD/ TIMER_IO2/ SYNC2_OUT/ UART1_DTRn/ EQEP2_I/ PR0_UART0_RXD/ GPIO1_24/ MCASP2_AXR0/ EHRPWM_TZn_IN3
11	B20	EXP_SPI2_CS1	MCASP0_ACLKX/ SPI2_CS1/ ECAP2_IN_APWM_OUT/ GPIO1_11/ EQEP1_A

Pin No. Soc Ball Net Name Pin Multiplexed Signals 12 E19 EXP_SPI2_CS0/EHRPWM0_A HR4PWM0_AV GPIO1_12/EGCP1 S 13 L21 EXP_GPIO_42 GPMC0_CSA1/PR0_PR0_PD1_GPI0_GPI1 14 - DGND GPMC0_GA1/PR0_PR0_GP11_GPI0_GP11 15 L23 EXP_GPIO_42 GPMC0_GA1/PR0_PR0_GP11_GPI0_GP11 16 V25 EXP_GPIO_32 GPMC0_MATT_VOUTO_EXTECLININ GPMC0_A21/LART RAD GPI0_38 17 - VCC3V3_EXP GPMC0_WATT_VOUTO_EXTECLININ GPMC0_A21/LART RAD GPI0_038 18 K25 EXP_GPIO_39 GPMC0_WATT_VOUTO_EXTECLININ GPMC0_A21/LART RAD GPI0_038 19 B13 EXP_SPI0_D0 SPI0_D0/CP_GEMAC_CPTS0_HWTTSPUSH/ EHRPWM1_Z2_N00 GPI0_18 20 - DGND GPMC0_WATT_VOUTO_EXTECLININ GPMC0_A21/LART RAD GPI0_038 21 B14 EXP_SPI0_D1 RPMW_TZ_N_N00 GPI0_19 22 E24 SPI0_D0/CP_GEMAC_CPTS0_HWTTSPUSH/ HRPWM1_Z2_N00 GPI0_18 23 A14 EXP_SPI0_CS0 SPI0_CS0/CFI0_GTS_SVC/ EHRPWM0_A/ GPI0_17 24 A13 EXP_SPI0_CS1 SPI0_CS1/CP_GEMAC_CPTS0_TS_CMP/ EHRPWM0_A/ GPI0_119 </th <th></th> <th>Table 2-25.</th> <th>40 Pin User Expansion Conn</th> <th>ector (continued)</th>		Table 2-25.	40 Pin User Expansion Conn	ector (continued)
12 EIB EXP_SPI2_USUEING/WM0_A EHRP/WM0_A (2010) 13 (2011) S 13 L21 EXP_SPI2_USUEING/WM0_A EHRP/WM0_A (2010) FR0_PRU_GP16/ PR0_PR0_10_PR0_PRU_GP16/ PR0_PR0_10_PR0_PRU_GP16/ PR0_PR0_00_PR0_PR0_PR0_PR0_GP16/ PR0_PR0_00_S01 PR0_PR0_USUE_PR0_PR0_ FR0_PR0_00_S01 PR0_PR0_USUE_PR0_PR0_ FR0_PR0_00_S01 PR0_PR0_USUE_PR0_PR0_S1 14 - DGND GPMC0_ADV/n_ALE/_MCASP1_AXR2/ PR0_PR0_00_S02 GPMC0_ADV/n_ALE/_MCASP1_AXR2/ PR0_PR0_00_S01 PR0_PR0_USUE_PR0_PR0_ FR0_PR0_00_S01 PR0_PR0_USUE_PR0_PR0_00_S01 16 V25 EXP_GPI00_38 GPMC0_WAIT1/VOUTD_EXT_REPUL/IN/ GPMC0_A21/URRT6_TXD/GPI00_S01 ECO15/ FR0_PR0_00_GP16/TXD/GPI00_S01 ECO15/ FR0_PR0_15/ FR0_PR0_ECO17/ FR0_PR0_00_GP16/TXD/GP10_TS_SVNC/ ELRP/WM1_20_FR0_T2_NS 22 E24 EXP_SP10_C01 SP10_CS03 EPR0_RPW1_DT2_ FR0_PR0_10_170 SP10_CS03 EPR0_RPW1_DT2_ FR0_PR0_D1_170 SP10_CS03 EPR0_FR0_0_GP16/ FR0_PR0_00_AV FR0_ECAP0_SVNC/ ECAP1_NARW0_D1_FR0_PR0_0_GP113/ FR0_PR0_PR0_0_GP10_T27/ ECAP2_ST_MARW0_D1_FR0_PR0_0_GP13/ FR0_PR0_PR0_0_GP10_T27/ ECAP2_ST_MARW0_D1_FR0_PR0_0_GP13/ FR0_PR0_PR0_0_GP13/ FR0_PR0_00_GP16/TXD_ECAP0_NARW0_D17/ AUDD_6EXT_REPUN_MCD1/ FR0_PR0_00_GP16/TXD_DFR0_0_GP16/TXD/ ECAP1_NARW0_D1_FR0_PR0_0_GP16/TXD/ ECAP2_NARW0_D1_FR0_PR0_0_GP16/TXD/ ECAP1_NARW0_D1_FR0_P	Pin No.	SoC Ball	Net Name	Pin Multiplexed Signals
13 L21 EXP_GPIO_942 PR0_PRU_GPI01_001 PR0_PRU_GPI03_XRtsis TRC_DATAIG_GPI0_42 14 - DGND GPMC0_ADVIA_ALE/MCASP1_AXR2/ TRC_DATAIG_GPI0_42 15 L23 EXP_GPI0_32 GPMC0_ADVIA_ALE/MCASP1_AXR2/ PR0_PRU_GPI0_32 16 V25 EXP_GPI0_38 GPMC0_AVIA_MELP/MCASP1_AXR2/ PR0_PRU_GPI0_32 17 - VCC3V3_EXP GPMC0_AVIA_MET_RXD/GPI0_38/ EGEP2_1 18 K25 EXP_GPI0_0_39 GPMC0_AVIATE_RXD/GPI0_038/ EGEP2_1 19 B13 EXP_SPI0_D0 SPI0_D0/CP_GEMAC_CPTS0_HW1TSPUSH/ EMRPWMLT2_N/W176 (PR0_119 20 - DGND SPI0_D1/CP_GEMAC_CPTS0_HW1TSPUSH/ EMRPWML_B_GPI0_118 21 B14 EXP_SPI0_D1 HRPWM_T2_N/W1CPI01_HCS3F1_AVIR/ MCASP1_AXR3/ UART5_TXD/GPI00_14 22 E24 EXP_SPI0_CLK SPI0_CS0/EMAC_CPTS0_TS_SVNC/ EHRPWML_A GPI0_17 23 A14 EXP_SPI0_CS0 SPI0_CS0/EMAC_CPTS0_TS_SVNC/ EHRPWML_A GPI0_17 24 A13 EXP_SPI0_CS1 SPI0_CS0/EMRPWM_T2_NING_SV/ ECAP1_NAMM_D1/EGEN_17 26 C13 EXP_SPI0_CS1 SPI0_CS0/EMRPWM_T2_NING_VT_ ECAP2_IN_APMN_U017 27 A16<	12	E19	EXP_SPI2_CS0/EHRPWM0_A	
15 L23 EXP_GPI00_32 GPMC0_ADV_N_ALE/ MCASP1_AXR2/ PR0_PR0_GP00_32 16 V25 EXP_GPI00_38 GPMC0_WAIT/ GPI00_32 17 - VCC3V3_EXP GPMC0_AVI_VURTG_RX0 (GPI00_38) (GEP2_1) 18 K25 EXP_GPI00_39 GPMC0_AVI_VURTG_RX0 (GPI00_38) (GEP2_1) 19 B13 EXP_SPI0_D0 GPMC0_AVI_VURTG_RX0 (GPI00_GP015/ GPMC0_AVI_URATG_RX0 (GPI00_GP015/ GPMC0_AVI_URATG_RX0 (GPI00_GP015/ GPMC0_AVI_URATG_RX0 (GPI00_GP015/ GPMC0_AVI_URATG_RX0 (GPI00_GP015/ GPMC0_AVI_URATG_RX0 (GPI00_GP015/ GPMC0_AVI_URATG_RX0 (GPI00_GP015/ GPMC0_AVI_URATG_RX0 (GPI00_GP015/ GPMC0_AVI_URATG_RX0 (GPI00_118) 20 - DGND 21 B14 EXP_SPI0_D1 SPI0_D1/CP_GEMAC_CPTS0_HV2TSPUSH/ HRPWM1_Z1_NW (GPI01_18) 22 E24 EXP_GPI0_14 SPI0_D01 (SPI0_GR261_COTT0) OSPI0_CSX0 (SPI0_RESET_OUT0/ OSPI0_CSX0 (SPI0_RESET_OUT0/ OSPI0_CSX0 (SPI0_CSX) SPI0_CSX0 (SPI0_RESET_OUT0/ OGPI0_17) 24 A14 EXP_SPI0_CS0 SPI0_CS0 (ERPVM0_A) / PR0_ECAP0_SYNC.IN/ GPI01_16 25 - DGND SPI0_CS1 (SPIC_SED_0 NAT_WIN_OUT1/ GPI0_116 SPI0_CS1 (SPIC_SED_0 NAT_WIN_OUT1/ GPI0_116 26 C13 EXP_SPI0_CS1 SPI0_CS0 (SPIC_SED_0 NAT_WIN_OUT1/ GPI0_116 SPI0_CS0 (SPIC_SED_0 NAT_WIN_OUT1/ GPI	13	L21	EXP_GPIO0_42	PR0_PRU1_GPI16/ MCASP2_AXR15/ PR0_PRU0_GPO18/ PR0_PRU0_GPI18/
15 L23 EXP_GPIO_32 PR0_PR0_PR0_PR0_PR0_PR0_PR0_PR0_PR0_PR0_	14	-	DGND	
10 V25 EAP_OPIOD_38 GPMC0_221/ UART6_RXD/ GPIOD_38/ EQEP2_1 117 - VCC3V3_EXP GPMC0_A21/ UART6_RXD/ GPIOD_38/ EQEP2_1 118 K25 EXP_GPIOD_39 GPMC0_A22/ UART6_RXD/ FR0_PRU0_GPID5/ PR0_PRU0_GPID5/ TRC_DATA/3 (GPIOD_9) 19 B13 EXP_SPI0_D0 SPI0_D0 (CP_GEMAC_CPTS0_HW1TSPUSH/ EHRPWM1_B/ GPIO1_18 20 - DGND SPI0_D0 (CP_GEMAC_CPTS0_HW1TSPUSH/ EHRPWM1_EG/GPIO1_18 21 B14 EXP_SPI0_D1 SPI0_D1 (CP_GEMAC_CPTS0_HW2TSPUSH/ HRPWM_TZA_INO/GPIO1_19 22 E24 EXP_SPI0_D1 SPI0_CS3/ OSPI0_RESET_OUTO/ OSPI0_ECSA/3 OSPI0_RESET_OUTO/ OSPI0_ECSA/3 OSPI0_RESET_OUTO/ OSPI0_ECSA/3 OSPI0_RESET_OUTO/ OSPI0_ECSA/3 OSPI0_RESET_OUTO/ OSPI0_ECSA/3 OSPI0_RESET_OUTO/ GPIO1_15 23 A14 EXP_SPI0_CS0 SPI0_CS1/CP_GEMAC_CPTS0_TS_SYNC/ EHRPWM0_A/ PR0_ECAP0_SYNC_IN/ GPIO1_15 26 C13 EXP_SPI0_CS1 SPI0_CS1/CP_GEMAC_CPTS0_TS_COMP/ EHRPWM_TA/GPIO_10_A/ PR0_ECAP0_SYNC_IN/ GPIO1_16/ EHRPWM_TA/3 OSPI0_127/ ECAP2_IN_APWM_OUT 27 A16 Soc_I2C0_SDA SPI0_CS1/CP_GEMAC_CPTS0_TS_COMP/ EHRPWM_SOCA/CPTS0_SO/ EHRPWM_SOCA/GPI0_2A/ ECAP2_IN_APWM_OUT/ SPIC_2APUIN_SOCA/GPI0_2A/ ECAP2_IN_APWM_OUT/ SPIC_2APUIN_SOCA/GPI0_127/ ECAP2_IN_APWM_OUT/ SPIC_2APUIN_SOCA/GPIO1_27/ ECAP2_IN_APWM_OUT/ SPIC_2APUIN_SOCA/GPIO1_27/ ECAP2_IN_APWM_OUT/ SPIC_2APUIN_SOC	15	L23	EXP_GPIO0_32	PR0_PRU0_GPO9/ PR0_PRU0_GPI9/
18 K25 EXP_GPIO0_39 GPMC0_WPh/AUDIO_EXT_REFCLK1/ GPMC0_AZ2/UART_TXD/PR0_GPRI0_G9015/ RP0_PRI0_GPI15/TRC_DATA3/GPIO0_39 19 B13 EXP_SPI0_D0 SPI0_D0/CP_GEMAC_CPTS0_HWITSPUSH/ EHRPWM1_B/GPI0_18 20 - DGND SPI0_D0/CP_GEMAC_CPTS0_HWITSPUSH/ EHRPWM1_B/GPI0_19 21 B14 EXP_SPI0_D1 SPI0_D1/CP_GEMAC_CPTS0_HWITSPUSH/ HRPW1_TZn_IN0/GPI0_119 22 E24 EXP_SPI0_CLK SPI0_CCSA/GPI0_RESET_OUTO/ OSPI0_CCSA/LWCASP1_ACLKR/ MCASP1_AXR3/UART5_TXD/GPI00_14 23 A14 EXP_SPI0_CLK SPI0_CCV/CP_GEMAC_CPTS0_TS_SYNC/ EHRPWM1_X7_UART5_TXD/GPI00_14 24 A13 EXP_SPI0_CS0 SPI0_CS1/CP_GEMAC_CPTS0_TS_SYNC/ EHRPWM0_A/ PR0_ECAP0_SYNC_IN/ GPI0_15 25 - DGND SPI0_CS1/CP_GEMAC_CPTS0_TS_CMP/ EHRPWM0_B/ECAP0_IN_APWM_OUT/ GPI0_16/EHRPW_172_INS 26 C13 EXP_SPI0_CS1 SPI0_CS1/CP_GEMAC_CPTS0_TS_COMP/ EHRPWM_0B/ECAP0_IN_APWM_OUT/ GPI0_16/EHRPW_172_INS 27 A16 SoC_I2C0_SDA SPI0_CS0/GPI0_127/ ECAP2_IN_APWM_OUT 28 B16 SoC_I2C0_SCL GPMC0_0LT/ OBSCLK0/UART1_DCD0/ SYNC0_OUT/ OBSCLK0/UART1_DCD0/ SYNC0_OUT/ OBSCLK0/UART1_DCD0/ ECAP2_N_APWM_OUT 30 - DGND GPMC0_0E1_REn/	16	V25	EXP_GPIO0_38	
18 K25 EXP_GPIO0_39 GPMC0_A22_URTE_TXD/PR0_CPR0_G910 19 B13 EXP_SPI0_D0 SPI0_D0/CP_GEMAC_CPTS0_HW1TSPUSH/ EHRPWM1_B/GPI01_18 20 - DGND EXP_SPI0_D1 SPI0_D0/CP_GEMAC_CPTS0_HW2TSPUSH/ HRPWM1_TS1_N0 GPI01_19 21 B14 EXP_SPI0_D1 SPI0_CC_SR3/OSPI0_RESET_OUTO/ OSPI0_CC_SR3/OSPI0_RESET_OUTO/ OSPI0_CC_SR3/USR1_XD/QEI01_19 22 E24 EXP_SPI0_CLK SPI0_CC_SR3/OSPI0_RESET_OUTO/ OSPI0_ECC_FALL_MCASPI_ACLKR/ MCASPI_AXR3/URTS_TXD/QEI01_14 23 A14 EXP_SPI0_CLK SPI0_CCS/URTS_TXD/QEI0_14 24 A13 EXP_SPI0_CS0 SPI0_CS0/CSN1/QEI_STX_CMET_STXD/QEI_SYNC/ EHRPWM1_A/ GPI01_17 24 A13 EXP_SPI0_CS1 SPI0_CS1/CP_GEMAC_CPTS0_TS_COMP/ CPI01_15 SPI0_CS1/CP_GEMAC_CPTS0_TS_COMP/ CPI01_15 25 - DGND SPI0_CS1/CP_GEMAC_CPTS0_TS_COMP/ CPI01_15 SPI0_CS1/CP_GEMAC_CPTS0_TS_COMP/ CPI01_16 SPI0_CS1/CP_GEMAC_CPTS0_TS_COMP/ END_CPI0_URTN_DI_SPI0_CS1 SPI0_CS1/CP_GEMAC_CPTS0_TS_COMP/ ECAP2_IN_APVM_OUT SPI0_CS1/CP_GEMAC_CPTS0_TS_COMP/ CPI0_SPI0_CS0/CPI01_27/ ECAP2_IN_APVM_SOCA/GPI01_27/ ECAP2_IN_APVM_SOCA/GPI01_27/ ECAP2_IN_APVM_SOCA/GPI01_27/ ECAP2_IN_APVM_SOCA/GPI01_27/ ECAP2_IN_APVM_SOCA/GPI01_27/ ECAP2_IN_APVM_SOCA/GPI01_27/ ECAP2_IN_APVM_SOCA/GPI01_27/ ECAP2_IN_APVM_SOCA/GPI01_27/ ECAP2_IN_APVM_SOCA/GPI01_2	17	-	VCC3V3_EXP	
19 D13 EAR_SPIC_DU EHRPWM1_B/ GPIO1_18 20 - DGND EHRPWM1_B/ GPIO1_18	18	K25	EXP_GPIO0_39	GPMC0_A22/ UART6_TXD/ PR0_PRU0_GPO15/
21 B14 EXP_SPI0_D1 SPI0_D1/ CP_GEMAC_CPTS0_HW2TSPUSH/ HRPWM_TZn_IN0/GPI01_19 22 E24 EXP_GPI00_14 OSPI0_ESS_OUTO/ OSPI0_ECC_FALV_MCASP1_ACLKR/ MCASP1_AXR3/UARTS_TXD/GPI00_14 23 A14 EXP_SPI0_CLK SPI0_C0.2K/CP_GEMAC_CPTS0_TS_SYNC/ EHRPWM1_A/GPI01_17 24 A13 EXP_SPI0_CS0 SPI0_CS0/EHRPWM0_A/PR0_ECAP0_SYNC_IN/ GPI01_15 25 - DGND	19	B13	EXP_SPI0_D0	
21 B14 EAP_SPI0_D1 HRPWM_TZn_IN0/ GPI01_19 ⁻ 22 E24 EXP_GPI00_14 OSPI0_CSn3/OSPI0_RESET_OUT0/ OSPI0_ECC_FAL/MCASP1_ACLKR/ MCASP1_AXR3/UART5_TXD/GPI00_14 23 A14 EXP_SPI0_CLK SPI0_CLK CP_GEMAC_OPTS0_TS_SYNC/ EHRPWM1_A/ GPI01_17 24 A13 EXP_SPI0_CS0 SPI0_CS0/EHRPWM0_A/ PR0_ECAP0_SYNC/ GPI01_15 25 - DGND SPI0_CS0/EHRPWM0_B/ CPTS0_TS_COMP/ EHRPWM0_B/ECAP0_IN_APVM_OUT/ GPI01_16/EHRPWM_TZn_INS 26 C13 EXP_SPI0_CS1 SPI0_CS1/CP_GEMAC_CPTS0_TS_COMP/ EHRPWM0_B/ECAP0_IN_APVM_OUT/ GPI01_16/EHRPWM_TZn_INS 27 A16 Soc_I2C0_SDA SPI2_CS2/TIMER_IO5/UART1_DSR// SOCI_S2/TIMER_IO5/UART1_DSR// SOCI_GPI0_127/ ECAP2_IN_APVM_OUT 28 B16 Soc_I2C0_SCL I/20 SOL/ PR0_IEP0_EDI0_DATA_IN_OUT30/ SVC0_OUT/OSSCLK0/UART1_DCD// EQEP2_A EHRPWM_SOCA/GPI01_26/ ECAP1_IN_APVM_OUT / SPI2_CS0 29 N20 EXP_GPI00_36 GPMC0_DEIn/ MCASP1_AXR1// PR0_PRU_GPO13/PR0_PRU_GPI13/ TRC_DATA11/ GPI00_36 31 L24 EXP_GPI00_40/ PR0_ECAP0_IN_APVM_OUT GPMC0_DEIn/ MCASP1_AXR1// PR0_PRU_GPO16/ PR0_PRU_GPO16/PR0_PRU_GPI01// CASP2_AXR13/PR0_PRU_GPI016/ TRC_DATA8/ GPI00_S16// MCASP1_AXR1// PR0_PRU_GPI6/PR0_PRU_GPI016// EQEP2_S 32 M22 EXP_GPI00_40/ PR0_ECAP0_IN_APVM_OUT	20	-	DGND	
22 E24 EXP_GPIO0_14 OSPID_ECC_FAIL/ MCASP1_ACLKR/ MCASP1_AXR3/UART5_TXD/GPIO0_14 23 A14 EXP_SPI0_CLK SPI0_CLK/CP_GEMAC_CPTS0_TS_SYNC/ EHRPWM1_A/GPIO1_17 24 A13 EXP_SPI0_CS0 SPI0_CS0/EHRPWM0_A/PR0_ECAP0_SYNC_IN/ GPIO1_15 25 - DGND SPI0_CS1/CP_GEMAC_CPTS0_TS_COMP/ EHRPWM0_B/ECAP0_IN_APWM_OUT/ GPIO1_16/EHRPWM_TZn_IN5 26 C13 EXP_SPI0_CS1 SPI0_CS1/CP_GEMAC_CPTS0_TS_COMP/ EHRPWM_TZN_IN5 27 A16 SoC_I2C0_SDA [200_SDA/PR0_IEP0_EDIO_DATA_IN_OUT3/ SPI2_CS2/TIMER_I05/UART1_DSRn/ EQCP2_B/EHRPWM_SOCB/GPIO1_27/ ECAP2_IN_APWM_OUT 28 B16 SoC_I2C0_SCL [200_SCL/PR0_IEP0_EDIO_DATA_IN_OUT30/ SPI2_CS3/ ECAP1_IN_APWM_OUT / SPI2_CS3 29 N20 EXP_GPI00_36 GPMC0_DET_MCASP2_AXR1/ PR0_PRU0_GP013/ PR0_PRU0_GP113/ TRC_DATA11/GPI00_36 30 - DGND Image: SPI0_GP01_SP1_SP1_SP1_SP1_SP1_SP1_SP1_SP1_SP1_SP	21	B14	EXP_SPI0_D1	
23 A14 EXP_SPI0_CLK EHRPWM1_A/GPI01_17 - 24 A13 EXP_SPI0_CS0 SPI0_CS0/EHRPWM0_A/PR0_ECAP0_SYNC_IN/ GPI01_15 25 - DGND 26 C13 EXP_SPI0_CS1 EHRPWM0_B/ECAP0_IN_APWM_OUT/ GPI01_16/EHRPWM_0DT2n_INS 27 A16 Soc_I2C0_SDA SPI0_CS1/CP_GEMAC_CPTS0_TS_COMP/ EHRPWM_0DT2n_INS 28 B16 Soc_I2C0_SDA I2C0_SDA/ PR0_IEP0_EDIO_DATA_IN_OUT31/ SPI2_CS2/TIMER_I05/UART1_DSRn/ EQEP2_B/EHRPWM_OUT 28 B16 Soc_I2C0_SCL GPMC0_SCL/PR0_IEP0_EDIO_DATA_IN_OUT30/ SVNC0_OUT/OBSCLK0/UART1_DCD0/ EQEP2_A EHRPWM_OUT 29 N20 EXP_GPI00_36 GPMC0_BE1n/MCASP2_AXR12/ PR0_PRU0_GPO13/PR0_PRU0_GPI13/ TRC_DATA11/GPI00_38 30 - DGND GPMC0_OEn_REn/ MCASP1_AXR1/ PR0_PRU0_GPO13/PR0_PRU0_GPI13/ TRC_DATA14/GPI00_33 31 L24 EXP_GPI00_40/ PR0_PR0_CO_DR1_PR0_PRU0_GPI13/ TRC_DATA8/GPI00_33 GPMC0_OEn_REn/ MCASP1_AXR1/ PR0_PRU0_GPO16/ PR0_PRU0_GPI6/TRC_DATA14/GPI00_40/ EQEP2_S 32 M22 EXP_GPI00_40/ PR0_PR0_ECAP0_IN_APWM_OUT GPMC3_PR0_ECAP0_IN_APWM_OUT/ MCASP2_AXR13/PR0_PRU0_GP016/ PR0_PRU0_GP16/TRC_DATA14/GPI00_40/ EQEP2_S 33 E18 EXP_EHRPWM1_B ACASP0_AXR0/PR0_ECAP0_I	22	E24	EXP_GPIO0_14	OSPI0_ECC_FAIL/ MCASP1_ACLKR/
24 A13 EAP_SPI_UCSU GPI01_15 25 - DGND	23	A14	EXP_SPI0_CLK	
26C13EXP_SPI0_CS1SPI0_CS1/CP_GEMAC_CPTS0_TS_COMP/ EHRPWM0_B/ECAP0_IN_APWM_OUT/ GPI01_16/EHRPWM_TZA_INS27A16SoC_I2C0_SDAI2C0_SDA/PR0_IEP0_EDI0_DATA_IN_OUT31/ SPI2_CS2/TIMER_IO5/UART1_DSR/ EQEP2_B/EHRPWM_SOCB/GPI01_27/ ECAP2_IN_APWM_OUT28B16SoC_I2C0_SCLI2C0_SCL/PR0_IEP0_EDI0_DATA_IN_OUT30/ SYNC0_OUT/OBSCLK0/UART1_DCDn/ EQEP2_A EHRPWM_SOCA/GPI01_26/ ECAP1_IN_APWM_OUT / SPI2_CS029N20EXP_GPI00_36GPMC0_DE1/MCASP2_AXR12/ PR0_PRU0_GPO13/PR0_PRU0_GP13/ TRC_DATA11/GPI00_3631L24EXP_GPI00_33GPMC0_OEn_REn/MCASP1_AXR1/ PR0_PRU0_GP010/PR0_PRU0_GP110/ TRC_DATAR8/GPI00_3332M22EXP_GPI00_40/ PR0_ECAP0_IN_APWM_OUTGPMC0_DIR/PR0_PRU0_GP116/ PR0_DRU0_GP016/PR0_PRU0_GP016/ PR0_PRU0_GP016/PR0_PRU0_GP016/ PR0_DRU0_GP016/ PR0_PRU0_GP016/ PR0_PRU0_GP016/ PR0_PRU0_GP016/ PR0_PRU0_GP116/TRC_DATA14/GPIC0_40/ EQEP2_S33E18EXP_EHRPWM1_BMCASP0_AXR0/PR0_ECAP0_IN_APWM_OUT/ AUDI0_EXT_REFCLK0/PR0_UART0_TXD/ EHRPWM1_B/GPI01_10/ EQEP0_I	24	A13	EXP_SPI0_CS0	
26C13EXP_SPI0_CS1EHRFWM0_BICAP0_TN_APWM_OUT/ GPI01_16/ EHRPWM_TZn_INS27A16SoC_I2C0_SDAI2C0_SDA/PR0_IEP0_EDI0_DATA_IN_OUT31/ SPI2_CS2/TIMER_IOS/UART1_DSR/ EQEP2_B/ EHRPWM_SOCB/ GPI01_27/ ECAP2_IN_APWM_OUT28B16SoC_I2C0_SCLI2C0_SCL/PR0_IEP0_EDI0_DATA_IN_OUT30/ SYNC0_OUT/OBSCLK0/UART1_DCDn/ EQEP2_A EHRPWM_SOCA/GPI01_26/ ECAP1_IN_APWM_OUT /SPI2_CS029N20EXP_GPI00_36GPMC0_BE1n/MCASP2_AXR12/ PR0_PR0_GO13/PR0_PRU0_GP013/ TRC_DATA11/ GPI00_3630-DGND31L24EXP_GPI00_33GPMC0_OEn_REn/MCASP1_AXR1/ PR0_PR0_GP010/PR0_PR00_GP013/ TRC_DATA11/ GPI00_3332M22EXP_GPI00_40/ PR0_ECAP0_IN_APWM_OUTGPMC0_OIR/PR0_PR00_GP013/ PR0_PR00_GP013/FR0_PR00_GP016/ PR0_DPR00_GP016/ PR0_DPR0_GP016/ PR0_DPR0_GP016/ PR0_DPR0_GD16/ PR0_DPR0_GP016/ PR0_DPR0_GP01_0/ EGEP2_S <td>25</td> <td>-</td> <td>DGND</td> <td></td>	25	-	DGND	
27A16SoC_I2C0_SDASPI2_CS2/TIMER_I05/ UART1_DSRn/ EQEP2_B/EHRPWM_SOCB/GPI01_27/ ECAP2_IN_APWM_OUT28B16SoC_I2C0_SCLI2C0_SCL/PR0_IEP0_EDIO_DATA_IN_OUT30/ SYNC0_OUT/OBSCLK0/UART1_DCDn/ EQEP2_A EHRPWM_SOCA/GPI01_26/ ECAP1_IN_APWM_OUT / SPI2_CS029N20EXP_GPI00_36GPMC0_BE1n/MCASP2_AXR12/ PR0_PRU0_GPO13/PR0_PRU0_GPI13/ TRC_DATA1//GPI00_3630-DGND31L24EXP_GPI00_33GPMC0_OEn_REn/MCASP1_AXR1/ PR0_PRU0_GPO10/PR0_PRU0_GPI10/ TRC_DATA8/GPI00_3332M22EXP_GPI00_40/ PR0_ECAP0_IN_APWM_OUTGPMC0_DIR/PR0_ECAP0_IN_APWM_OUT/ MCASP2_AXR13/PR0_PRU0_GPO16/ PR0_PRU0_GPI06/TRC_DATA14/GPI00_40/ EQEP2_S33E18EXP_EHRPWM1_BMCASP0_AXR0/PR0_ECAP0_IN_APWM_OUT/ AUDIO_EXT_REFCLK0/PR0_UART0_TXD/ EHRPWM1_B/GPI01_10/EQEP0_I	26	C13	EXP_SPI0_CS1	EHRPWM0 B/ ECAP0 IN APWM OUT/
28B16SoC_I2C0_SCLSYNC0_OUT/ OBSCLR0/ UART1_DCDn/ EQEP2_A EHRPWM_SOCA/ GPI01_26/ ECAP1_IN_APWM_OUT / SPI2_CS029N20EXP_GPI00_36GPMC0_BE1n/ MCASP2_AXR12/ PR0_PRU0_GPO13/ PR0_PRU0_GP113/ TRC_DATA11/ GPI00_3630-DGND31L24EXP_GPI00_33GPMC0_OEn_REn/ MCASP1_AXR1/ PR0_PRU0_GPO10/ PR0_PRU0_GP10/ TRC_DATA8/ GPI00_3332M22M22EXP_GPI00_40/ PR0_ECAP0_IN_APWM_OUTGPMC0_DIR/ PR0_ECAP0_IN_APWM_OUT/ MCASP2_AXR13/ PR0_PRU0_GP016/ PR0_PRU0_GP16/ TRC_DATA14/ GPI00_40/ EQEP2_S33E18EXP_EHRPWM1_BMCASP0_AXR0/ PR0_ECAP0_IN_APWM_OUT/ AUDIO_EXT_REFCLK0/ PR0_UART0_TXD/ EHRPWM1_B/ GPI01_10/ EQEP0_I	27	A16	SoC_I2C0_SDA	SPI2_CS2/ TIMER_105/ UART1_DSRn/ EQEP2_B/ EHRPWM_SOCB/ GPI01_27/
29N20EXP_GPIO0_36PR0_PRU0_GPO13/ PR0_PRU0_GPI13/ TRC_DATA11/ GPIO0_3630-DGND31L24EXP_GPIO0_33GPMC0_OEn_REn/ MCASP1_AXR1/ PR0_PRU0_GPO10/ PR0_PRU0_GPI10/ TRC_DATA8/ GPIO0_3332M22EXP_GPIO0_40/ PR0_ECAP0_IN_APWM_OUTGPMC0_DIR/ PR0_ECAP0_IN_APWM_OUT/ MCASP2_AXR13/ PR0_PRU0_GPO16/ PR0_PRU0_GPI16/ TRC_DATA14/ GPIO0_40/ EQEP2_S33E18EXP_EHRPWM1_BMCASP0_AXR0/ PR0_ECAP0_IN_APWM_OUT/ AUDIO_EXT_REFCLK0/ PR0_UART0_TXD/ EHRPWM1_B/ GPIO1_10/ EQEP0_I	28	B16	SoC_I2C0_SCL	SYNC0_OUT/ OBSCLK0/ UART1_DCDn/ EQEP2_A EHRPWM_SOCA/ GPIO1_26/
31L24EXP_GPIO0_33GPMC0_OEn_REn/ MCASP1_AXR1/ PR0_PRU0_GPO10/ PR0_PRU0_GPI10/ TRC_DATA8/ GPIO0_3332M22EXP_GPIO0_40/ PR0_ECAP0_IN_APWM_OUTGPMC0_DIR/ PR0_ECAP0_IN_APWM_OUT/ MCASP2_AXR13/ PR0_PRU0_GPO16/ PR0_PRU0_GPI16/ TRC_DATA14/ GPIO0_40/ EQEP2_S33E18EXP_EHRPWM1_BMCASP0_AXR0/ PR0_ECAP0_IN_APWM_OUT/ AUDIO_EXT_REFCLK0/ PR0_UART0_TXD/ EHRPWM1_B/ GPIO1_10/ EQEP0_I	29	N20	EXP_GPIO0_36	PR0_PRU0_GPO13/ PR0_PRU0_GPI13/
31L24EXP_GPI00_33PR0_PRU0_GPO10/ PR0_PRU0_GPI10/ TRC_DATA8/ GPI00_3332M22EXP_GPI00_40/ PR0_ECAP0_IN_APWM_OUTGPMC0_DIR/ PR0_ECAP0_IN_APWM_OUT/ MCASP2_AXR13/ PR0_PRU0_GPO16/ PR0_PRU0_GPI16/ TRC_DATA14/ GPI00_40/ EQEP2_S33E18EXP_EHRPWM1_BMCASP0_AXR0/ PR0_ECAP0_IN_APWM_OUT/ AUDIO_EXT_REFCLK0/ PR0_UART0_TXD/ EHRPWM1_B/ GPI01_10/ EQEP0_I	30	-	DGND	
32 M22 EXP_GPIO0_40/ PR0_ECAP0_IN_APWM_OUT MCASP2_AXR13/ PR0_PRU0_GPO16/ PR0_PRU0_GPI16/ TRC_DATA14/ GPIO0_40/ EQEP2_S 33 E18 EXP_EHRPWM1_B MCASP0_AXR0/ PR0_ECAP0_IN_APWM_OUT/ AUDIO_EXT_REFCLK0/ PR0_UART0_TXD/ EHRPWM1_B/ GPIO1_10/ EQEP0_I	31	L24	EXP_GPIO0_33	PR0_PRU0_GPO10/ PR0_PRU0_GPI10/
33 E18 EXP_EHRPWM1_B AUDIO_EXT_REFCLK0/ PR0_UART0_TXD/ EHRPWM1_B/ GPIO1_10/ EQEP0_I	32	M22		MCASP2_AXR13/ PR0_PRU0_GPO16/ PR0_PRU0_GPI16/ TRC_DATA14/ GPI00_40/
34 - DGND	33	E18	EXP_EHRPWM1_B	AUDIO_EXT_REFCLK0/ PR0_UART0_TXD/
	34	-	DGND	

Table 2-25. 40 Pin User Expansion Connector (continued)						
Pin No.	SoC Ball	Net Name	Pin Multiplexed Signals			
35	A19	EXP_SPI2_D1/ ECAP2_IN_APWM_OUT	MCASP0_AXR2/ SPI2_D1/ UART1_RTSn/ UART6_TXD/ PR0_IEP0_EDIO_DATA_IN_OUT29/ ECAP2_IN_APWM_OUT/ PR0_UART0_TXD/ GPI01_8/ EQEP0_B			
36	B18	EXP_SPI2_CS2	MCASP0_AXR1/ SPI2_CS2/ ECAP1_IN_APWM_OUT/ PR0_UART0_RXD/ EHRPWM1_A/ GPIO1_9/ EQEP0_S			
37	M21	EXP_GPIO0_41	GPMC0_CSn0/ MCASP2_AXR14/ PR0_PRU0_GPO17/ PR0_PRU0_GPI17/ TRC_DATA15/ GPI00_41			
38	B19	EXP_SPI2_D0	MCASP0_AXR3/ SPI2_D0/ UART1_CTSn/ UART6_RXD/ PR0_IEP0_EDI0_DATA_IN_OUT28/ ECAP1_IN_APWM_OUT/ PR0_UART0_RXDGPI01_7 EQEP0_A			
39	-	EXP_HAT_DETECT				
40	A20	EXP_SPI2_CLK	MCASP0_ACLKR/ SPI2_CLK/ UART1_TXD/ EHRPWM0_B/ GPIO1_14/ EQEP1_I			

2.6.17.3 MCU Connector

AM62x SKEVM has a 14x2 standard 0.1" spaced MCU connector which includes signals connected to the MCU Domain of SoC. 13 Signals include MCU_I2C0, MCU_UART0 (with flow control), MCU_SPI0 and MCU_MCAN0 signals are connected to the MCU Header. Additional control signals provided on the Header include CONN_MCU_RESETz, CONN_MCU_PORz, MCU_RESETSTATz, MCU_SAFETY_ERRORn, 3.3 V IO and GND. MCU_UART0 signals from AM62x SoC are connected to both MCU Header and FT4232 Bridge through MUX Mfr Part # SN74CB3Q3257PWR. The MCU Header does not include the Board ID memory interface. Allowed current limit is 100 mA on 3.3 V rail.

Dia Na		Net Neme	Din Multinloued Cinesel
Pin No.	SoC Ball No.	Net Name	Pin Multiplexed Signal
2	-	DGND	
3	-	NC	
4	C9	MCU_SPI0_D1	MCU_SPI0_D1/MCU_GPIO0_4
5	-	NC	
6	D9	MCU_SPI0_D0	MCU_SPI0_D0/MCU_GPIO0_3
7	-	DGND	
8	B8	MCU_SPI0_CS1	MCU_SPI0_CS1/ MCU_OBSCLK0/ MCU_SYSCLKOUT0/ MCU_EXT_REFCLK0/ MCU_TIMER_IO1/ MCU_GPI00_1
9	-	NC	
10	E5	MCU_GPIO0_15	MCU_MCAN1_TX/ MCU_TIMER_IO2/ MCU_SPI1_CS1/ MCU_EXT_REFCLK0/ MCU_GPIO0_15
11	D4	MCU_GPIO0_16	MCU_MCAN1_RX/ MCU_TIMER_IO3/ MCU_SPI0_CS2/ MCU_SPI1_CS2/ MCU_SPI1_CLK/ MCU_GPI00_16
12	A6	MCU_UART0_CTS_CONN	MCU_UART0_CTSn/ MCU_TIMER_IO0/ MCU_SPI1_D0/MCU_GPIO0_7
13	В5	MCU_UART0_RXD_CONN	MCU_UART0_RXD/ MCU_GPIO0_5
14	-	NC	
15	-	DGND	
16	D6	MCU_MCAN0_TX	MCU_MCAN0_TX/ WKUP_TIMER_IO0/ MCU_SPI0_CS3/ MCU_GPIO0_13
17	B6	MCU_UART0_RTS_CONN	MCU_UART0_RTSn/ MCU_TIMER_IO1/ MCU_SPI1_D1/MCU_GPIO0_8
18	A7	MCU_SPI0_CLK	MCU_SPI0_CLK/MCU_GPIO0_2
19	A5	MCU_UART0_TXD_CONN	MCU_UART0_TXD/ MCU_GPIO0_6
20	-	DGND	
21	D10	MCU_I2C0_SDA	MCU_I2C0_SDA/ MCU_GPIO0_18
22	В3	MCU_MCAN0_RX	MCU_MCAN0_RX/ MCU_TIMER_IO0/ MCU_SPI1_CS3/ MCU_GPIO0_14
23	B12	MCU_RESETSTATz	MCU_RESETSTATz/ MCU_GPIO0_21
24	A8	MCU_I2C0_SCL	MCU_I2C0_SCL/ MCU_GPIO0_17
25	E11	CONN_MCU_RESETz	MCU_RESETz
26	D1	MCU_SAFETY_ERRORz_3V3	MCU_ERRORN
27	-	DGND	

Table 2-26. Pin MCU Connector (J9) (continued)

Table 2-26. Pin MCU Connector (J9) (continued)

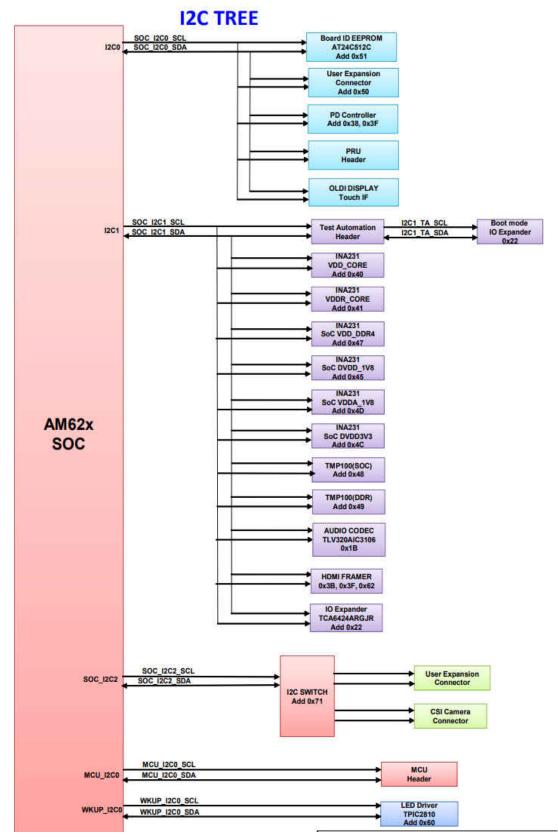
Pin No.	SoC Ball No.	Net Name	Pin Multiplexed Signal				
28	D2	CONN_MCU_PORz	MCU_PORz				

2.6.18 Interrupt

AM62x SKEVM supports two interrupts for providing Reset input and User Interrupt to the processor.

The interrupt are push buttons placed on the Top side of the Board and are listed in Table 2-27

Table 2-27. EVM Push Buttons					
SI No.	SI No. Push Buttons Signal Function				
1	SW3	SoC_WARM_RESETZ	Main domain Warm Reset input		
2	SW4	GPIO_MCU	Generates interrupt on MCU_GPIO0_15		


2.6.19 I2C Address Mapping

There are three I2C interfaces used in SK EVM board:

- SoC_I2C0 Interface: SoC I2C [0] is connected to Board ID EEPROM, User Expansion Connector Header, USB PD controler, PRU header, and OLDI Display Touch interface.
- SoC I2C (1) Interface: SoC I2C [1] is connected to Test Automation Header, Current Monitors, Temperature Sensors, Audio Codec, HDMI Transmitter, CSI Camera Connector, GPIO Port Expander.
- SoC I2C (2) Interface: Connected I2C [2] from SoC to the User Expansion Connector Header
- MCU I2C (0) Interface: Connected MCU I2C [0] to MCU Header.
- WKUP I2C (0) Interface: Connected I2C [0] from SoC to LED Driver

The images below depict the I2C tree and the tables provide the complete I2C address mapping details on AM62x SKEVM.

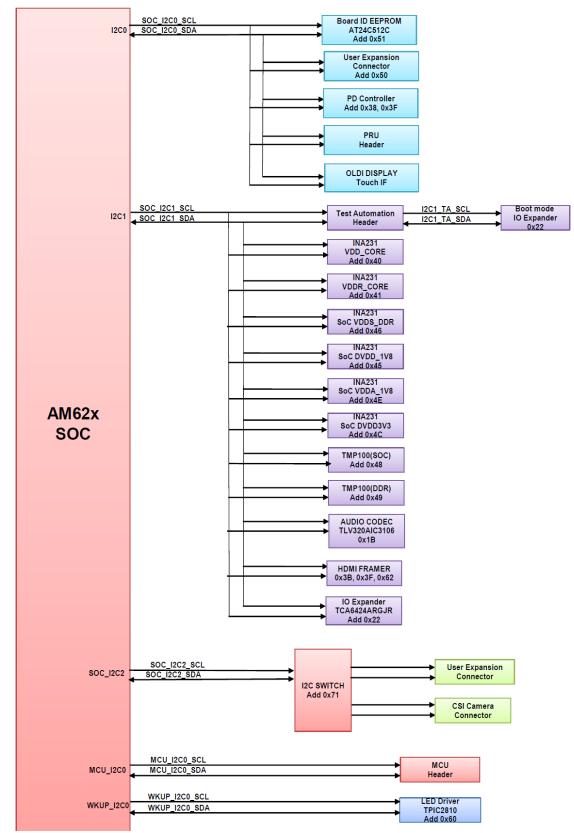


Table 2-28. I2C Mapping Table (SK-AM62 E3 and SK-AM62-P1 Variants)

I2C Port	Device/Function	Part No.	I2C Address
SoC_I2C0	Board ID EEPROM	AT24C512C-MAHM-T	0x51
SoC_I2C0	User Expansion Connector	<connector interface=""></connector>	

Table 2-28. I2C Mapping Table (SK-AM62 E3 and SK-AM62-P1 Variants) (continued)						
I2C Port	Device/Function	Part No.	I2C Address			
SoC_I2C0	USB PD Controller	TPS65988DHRSHR	0x38, 0x3F			
SoC_I2C0	PRU Header	<connector interface=""></connector>				
SoC_I2C0	OLDI Display Touch Interface					
SoC_I2C1	Test Automation Header	<connector interface=""></connector>				
SoC_I2C1	Current Monitors	INA231AIYFDR	0x40, 0x41, 0x47, 0x45, 0x4D, 0x4C			
SoC_I2C1	Temperature Sensors	TMP100NA/3K	0x48, 0x49			
SoC_I2C1	Audio Codec	TLV320AIC3106IRGZT	0x1B			
SoC_I2C1	HDMI Transmitter	Sil9022ACNU	0x3B, 0x3F, 0x62			
SoC_I2C1	GPIO Port Expander	TCA6424ARGJR	0x22			
SoC_I2C2	CSI Camera Connector					
SoC_I2C2	User Expansion Connector	<connector interface=""></connector>				
MCU_I2C0	MCU Header	<connector interface=""></connector>				
WKUP_I2C0	LED Driver	TPIC2810D	0x60			
	Oth	iers				
BOOTMODE_I2C	I2C Bootmode Buffer	TCA6424ARGJR	0x22			
BOOTMODE_I2C	Test Automation Header	<connector interface=""></connector>				

Table 2-29. I2C Mapping Table (SK-AM62 E2)

I2C Port	Device/Function	Part No.	I2C Address
SoC_I2C0	Board ID EEPROM	AT24C512C-MAHM-T	0x51
SoC_I2C0	User Expansion Connector	<connector interface=""></connector>	

I2C Port	Device/Function	Part No.	I2C Address
SoC_I2C0	USB PD Controller	TPS65988DHRSHR	0x38, 0x3F
SoC_I2C0	PRU Header	<connector interface=""></connector>	
SoC_I2C0	OLDI Display Touch Interface		
SoC_I2C1	Test Automation Header	<connector interface=""></connector>	
SoC_I2C1	Current Monitors	INA231AIYFDR	0x40, 0x41, 0x46, 0x45, 0x4E & 0x4C
SoC_I2C1	Temperature Sensors	TMP100NA/3K	0x48, 0x49
SoC_I2C1	Audio Codec	TLV320AIC3106IRGZT	0x1B
SoC_I2C1	HDMI Transmitter	Sil9022ACNU	0x3B, 0x3F, 0x62
SoC_I2C1	GPIO Port Expander	TCA6424ARGJR	0x22
SoC_I2C2	CSI Camera Connector		
SoC_I2C2	User Expansion Connector	<connector interface=""></connector>	
MCU_12C0	MCU Header	<connector interface=""></connector>	
WKUP_I2C0	LED Driver	TPIC2810D	0x60
	Oth	iers	· ·
BOOTMODE_I2C	I2C Bootmode Buffer	TCA6424ARGJR	0x22
BOOTMODE_I2C	Test Automation Header	<connector interface=""></connector>	

3 Known Issues and Modifications

This section describes the currently known issues on each EVM revision and applicable workarounds. Issues that have been patched will have modification labels attached to the EVM assembly.

Issue Number	Issue Title	Issue Description	Variant(s) Affected
1	HDMI/DSS Incorrect Colors	HDMI Transmitter on E1 boards shows incorrect colors.	E1
2	J9 and J10 Header Allignment	MCU and PRU headers are missaligned on E1	E1
3	USB Boot Descoped on E1	USB Boot is not available on E1 boards	E1
4	OLDI Connector Orientation and Pinout	OLDI Connector Pinout changed and an adapter is required for E1/E2 boards.	E1, E2
5	Bluetooth Descoped on E2	Bluetooth does not work on E2 boards.	E1, E2
6	Ethernet PHY CLK Skew default Strapping	Default PHY Tx CLK Skew needs to be set to 0ns	E1, E2
7	TEST_POWERDOWN signals shorted	Resistor change required to avoid backflow from VMain	E1, E2
8	SD Card Detect Signal	MMC1_SDCD line may cause spurious interrupts to the SoC under certain conditions.	E1, E2
9	PD Controller I2C2 IRQ Not Pinned Out	I2C_IRQ signal from PD controller not pinned out resulting in problems with regard to USB Host and Device mode operation.	
10	INA Current Monitor Adress Changes	INA adress lines changed to adress spurious address changes.	E1, E2
11	Test Automation I2C Buffer Changes	Issues with a buffer IC type resulted in issues accesing I2C1 bus from the Test Automation interface.	E1, E2, E3

Table 3-1. AM62x SK EVM Known Issues and Modifications

3.1 Issue 1 - HDMI/DSS Incorrect Colors on E1

Applicable EVM Revisions: E1

Issue Description: Due to incorrect wiring for YUV 422 of the AM62x DSS Output to the SIL9022A HDMI Transmitter, colors will appear yellow on E1 boards.

Fix: AM62x SK EVM E2 and onwards have moved to a full 24bit RGB 888 color output which also features expanded color space as a result.

3.2 Issue 2 - J9 and J10 Header Alignment on E1

Applicable EVM Revisions: E1

Issue Description: On revision E1 of the AM62x SK EVM, the J9 and J10 are missaligned by one set of pins, meaning that boards designed for other Sitara SK EVMs that mate to both the MCU and PRU headers will not fit on this revision.

Fix: Revisions E2 and newer align the headers as expected.

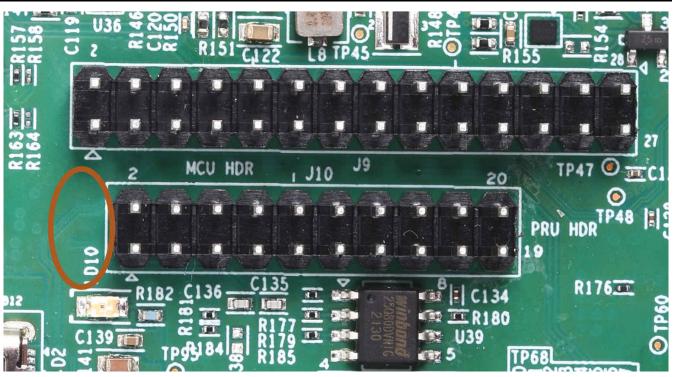


Figure 3-1. PRU Connector Missalignment on E1 Boards

3.3 Issue 3 - USB Boot descoped on E1

Applicable EVM Revisions: E1

Issue Description: Due to the USB0 port being routed through a Hub IC to the Type-A connector, USB boot cannot be supported on E1 boards.

Fix: E2 boards and newer use USB1 to the type-A connector and have moved the USB0 controller used for boot to the second USB Type-C port so that both DFU and MSC boot can be supported. The USB hub IC has also been dropped to simplify board layout and BOM.

3.4 Issue 4 - OLDI Connector Orientation and Pinout

Applicable EVM Revisions: E1, E2

Issue Description: The OLDI Connector Pinout was updated after version E2 in order to improve the differential routing on the cable. Please refer to Section 2.6.3 for the pinout change details.

Important Note: An adapter is required in order to enable E1 & E2 boards to connect to the TI recommended OLDI displays. DO NOT ATTEMPT to plug in an E1 or E2 board into such an LCD without the adapter.

3.5 Issue 5 - Bluetooth descoped on E2 EVMs

Applicable EVM Revisions: E2

Issue Description: Due to incorrect wiring of both RX and TX UART signals on the same channel of the U3 buffer, Bluetooth functioanlity is not supported on the E2 version of the EVM. This does not affect E1 EVMs and will be fixed on E3 and onwards.

3.6 Issue 6 - Ethernet PHY CLK Skew Default Strapping Changes

Applicable EVM Revisions: E1, E2

Issue Description: RGMII1 and RGMII2 PHYs (U51and U49) had strapping resistors for Tx Clock Skew = 2ns. Tx Clock skew should be set to 0ns as AM62x MAC always has internal delay enabled for Tx. Rx Clock Skew should remain 2ns.

3.7 Issue 7 - TEST_POWERDOWN changes

Applicable EVM Revisions: E1, E2

Issue Description: TEST_POWERDOWN (pulled up to VCC3V3_TA) and VCC_5V0_EN (pulled up to VMAIN) signals were shorted through a 0 ohm resistor. <u>To avoid backflow from VMAIN</u>, a pull up resistor on VCCC_5V0_EN connected to VMAIN is made DNI and R585 is mounted which is pulled to VCC3V3_TA

3.8 Issue 8 - MMC1_SDCD spurious interrupts

Applicable EVM Revisions: E2, E1

Issue Description: The MMC1_SDCD line was abserved to go low, causing spurious interrupts to the SoC when VDD_MMC1_SD supply went low.

Fix: VCC of the U18 ESD chip is connected to the VCC_3V3_SYS rail instead.

3.9 Issue 9 - PD Controller I2C2 IRQ Not Pinned Out

Applicable EVM Revisions: E2, E1

Issue Description:

The I2C_IRQ signal was required from the PD controller to read the I2C register changes of the controller with regard to USB Host and Device mode operation

Fix: I2C2_IRQ from the PD Controller is connected to IO EXP GPIO P21 (U70.18) and TEST_GPIO2 is terminated to a Test Point.

3.10 Issue 10 - INA Current Monitor Adress Changes

Applicable EVM Revisions: E2, E1

Issue Description:

The Adress pins of the INA devices which were tied to SDA lines could cause spurious adress changes depending on how the bus was initialized.

Fix:U23 and U25 were moved to 0x4D and 0x47 by using the remaining combinations of VCC/GND and SCL.

3.11 Issue 11 - Test Automation I2C Buffer Changes

Applicable EVM Revisions: E1, E2, E3

Issue Description:

The buffers used for the Test Automation Interface have a special condition of not having pullups on the B side of the buffer which could not be met on the EVM due to the bus design. As such, in the current configuration, they prevent communiation from the Test Automation connector into the I2C1 bus.

Fix:Remove the TCA9801DGK buffers and bridge across pin 2 to pin 7 and pin 3 to pin 6 respectively, you will also need to remove any pull-up resistors on the SCLB side of the device since these are no longer needed. (U42 and R499, R498 on E3, please refer to inidividual scheamtics and board file for other revisions). The IC may be replaced with a **TCA9517DR** which does not have the same incomaptibility. SK-AM62-P1 E2 and newer boards feature this change. If the IC is replaced, pullups on the B side should be preserved.

I2C BUS BUFFER

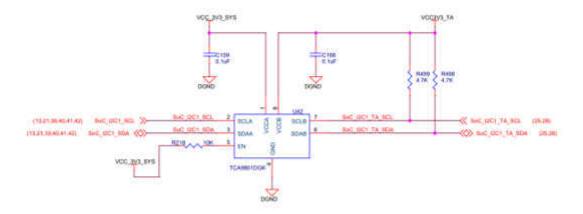


Figure 3-2. Schematic of I2C Buffer Section

Figure 3-3. Location on AM62x SK E3 (Bottom Side)

Regulatory Compliance

Hereby, Texas Instruments declares that the radio equipment, "AM62x Starter Kit for the Sitara Processors" is in compliance with directive 2014/53/EU.

The full text of the EU declaration of confirmity is available in the following website.

RF Exposure Information

This device has been tested and meets applicable limits for Radio Frequency (RF) exposure. This equipment should be installed and operated to ensure a minimum of 20 cm spacing to any person at all times.

EIRP Power

The maximum RF power transmitted in WLAN 2.4GHz band is 19 dBm. The maximum RF power transmitted in WLAN 5GHz band is 19.4 dBm (5150 MHz ~ 5350 MHz) and 18.4 dBm (5470 MHz ~ 5725 MHz).

The maximum RF power transmitted in Bluetooth is 14 dBm and Bluetooth Low Energy (BLE) is 8.9 dBm.

The device is restricted for indoor use only within the 5.15 - 5.25GHz band. The following are the countries with restricted indoor use,

AT	BE	BG	HR	CY	CZ	DK
EE	FI	FR	DE	EL	HU	IE
IT	LV	LT	LU	MT	NL	PL
PT	RO	SK	SI	ES	SE	IS
LI	NO	CH	TR	UK(NI)	

Waste Electrical and Electronic Equipment (WEEE)

This symbol means that according to local laws and regulations your product and/or its battery shall be disposed of separately from household waste. When this product reaches its end of life, take it to a collection point designated by local authorities. Proper recycling of your product will protect human health and the environment.

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from April 15, 2023 to May 31, 2023 (from Revision B (April 2023) to Revision C (May 2023))

•	Updated SD Bootmode Switch Setting Example (From E2) diagram	13	
---	--	----	--

Page

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated