

ISO7820x High-Performance, 8000V_{PK} Reinforced Dual Channel Digital Isolator

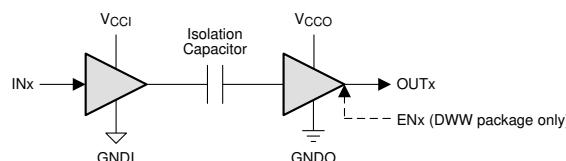
1 Features

- Signaling Rate: Up to 100Mbps
- Wide Supply Range: 2.25V to 5.5V
- 2.25V to 5.5V Level Translation
- Wide Temperature Range: -55°C to 125°C
- Low Power Consumption, Typical 1.7mA per Channel at 1Mbps
- Low Propagation Delay: 11ns Typical (5V Supplies)
- Industry leading CMTI(Min): $\pm 100\text{kV}/\mu\text{s}$
- Robust Electromagnetic Compatibility (EMC)
- System-Level ESD, EFT, and Surge Immunity
- Low Emissions
- Isolation Barrier Life: > 25 Years
- SOIC-16 Wide Body (DW) and Extra-Wide Body (DWW) Package Options
- Safety-related certifications:
 - DIN EN IEC 60747-17 (VDE 0884-17)
 - UL 1577 component recognition program
 - IEC 61010-1, IEC 62368-1, IEC 60601-1, and GB 4943.1 certifications

2 Applications

- Industrial Automation
- Motor Control
- Power Supplies
- Solar Inverters
- Medical Equipment
- Hybrid Electric Vehicles

3 Description


The ISO7820 is a high-performance, dual-channel digital isolator with 8000V_{PK} isolation voltage. This device has reinforced isolation certifications according to VDE, CSA, CQC, and TUV. The isolator provides high electromagnetic immunity and low emissions at low power consumption, while isolating CMOS or LVC MOS digital I/Os. Each isolation channel has a logic input and output buffer separated by silicon dioxide (SiO₂) insulation barrier. ISO7820 has two forward channels and no reverse-direction channel. If the input power or signal is lost, default output is 'high' for the ISO7820 and 'low' for the ISO7820F device. Used in conjunction with isolated power supplies, this device prevents noise currents on a data bus or other circuits from entering the local ground and interfering with or damaging sensitive circuitry. Through remarkable chip design and layout techniques, electromagnetic compatibility of ISO7820 has been significantly enhanced to ease system-level ESD, EFT, Surge and Emissions compliance. ISO7820 is available in 16-pin SOIC wide-body (DW) and extra-wide body (DWW) packages. The DWW package option comes with enable pins which can be used to put the respective outputs in high impedance for multi-controller driving applications and to reduce power consumption.

Package Information

PART NUMBER	PACKAGE (1)	BODY SIZE (NOM)	PACKAGE SIZE(2)
ISO7820, ISO7820F	DW (SOIC, 16)	10.30mm \times 7.50mm	10.30mm \times 10.30mm
	DWW (Extra wide SOIC, 16)	10.30mm \times 14.0mm	10.30mm \times 17.25mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

(2) The package size (length \times width) is a nominal value and includes pins, where applicable.

A. V_{CCI} and GNDI are supply and ground connections respectively for the input channels.
 B. V_{CCO} and GNDO are supply and ground connections respectively for the output channels.

Simplified Schematic

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Table of Contents

1 Features	1	6 Parameter Measurement Information	16
2 Applications	1	7 Detailed Description	18
3 Description	1	7.1 Overview.....	18
4 Pin Configuration and Functions	3	7.2 Functional Block Diagram.....	18
5 Specifications	5	7.3 Feature Description.....	19
5.1 Absolute Maximum Ratings.....	5	7.4 Device Functional Modes.....	20
5.2 ESD Ratings.....	5	8 Application and Implementation	21
5.3 Recommended Operating Conditions.....	5	8.1 Application Information.....	21
5.4 Thermal Information.....	6	8.2 Typical Application.....	21
5.5 Power Ratings.....	6	8.3 Power Supply Recommendations.....	23
5.6 Insulation Specifications.....	7	8.4 Layout.....	23
5.7 Safety-Related Certifications.....	8	9 Device and Documentation Support	25
5.8 Safety Limiting Values.....	9	9.1 Related Documentation.....	25
5.9 Electrical Characteristics, 5 V.....	10	9.2 Receiving Notification of Documentation Updates.....	25
5.10 Electrical Characteristics, 3.3 V.....	10	9.3 Support Resources.....	25
5.11 Electrical Characteristics, 2.5 V.....	12	9.4 Trademarks.....	25
5.12 Power Ratings.....	12	9.5 Electrostatic Discharge Caution.....	25
5.13 Switching Characteristics, 5 V.....	13	9.6 Glossary.....	25
5.14 Switching Characteristics, 3.3 V.....	13	10 Revision History	25
5.15 Switching Characteristics, 2.5 V.....	14	11 Mechanical, Packaging, and Orderable	
5.16 Typical Characteristics.....	15	Information.....	26

4 Pin Configuration and Functions

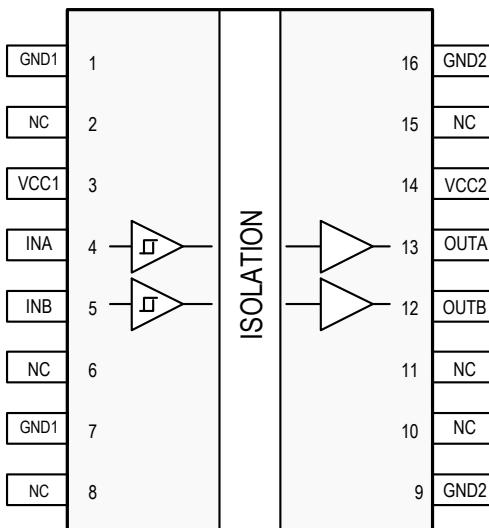


Figure 4-1. DW Package 16-Pin (SOIC) Top View

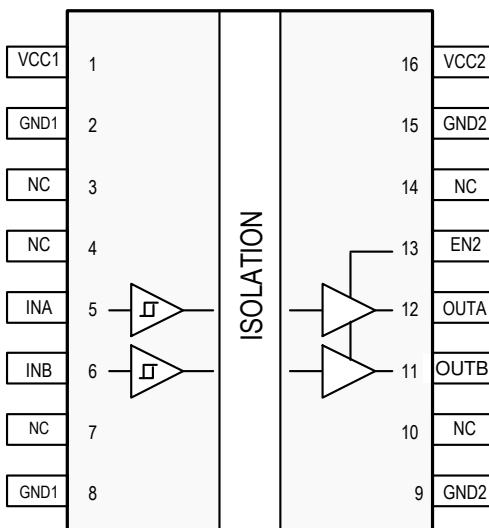


Figure 4-2. DWW Package 16-Pin (SOIC) Top View

Table 4-1. Pin Functions

PIN			Type ⁽¹⁾	DESCRIPTION
NAME	NO. DW	NO. DWW		
GND1	1, 7	2, 8	—	Ground connection for V _{CC1}
GND2	9, 16	9, 15	—	Ground connection for V _{CC2}
INA	4	5	I	Input, channel A
INB	5	6	I	Input, channel B
NC	2, 6, 8, 10, 11, 15	4, 7, 10	—	Not connected
OUTA	13	12	O	Output, channel A
OUTB	12	11	O	Output, channel B
VCC1	3	1	—	Power supply, V _{CC1}
VCC2	14	16	—	Power supply, V _{CC2}

Table 4-1. Pin Functions (continued)

NAME	PIN		Type ⁽¹⁾	DESCRIPTION
	NO.	NO.		
	DW	DWW		
EN2	–	13	I	Output enable 2. Output pins on side 2 are enabled when EN2 is high or open and in high-impedance state when EN2 is low.

(1) I = Input; O = Output

5 Specifications

5.1 Absolute Maximum Ratings

(1)		MIN	MAX	UNIT
Supply voltage ⁽²⁾	V_{CC1}, V_{CC2}	-0.5	6	V
Voltage	INx, OUTx	-0.5	$V_{CC} + 0.5$ ⁽³⁾	V
Output Current	I_O	-15	15	mA
Surge Immunity			12.8	kV
Storage temperature, T_{stg}		-65	150	°C

(1) Operation outside the *Absolute Maximum Ratings* may cause permanent device damage. *Absolute Maximum Ratings* do not imply functional operation of the device at these or any other conditions beyond those listed under *Recommended Operating Conditions*. If used outside the *Recommended Operating Conditions* but within the *Absolute Maximum Ratings*, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak voltage values.

(3) Maximum voltage must not exceed 6 V.

5.2 ESD Ratings

			VALUE	UNIT
V_{ESD}	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±6000	V
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±1500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

		MIN	TYP	MAX	UNIT
V_{CC1}, V_{CC2}	Supply voltage	2.25		5.5	V
I_{OH}	High-level output current	V_{CCO} ⁽²⁾ = 5 V	-4		mA
		V_{CCO} = 3.3 V	-2		
		V_{CCO} = 2.5 V	-1		
I_{OL}	Low-level output current	V_{CCO} = 5 V		4	mA
		V_{CCO} = 3.3 V		2	
		V_{CCO} = 2.5 V		1	
V_{IH}	High-level input voltage	$0.7 \times V_{CC1}$ ⁽²⁾		V_{CCI}	V
V_{IL}	Low-level input voltage	0		$0.3 \times V_{CCI}$	V
DR	Signaling rate	0		100	Mbps
T_J	Junction temperature ⁽¹⁾	-55		150	°C
T_A	Ambient temperature	-55	25	125	°C

(1) To maintain the recommended operating conditions for T_J , see the [Section 5.4](#) table.

(2) V_{CCI} = Input-side V_{CC} ; V_{CCO} = Output-side V_{CC} .

5.4 Thermal Information

THERMAL METRIC ⁽¹⁾	ISO7820		UNIT
	DW (SOIC)	DWW (SOIC)	
	16 PINS	16-PINS	
R _{θJA} Junction-to-ambient thermal resistance	84.7	84.7	°C/W
R _{θJC(top)} Junction-to-case(top) thermal resistance	47.3	46.0	°C/W
R _{θJB} Junction-to-board thermal resistance	49.4	54.5	°C/W
Ψ _{JT} Junction-to-top characterization parameter	19.1	18.5	°C/W
Ψ _{JB} Junction-to-board characterization parameter	48.8	53.8	°C/W
R _{θJC(bottom)} Junction-to-case(bottom) thermal resistance	n/a	n/a	°C/W

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](#) application note.

5.5 Power Ratings

		VALUE	UNIT	
P _D	Maximum power dissipation by ISO7820	V _{CC1} = V _{CC2} = 5.5 V, T _J = 150°C, C _L = 15 pF, input a 50 MHz 50% duty cycle square wave	100	mW
P _{D1}	Maximum power dissipation by side-1 of ISO7820x	20		
P _{D2}	Maximum power dissipation by side-2 of ISO7820x	80		

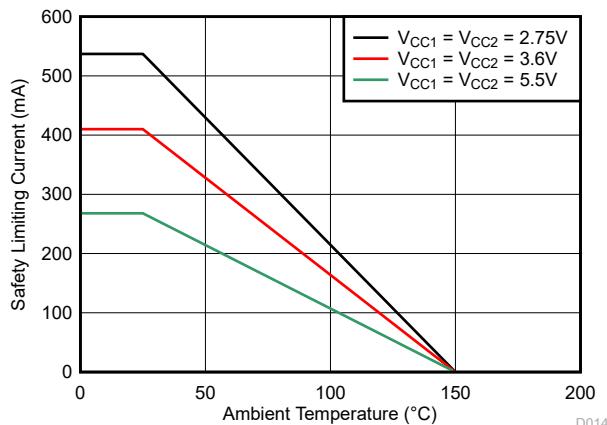
5.6 Insulation Specifications

PARAMETER	TEST CONDITIONS	SPECIFICATION		UNIT
		DW	DWW	
CLR External clearance ⁽¹⁾	Shortest terminal-to-terminal distance through air	>8	>14.5	mm
	Shortest terminal-to-terminal distance through air (typical)		15.0	mm
CPG External creepage ⁽¹⁾	Shortest terminal-to-terminal distance across the package surface	>8	>14.5	mm
	Shortest terminal-to-terminal distance across the package surface (typical)		15.0	mm
DTI Distance through the insulation	Minimum internal gap (internal clearance)	>21	>21	μm
CTI Comparative tracking index	DIN EN 60112 (VDE 0303-11); IEC 60112; UL 746A	>600	>600	V
Material group		I	I	
Overvoltage category per IEC 60664-1	Rated mains voltage ≤ 600V _{RMS}	I-IV	I-IV	
	Rated mains voltage ≤ 1000V _{RMS}	I-III	I-IV	
DIN EN IEC 60747-17 (VDE 0884-17) ⁽²⁾				
V _{IORM} Maximum repetitive peak isolation voltage		2121	2828	V _{PK}
V _{IOWM} Maximum isolation working voltage	AC voltage (sine wave); Time dependent dielectric breakdown (TDDB) Test	1500	2000	V _{RMS}
	DC voltage	2121	2828	V _{DC}
V _{IOTM} Maximum transient isolation voltage	V _{TEST} = V _{IOTM} , t = 60s (qualification) V _{TEST} = 1.2 × V _{IOTM} , t = 1s (100% production)	8000	8000	V _{PK}
V _{IMP} Maximum impulse voltage ⁽³⁾	Tested in air, 1.2/50μs waveform per IEC 62368-1	9800	9800	V _{PK}
V _{IOSM} Maximum surge isolation voltage ⁽⁴⁾	V _{IOSM} ≥ 1.3 × V _{IMP} ; Tested in oil (qualification test), 1.2/50-μs waveform per IEC 62368-1	12800	12800	V _{PK}
q _{pd} Apparent charge ⁽⁵⁾	Method a: After I/O safety test subgroup 2/3, V _{ini} = V _{IOTM} , t _{ini} = 60s; V _{pd(m)} = 1.2 × V _{IOTM} = 2545V _{PK} (DW) and 3394V _{PK} (DWW), t _m = 10s	≤5	≤5	pC
	Method a: After environmental tests subgroup 1, V _{ini} = V _{IOTM} , t _{ini} = 60s; V _{pd(m)} = 1.6 × V _{IORM} = 3394V _{PK} (DW) and 4525V _{PK} (DWW), t _m = 10s	≤5	≤5	
	Method b: At routine test (100% production); V _{ini} = 1.2 × V _{IOTM} , t _{ini} = 1s; V _{pd(m)} = 1.875 × V _{IORM} , t _m = 1s (method b1) or V _{pd(m)} = V _{ini} , t _m = t _{ini} (method b2)	≤5	≤5	
C _{IO} Barrier capacitance, input to output ⁽⁶⁾	V _{IO} = 0.4 × sin (2πft), f = 1MHz	2	2	pF
R _{IO} Isolation resistance, input to output ⁽⁶⁾	V _{IO} = 500V, T _A = 25°C	>10 ¹²	>10 ¹²	Ω
	V _{IO} = 500V, 100°C ≤ T _A ≤ 125°C	>10 ¹¹	>10 ¹¹	
	V _{IO} = 500V at T _S = 150°C	>10 ⁹	>10 ⁹	
Pollution degree		2	2	
Climatic category		55/125/21	55/125/21	
UL 1577				
V _{ISO} Withstand isolation voltage	V _{TEST} = V _{ISO} = 5700V _{RMS} , t = 60s (qualification), V _{TEST} = 1.2 × V _{ISO} = 6840V _{RMS} , t = 1s (100% production)	5700	5700	V _{RMS}

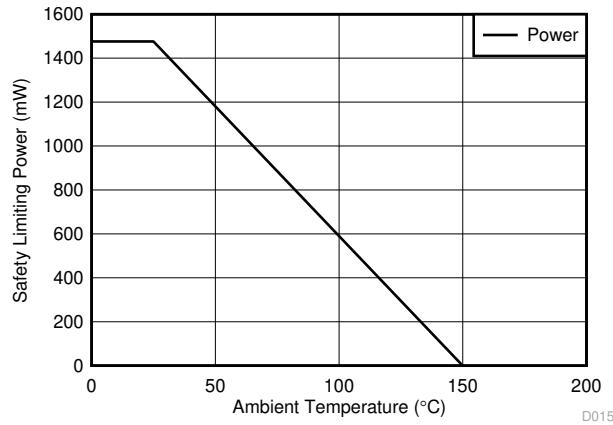
- (1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these specifications.
- (2) This coupler is suitable for *safe electrical insulation* only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
- (3) Testing is carried out in air to determine the surge immunity of the package.
- (4) Testing is carried out in oil to determine the intrinsic surge immunity of the isolation barrier.
- (5) Apparent charge is electrical discharge caused by a partial discharge (pd).
- (6) All pins on each side of the barrier tied together creating a two-terminal device.

5.7 Safety-Related Certifications

VDE	CSA	UL	CQC	TUV
Certified according to DIN EN IEC 60747-17 (VDE 0884-17)	Certified according to IEC 62368-1 and IEC 60601-1	Certified according to UL 1577 Component Recognition Program	Certified according to GB 4943.1	Certified according to EN 61010-1 and EN 62368-1
Certificate number: 40040142	Master contract number: 220991	File number: E181974	Certificate number: CQC15001121716	Client ID number: 77311


5.8 Safety Limiting Values

Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier potentially leading to secondary system failures.


Table 5-1. Safety Limiting

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I_s Safety input, output, or supply current for DW-16 package and DWW-16 Packages	$R_{\theta JA} = 84.7^{\circ}\text{C}/\text{W}$, $V_I = 5.5 \text{ V}$, $T_J = 150^{\circ}\text{C}$, $T_A = 25^{\circ}\text{C}$			268	mA
	$R_{\theta JA} = 84.7^{\circ}\text{C}/\text{W}$, $V_I = 3.6 \text{ V}$, $T_J = 150^{\circ}\text{C}$, $T_A = 25^{\circ}\text{C}$			410	
	$R_{\theta JA} = 84.7^{\circ}\text{C}/\text{W}$, $V_I = 2.75 \text{ V}$, $T_J = 150^{\circ}\text{C}$, $T_A = 25^{\circ}\text{C}$			537	
P_s Safety input, output, or total power	$R_{\theta JA} = 84.7^{\circ}\text{C}/\text{W}$, $T_J = 150^{\circ}\text{C}$, $T_A = 25^{\circ}\text{C}$			1476	mW
T_s Maximum safety temperature				150	°C

The maximum safety temperature is the maximum junction temperature specified for the device. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the *Thermal Information* section is that of a device installed on a High-K test board for Leaded Surface Mount Packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.

Figure 5-1. Thermal Derating Curve for Safety Limiting Current per VDE

Figure 5-2. Thermal Derating Curve for Safety Limiting Power per VDE

5.9 Electrical Characteristics, 5 V

$V_{CC1} = V_{CC2} = 5 \text{ V} \pm 10\%$ (over recommended operating conditions unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V_{OH}	High-level output voltage	$I_{OH} = -4 \text{ mA}$; see Figure 6-1	$V_{CC2} - 0.4$	$V_{CC2} - 0.2$		V	
V_{OL}	Low-level output voltage	$I_{OL} = 4 \text{ mA}$; see Figure 6-1		0.2	0.4	V	
$V_{I(HYS)}$	Input threshold voltage hysteresis		$0.1 \times V_{CC2}$			V	
I_{IH}	High-level input current	$V_{IH} = V_{CC1}$ at INx			10	μA	
I_{IL}	Low-level input current	$V_{IL} = 0 \text{ V}$ at INx	-10				
CMTI	Common-mode transient immunity	$V_I = V_{CC1}$ or 0 V; see Figure 6-4	100			kV/ μs	
I_{CC1}	Supply current, Disable (ISO7820DWW and ISO7820FDWW only)	EN2 = 0V, $V_I = 0 \text{ V}$ (ISO7820FDWW), $V_I = V_{CC1}$ (ISO7820DWW)	0.8	1.3		mA	
I_{CC2}			0.2	0.4			
I_{CC1}	Supply current, Disable (ISO7820DWW and ISO7820FDWW only)	EN2 = 0V, $V_I = V_{CC1}$ (ISO7820FDWW), $V_I = 0 \text{ V}$ (ISO7820DWW)	3.2	4.6		mA	
I_{CC2}			0.2	0.4			
I_{CC1}	Supply current, DC Signal	$V_I = 0 \text{ V}$ (ISO7820F), $V_I = V_{CC1}$ (ISO7820)	0.9	1.3		mA	
I_{CC2}			1.2	1.8			
I_{CC1}	Supply current, DC Signal	$V_I = V_{CC1}$ (ISO7820F), $V_I = 0 \text{ V}$ (ISO7820)	3.2	4.6		mA	
I_{CC2}			1.3	2			
I_{CC1}	Supply current	1 Mbps	AC Signal: All channels switching with square wave clock input; $C_L = 15 \text{ pF}$	2.1	3	mA	
I_{CC2}				1.3	2		
I_{CC1}	Supply current	10 Mbps		2.1	3	mA	
I_{CC2}				2.3	3.8		
I_{CC1}	Supply current	100 Mbps		2.7	3.3	mA	
I_{CC2}				11.9	15.3		

5.10 Electrical Characteristics, 3.3 V

$V_{CC1} = V_{CC2} = 3.3 \text{ V} \pm 10\%$ (over recommended operating conditions unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{OH}	High-level output voltage	$I_{OH} = -2 \text{ mA}$; see Figure 6-1	$V_{CC2} - 0.4$	$V_{CC2} - 0.2$		V
V_{OL}	Low-level output voltage	$I_{OL} = 2 \text{ mA}$; see Figure 6-1		0.2	0.4	V
$V_{I(HYS)}$	Input threshold voltage hysteresis		$0.1 \times V_{CC2}$			V
I_{IH}	High-level input current	$V_{IH} = V_{CC1}$ at INx			10	μA
I_{IL}	Low-level input current	$V_{IL} = 0 \text{ V}$ at INx	-10			
CMTI	Common-mode transient immunity	$V_I = V_{CC1}$ or 0 V; see Figure 6-4	100			kV/ μs
I_{CC1}	Supply current, Disable (ISO7820DWW and ISO7820FDWW only)	EN2 = 0V, $V_I = 0 \text{ V}$ (ISO7820FDWW), $V_I = V_{CC1}$ (ISO7820DWW)	0.8	1.3		mA
I_{CC2}			0.2	0.4		
I_{CC1}	Supply current, Disable (ISO7820DWW and ISO7820FDWW only)	EN2 = 0V, $V_I = V_{CC1}$ (ISO7820FDWW), $V_I = 0 \text{ V}$ (ISO7820DWW)	3.2	4.6		mA
I_{CC2}			0.2	0.4		
I_{CC1}	Supply current, DC Signal	$V_I = 0 \text{ V}$ (ISO7820F), $V_I = V_{CC1}$ (ISO7820)	0.9	1.3		mA
I_{CC2}			1.2	1.8		
I_{CC1}	Supply current, DC Signal	$V_I = V_{CC1}$ (ISO7820F), $V_I = 0 \text{ V}$ (ISO7820)	3.2	4.6		mA
I_{CC2}			1.3	2		

$V_{CC1} = V_{CC2} = 3.3 \text{ V} \pm 10\%$ (over recommended operating conditions unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
I_{CC1}	Supply current	1 Mbps		2.1	3		mA
I_{CC2}				1.3	2		
I_{CC1}	Supply current	10 Mbps	AC Signal: All channels switching with square wave clock input; $C_L = 15 \text{ pF}$	2.1	3		mA
I_{CC2}				2.3	3.8		
I_{CC1}	Supply current	100 Mbps		2.5	3.2		mA
I_{CC2}				8.9	11.5		

5.11 Electrical Characteristics, 2.5 V

$V_{CC1} = V_{CC2} = 2.5 \text{ V} \pm 10\%$ (over recommended operating conditions unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT		
V_{OH}	High-level output voltage	$I_{OH} = -1 \text{ mA}$; see Figure 6-1	$V_{CC2} - 0.4$	$V_{CC2} - 0.2$		V		
V_{OL}	Low-level output voltage	$I_{OL} = 1 \text{ mA}$; see Figure 6-1		0.2	0.4	V		
$V_{I(HYS)}$	Input threshold voltage hysteresis		$0.1 \times V_{CC2}$			V		
I_{IH}	High-level input current	$V_{IH} = V_{CC1}$ at INx			10	μA		
I_{IL}	Low-level input current	$V_{IL} = 0 \text{ V}$ at INx	-10					
CMTI	Common-mode transient immunity	$V_I = V_{CC1}$ or 0 V; see Figure 6-4	100			kV/ μs		
I_{CC1}	Supply current, Disable (ISO7820DWW and ISO7820FDWW only)	$EN2 = 0\text{V}$, $V_I = 0 \text{ V}$ (ISO7820FDWW), $V_I = V_{CC1}$ (ISO7820DWW)		0.8	1.3	mA		
I_{CC2}				0.2	0.4			
I_{CC1}	Supply current, Disable (ISO7820DWW and ISO7820FDWW only)	$EN2 = 0\text{V}$, $V_I = V_{CC1}$ (ISO7820FDWW), $V_I = 0 \text{ V}$ (ISO7820DWW)		3.2	4.6	mA		
I_{CC2}				0.2	0.4			
I_{CC1}	Supply current, DC Signal	$V_I = 0 \text{ V}$ (ISO7820F), $V_I = V_{CC1}$ (ISO7820)		0.9	1.3	mA		
I_{CC2}				1.2	1.8			
I_{CC1}	Supply current, DC Signal	$V_I = V_{CC1}$ (ISO7820F), $V_I = 0 \text{ V}$ (ISO7820)		3.2	4.6	mA		
I_{CC2}				1.3	2			
I_{CC1}	Supply current	1 Mbps	AC Signal: All channels switching with square wave clock input; $C_L = 15 \text{ pF}$		2.1	3	mA	
I_{CC2}					1.3	2		
I_{CC1}	Supply current	10 Mbps			2.1	3	mA	
I_{CC2}					1.8	2.7		
I_{CC1}	Supply current	100 Mbps			2.4	3.2	mA	
I_{CC2}					7	9.1		

5.12 Power Ratings

Table 5-2. IEC 60664-1 Ratings Table

PARAMETER		TEST CONDITIONS	SPECIFICATION
Material group			I
Overvoltage category / Installation classification	DW package	Rated mains voltage $\leq 600 \text{ V}_{\text{RMS}}$	I-IV
		Rated mains voltage $\leq 1000 \text{ V}_{\text{RMS}}$	I-III
	DWW package	Rated mains voltage $\leq 1000 \text{ V}_{\text{RMS}}$	I-IV

5.13 Switching Characteristics, 5 V

$V_{CC1} = V_{CC2} = 5 \text{ V} \pm 10\%$ (over recommended operating conditions unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{PLH}, t_{PHL}	Propagation delay time See Figure 6-1	6	10.7	16	ns
PWD ⁽¹⁾			0.6	4.6	
$t_{sk(o)}$ ⁽²⁾	Channel-to-channel output skew time			2.5	ns
$t_{sk(pp)}$ ⁽³⁾	Part-to-part skew time			4.5	ns
t_r	Output signal rise time See Figure 6-1	2.4	3.9	ns	
t_f		2.4	3.9		
t_{PHZ}	Disable propagation delay, high-to-high impedance output for ISO7820DWW and ISO7820FDWW		12	20	ns
t_{PLZ}	Disable propagation delay, low-to-high impedance output for ISO7820DWW and ISO7820FDWW		12	20	ns
t_{PZH}	Enable propagation delay, high impedance-to-high output for ISO7820DWW	See Figure 6-2	10	20	ns
	Enable propagation delay, high impedance-to-high output for ISO7820FDWW		2	2.5	μs
t_{PZL}	Enable propagation delay, high impedance-to-low output for ISO7820DWW		2	2.5	μs
	Enable propagation delay, high impedance-to-low output for ISO7820FDWW		10	20	ns
t_{fs}	Default output delay time from input power loss	Measured from the time V_{CC} goes below 1.7 V. See Figure 6-3	0.2	9	μs
t_{ie}	Time interval error	$2^{16} - 1$ PRBS data at 100 Mbps	1		ns

(1) Also known as Pulse Skew.

(2) $t_{sk(o)}$ is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.

(3) $t_{sk(pp)}$ is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

5.14 Switching Characteristics, 3.3 V

$V_{CC1} = V_{CC2} = 3.3 \text{ V} \pm 10\%$ (over recommended operating conditions unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{PLH}, t_{PHL}	Propagation delay time See Figure 6-1	6	10.8	16	ns
PWD ⁽¹⁾			0.7	4.7	
$t_{sk(o)}$ ⁽²⁾	Channel-to-channel output skew time			2.2	ns
$t_{sk(pp)}$ ⁽³⁾	Part-to-part skew time			4.5	ns
t_r	Output signal rise time See Figure 6-1	1.3	3	ns	
t_f		1.3	3		
t_{PHZ}	Disable propagation delay, high-to-high impedance output for ISO7820DWW and ISO7820FDWW		17	32	ns
t_{PLZ}	Disable propagation delay, low-to-high impedance output for ISO7820DWW and ISO7820FDWW		17	32	ns
t_{PZH}	Enable propagation delay, high impedance-to-high output for ISO7820DWW	See Figure 6-2	17	32	ns
	Enable propagation delay, high impedance-to-high output for ISO7820FDWW		2	2.5	μs
t_{PZL}	Enable propagation delay, high impedance-to-low output for ISO7820DWW		2	2.5	μs
	Enable propagation delay, high impedance-to-low output for ISO7820FDWW		17	32	ns
t_{fs}	Default output delay time from input power loss	Measured from the time V_{CC} goes below 1.7 V. See Figure 6-3	0.2	9	μs
t_{ie}	Time interval error	$2^{16} - 1$ PRBS data at 100 Mbps	1		ns

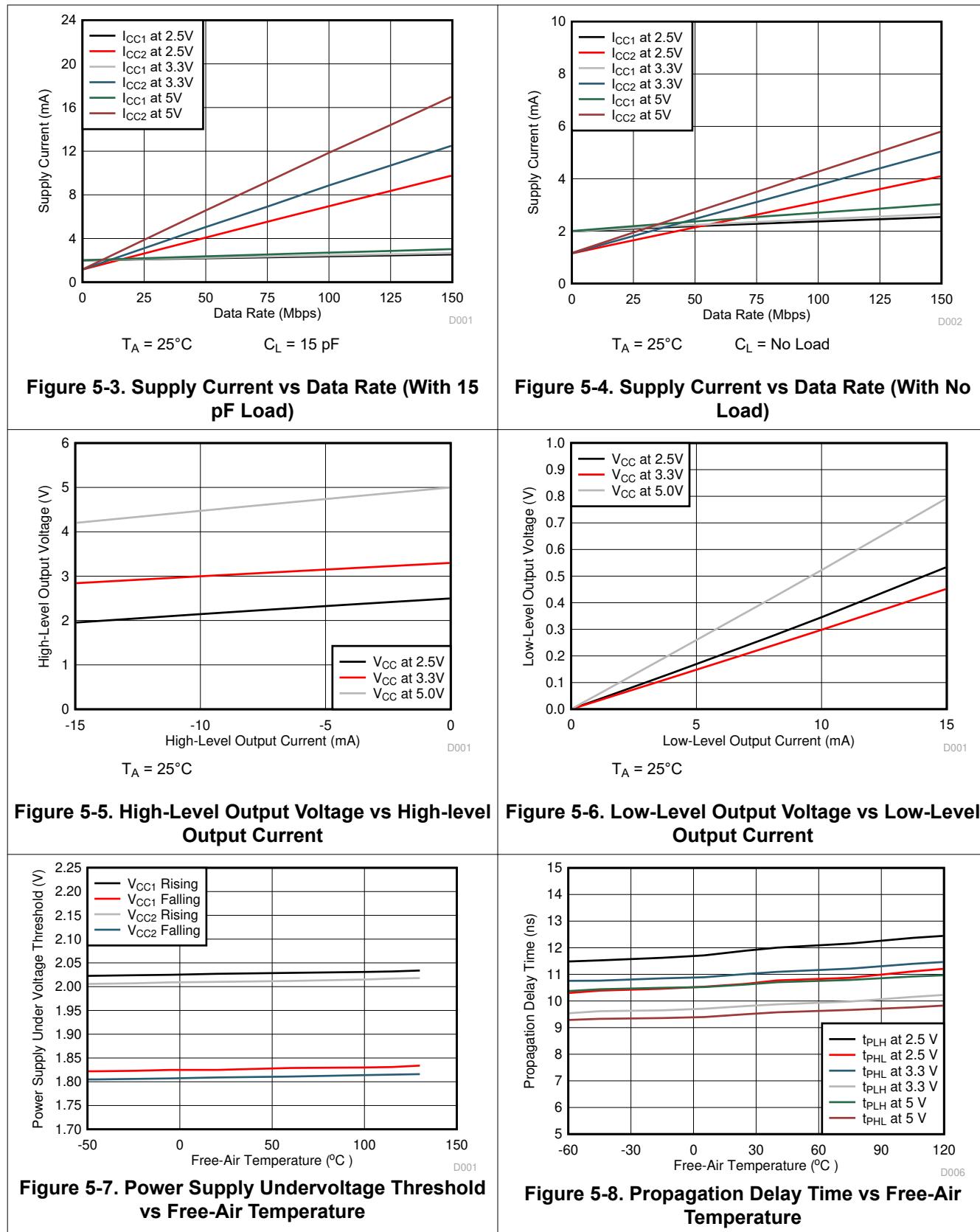
(1) Also known as Pulse Skew.

(2) $t_{sk(o)}$ is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.

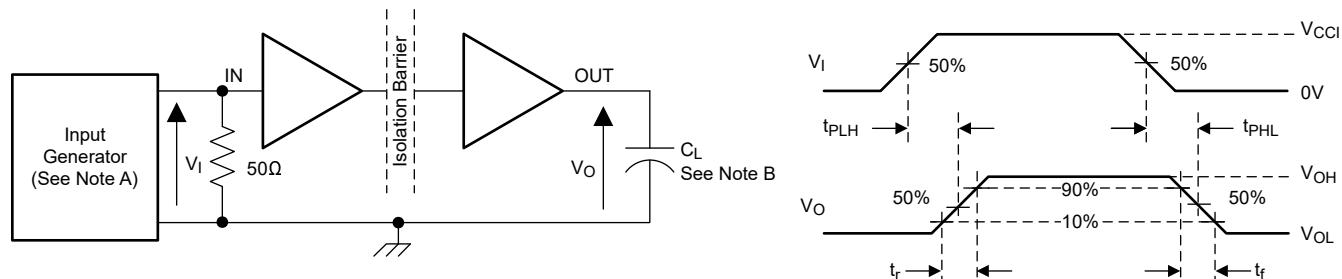
(3) $t_{sk(pp)}$ is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

5.15 Switching Characteristics, 2.5 V

$V_{CC1} = V_{CC2} = 2.5 \text{ V} \pm 10\%$ (over recommended operating conditions unless otherwise noted)

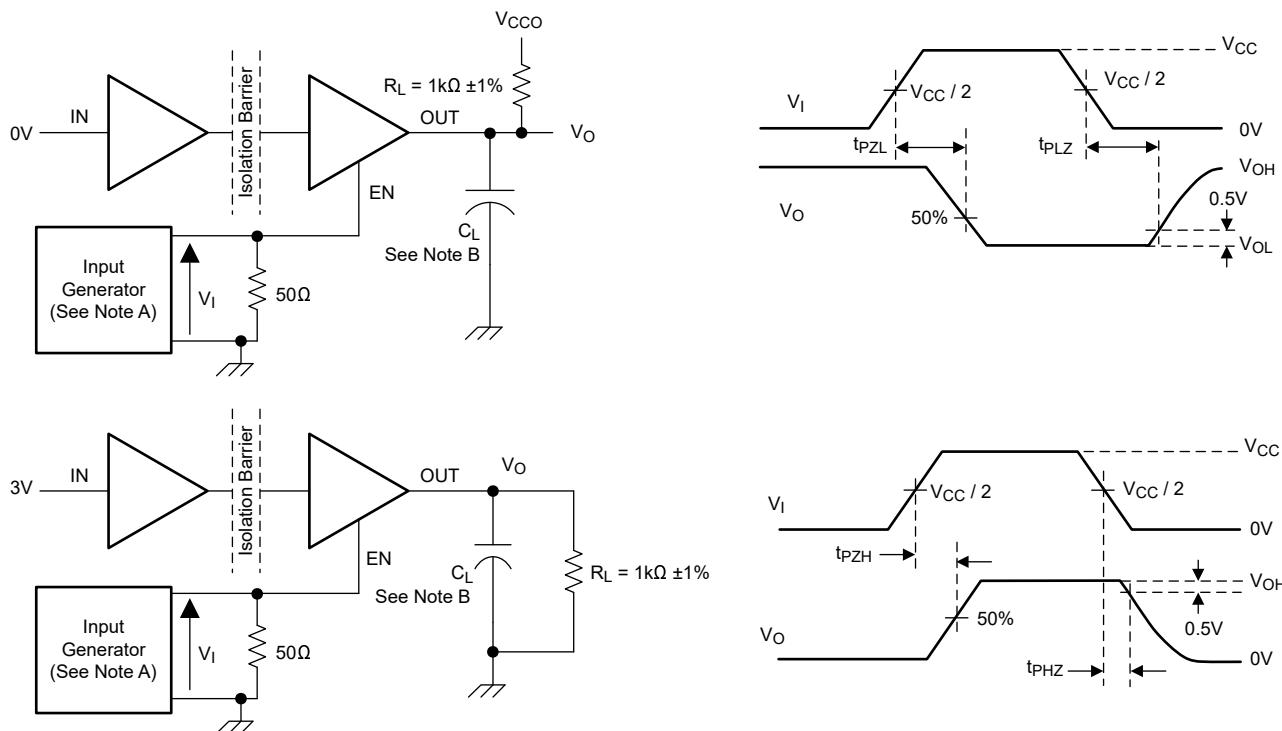

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t_{PLH}, t_{PHL}	Propagation delay time	See Figure 6-1	7.5	11.7	17.5	ns
PWD ⁽¹⁾	Pulse width distortion $ t_{PHL} - t_{PLH} $			0.7	4.7	
$t_{sk(o)}$ ⁽²⁾	Channel-to-channel output skew time				2.2	ns
$t_{sk(pp)}$ ⁽³⁾	Part-to-part skew time				4.5	
t_r	Output signal rise time	See Figure 6-1		1.8	3.5	ns
t_f	Output signal fall time			1.8	3.5	
t_{PHZ}	Disable propagation delay, high-to-high impedance output for ISO7820DWW and ISO7820FDWW			22	45	ns
t_{PLZ}	Disable propagation delay, low-to-high impedance output for ISO7820DWW and ISO7820FDWW			22	45	ns
t_{PZH}	Enable propagation delay, high impedance-to-high output for ISO7820DWW	See Figure 6-2		18	45	ns
	Enable propagation delay, high impedance-to-high output for ISO7820FDWW			2	2.5	μs
t_{PZL}	Enable propagation delay, high impedance-to-low output for ISO7820DWW			2	2.5	μs
	Enable propagation delay, high impedance-to-low output for ISO7820FDWW			18	45	ns
t_{ts}	Default output delay time from input power loss	Measured from the time V_{CC} goes below 1.7 V. See Figure 6-3		0.2	9	μs
t_{ie}	Time interval error	$2^{16} - 1$ PRBS data at 100 Mbps		1		ns

(1) Also known as Pulse Skew.


(2) $t_{sk(o)}$ is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads.

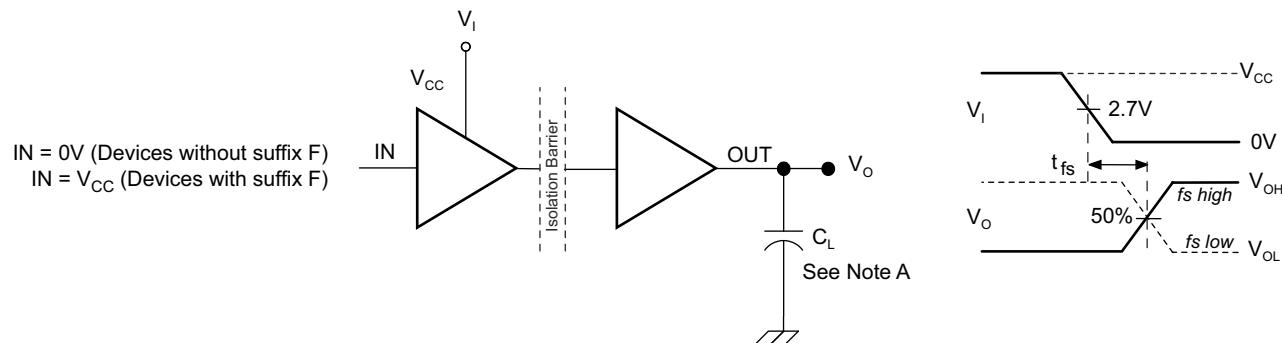
(3) $t_{sk(pp)}$ is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads.

5.16 Typical Characteristics


6 Parameter Measurement Information

A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, $t_r \leq 3$ ns, $t_f \leq 3$ ns, $Z_O = 50 \Omega$. At the input, 50 Ω resistor is required to terminate Input Generator signal. The 50 Ω resistor is not needed in actual application.

B. $C_L = 15$ pF and includes instrumentation and fixture capacitance within $\pm 20\%$.


Figure 6-1. Switching Characteristics Test Circuit and Voltage Waveforms

A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 10 kHz, 50% duty cycle, $t_r \leq 3$ ns, $t_f \leq 3$ ns, $Z_O = 50 \Omega$.

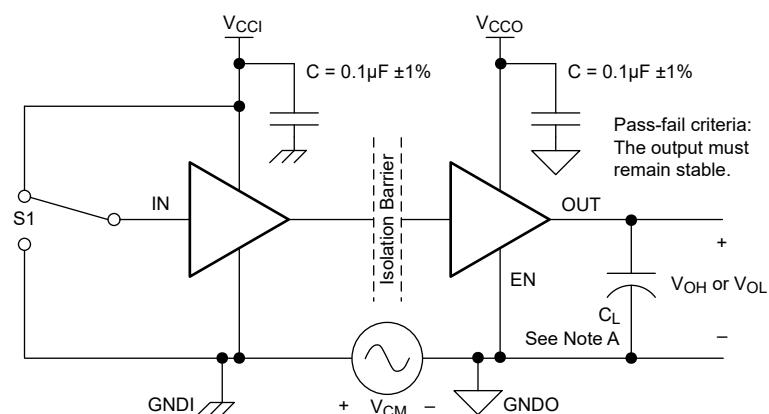
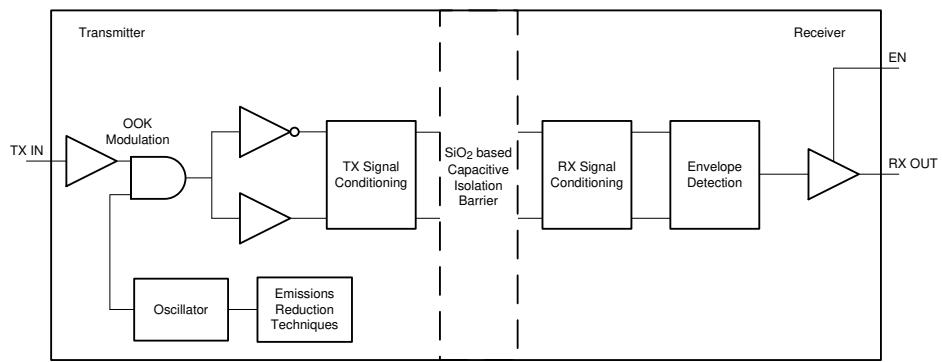

B. $C_L = 15$ pF and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 6-2. Enable/Disable Propagation Delay Time Test Circuit and Waveform

A. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 6-3. Default Output Delay Time Test Circuit and Voltage Waveforms

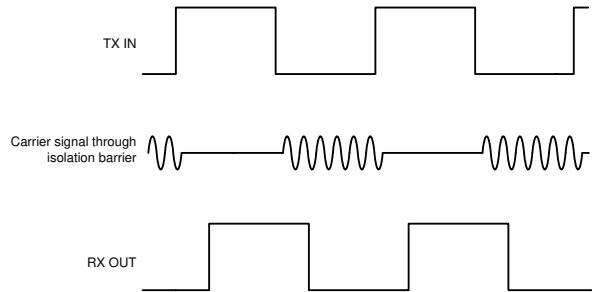
A. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within $\pm 20\%$.


Figure 6-4. Common-Mode Transient Immunity Test Circuit

7 Detailed Description

7.1 Overview

ISO7820 employs an ON-OFF Keying (OOK) modulation scheme to transmit the digital data across a silicon dioxide based isolation barrier. The transmitter sends a high frequency carrier across the barrier to represent one digital state and sends no signal to represent the other digital state. The receiver demodulates the signal after advanced signal conditioning and produces the output through a buffer stage. These devices also incorporates advanced circuit techniques to maximize the CMTI performance and minimize the radiated emissions due the high frequency carrier and IO buffer switching. The conceptual block diagram of a digital capacitive isolator, [Figure 7-1](#), shows a functional block diagram of a typical channel.


7.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

Figure 7-1. Conceptual Block Diagram of a Digital Capacitive Isolator

Also a conceptual detail of how the ON/OFF Keying scheme works is shown in [Figure 7-2](#).

Figure 7-2. On-Off Keying (OOK) Based Modulation Scheme

7.3 Feature Description

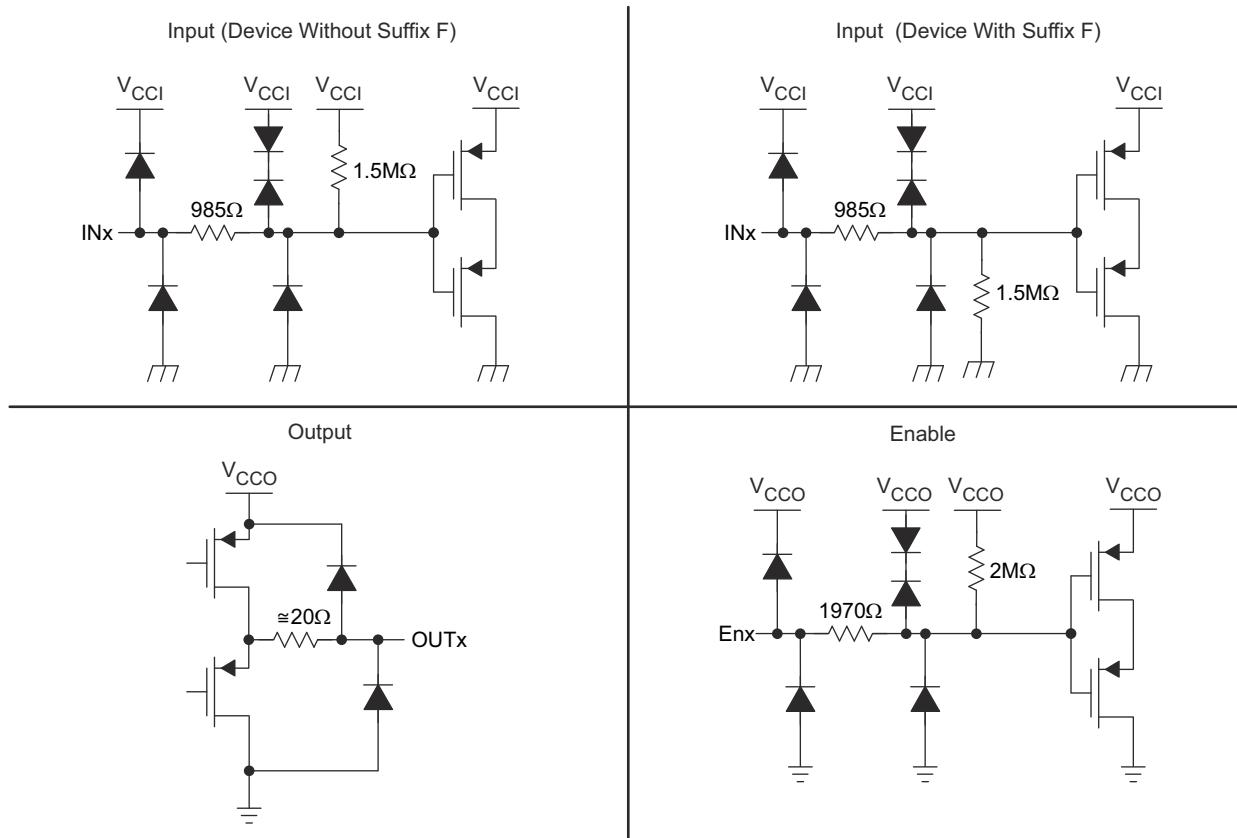
ISO7820 is available in two channel configurations and default output state options to enable a variety of application uses.

PRODUCT	CHANNEL DIRECTION	RATED ISOLATION	MAX DATA RATE	DEFAULT OUTPUT
ISO7820	2 Forward, 0 Reverse	5700 V _{RMS} / 8000 V _{PK} ⁽¹⁾	100 Mbps	High
ISO7820F	2 Forward, 0 Reverse	5700 V _{RMS} / 8000 V _{PK} ⁽¹⁾	100 Mbps	Low

(1) See the [Regulatory Information](#) section for detailed isolation ratings.

7.4 Device Functional Modes

ISO7820 functional modes are shown in [Table 7-1](#).


Table 7-1. ISO7820 Function Table

V_{CCI}	V_{CCO}	INPUT (INx) ⁽²⁾	OUTPUT ENABLE (EN2) (DWW Package Only)	OUTPUT (OUTx)	COMMENTS
PU	PU	H	H or open	H	Normal Operation: A channel output assumes the logic state of the input.
		L	H or open	L	
		Open	H or open	Default	Default mode: When INx is open, the corresponding channel output goes to the default high logic state. Default= High for ISO7820 and Low for ISO7820F.
X	PU	X	L	Z	A low value of Output Enable causes the outputs to be high-impedance.
PD	PU	X	H or open	Default	Default mode: When V_{CCI} is unpowered, a channel output assumes the logic state based on the selected default option. Default= High for ISO7820 and Low for ISO7820F. When V_{CCI} transitions from unpowered to powered-up, a channel output assumes the logic state of the input. When V_{CCI} transitions from powered-up to unpowered, channel output assumes the selected default state.
X	PD	X	X	Undetermined	When V_{CCO} is unpowered, a channel output is undetermined ⁽¹⁾ . When V_{CCO} transitions from unpowered to powered-up, a channel output assumes the logic state of the input

(1) The outputs are in undetermined state when $1.7 \text{ V} < V_{CCI}, V_{CCO} < 2.25 \text{ V}$.

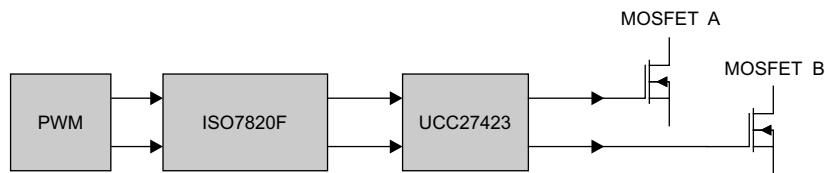
(2) A strongly driven input signal can weakly power the floating V_{CC} using an internal protection diode and cause undetermined output.

7.4.1 Device I/O Schematics

Figure 7-3. Device I/O Schematics

8 Application and Implementation

Note


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

The ISO7820 is a high-performance, dual-channel digital isolator with 5.7 kV_{RMS} isolation voltage per UL 1577. The device uses single-ended CMOS-logic switching technology. The supply voltage range is from 2.25 V to 5.5 V for both supplies, V_{CC1} and V_{CC2} . Keep in mind that when designing with digital isolators, due to the single-ended design structure, digital isolators do not conform to any specific interface standard and are only intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the data controller (that is, μ C or UART), and a data converter or a line transceiver, regardless of the interface type or standard.

8.2 Typical Application

ISO7820F can be used to isolate power MOSFETs from sensitive logic circuitry in Switch Mode Power Supplies (SMPS) as shown below.

Figure 8-1. Isolated Switch Mode Power Supply

8.2.1 Design Requirements

For the ISO7820, use the parameters shown in [Table 8-1](#).

Table 8-1. Design Parameters

PARAMETER	VALUE
Supply voltage	2.25 V to 5.5 V
Decoupling capacitor between V_{CC1} and GND1	0.1 μ F
Decoupling capacitor from V_{CC2} and GND2	0.1 μ F

8.2.2 Detailed Design Procedure

Unlike optocouplers, which need external components to improve performance, provide bias, or limit current, ISO7820 only needs two external bypass capacitors to operate.

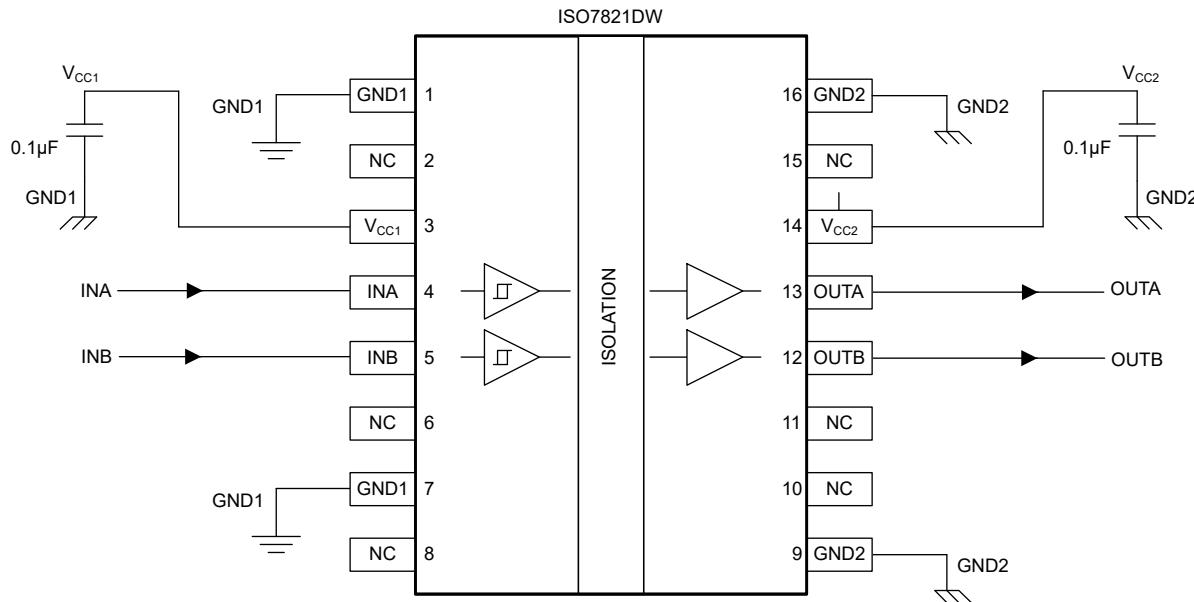


Figure 8-2. Typical ISO7820 Circuit Hook-up

8.2.2.1 Electromagnetic Compatibility (EMC) Considerations

Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge (ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level performance and reliability depends, to a large extent, on the application board design and layout, the ISO7820 incorporate many chip-level design improvements for overall system robustness. Some of these improvements include:

- Robust ESD protection for input and output signal pins and inter-chip bond pads.
- Low-resistance connectivity of ESD cells to supply and ground pins.
- Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.
- Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance path.
- PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic SCRs.
- Reduced common mode currents across the isolation barrier by providing purely differential internal operation.

8.2.3 Application Performance Curve

Typical eye diagram of ISO7820 indicate low jitter and wide open eye at the maximum data rate of 100 Mbps.

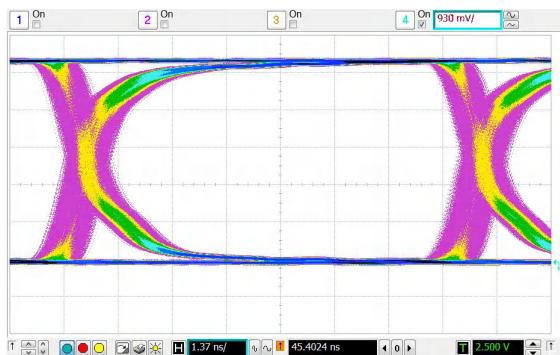


Figure 8-3. Eye Diagram at 100 Mbps PRBS, 5 V and 25°C

8.3 Power Supply Recommendations

To provide reliable operation at all data rates and supply voltages, a 0.1 μ F bypass capacitor is recommended at input and output supply pins (V_{CC1} and V_{CC2}). The capacitors must be placed as close to the supply pins as possible. If only a single primary-side power supply is available in an application, isolated power can be generated for the secondary-side with the help of a transformer driver such as Texas Instruments' [SN6501](#). For such applications, detailed power supply design and transformer selection recommendations are available in SN6501 data sheet ([SLLSEA0](#)).

8.4 Layout

8.4.1 PCB Material

For digital circuit boards operating below 150 Mbps, (or rise and fall times higher than 1 ns), and trace lengths of up to 10 inches, use standard FR-4 epoxy-glass as PCB material. FR-4 (Flame Retardant 4) meets the requirements of Underwriters Laboratories UL94-V0, and is preferred over cheaper alternatives due to the lower dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and the self-extinguishing flammability-characteristics.

8.4.2 Layout Guidelines

A minimum of four layers is required to accomplish a low EMI PCB design (see [Figure 8-4](#)). Layer stacking must be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency signal layer.

- Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of the inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits of the data link.
- Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for transmission line interconnects and provides an excellent low-inductance path for the return current flow.
- Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of approximately 100 pF/in².
- Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links typically have margin to tolerate discontinuities such as vias.

If an additional supply voltage plane or signal layer is needed, add a second power / ground plane system to the stack to keep the planes symmetrical. This makes the stack mechanically stable and prevents warping. Also the power and ground plane of each power system can be placed closer together, thus increasing the high-frequency bypass capacitance significantly.

For detailed layout recommendations, see Application Note [SLLA284](#), *Digital Isolator Design Guide*.

8.4.3 Layout Example

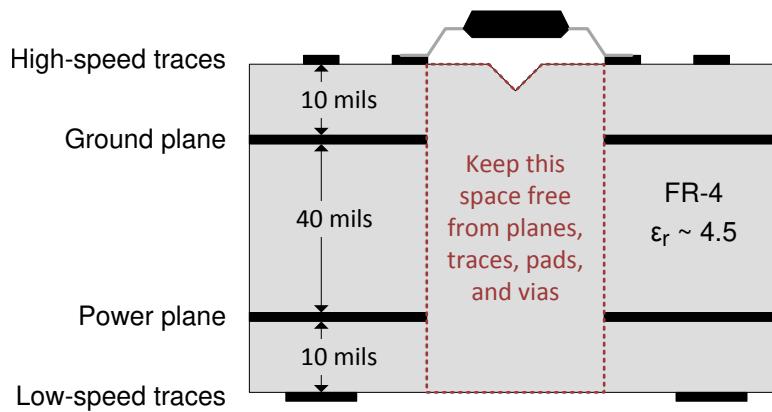


Figure 8-4. Layout Example

9 Device and Documentation Support

9.1 Related Documentation

9.1.1 Related Documentation

See the *Isolation Glossary* ([SLLA353](#))

9.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on [ti.com](#). Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.3 Support Resources

[TI E2E™ support forums](#) are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

9.4 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.5 Electrostatic Discharge Caution

 This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.6 Glossary

[TI Glossary](#) This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

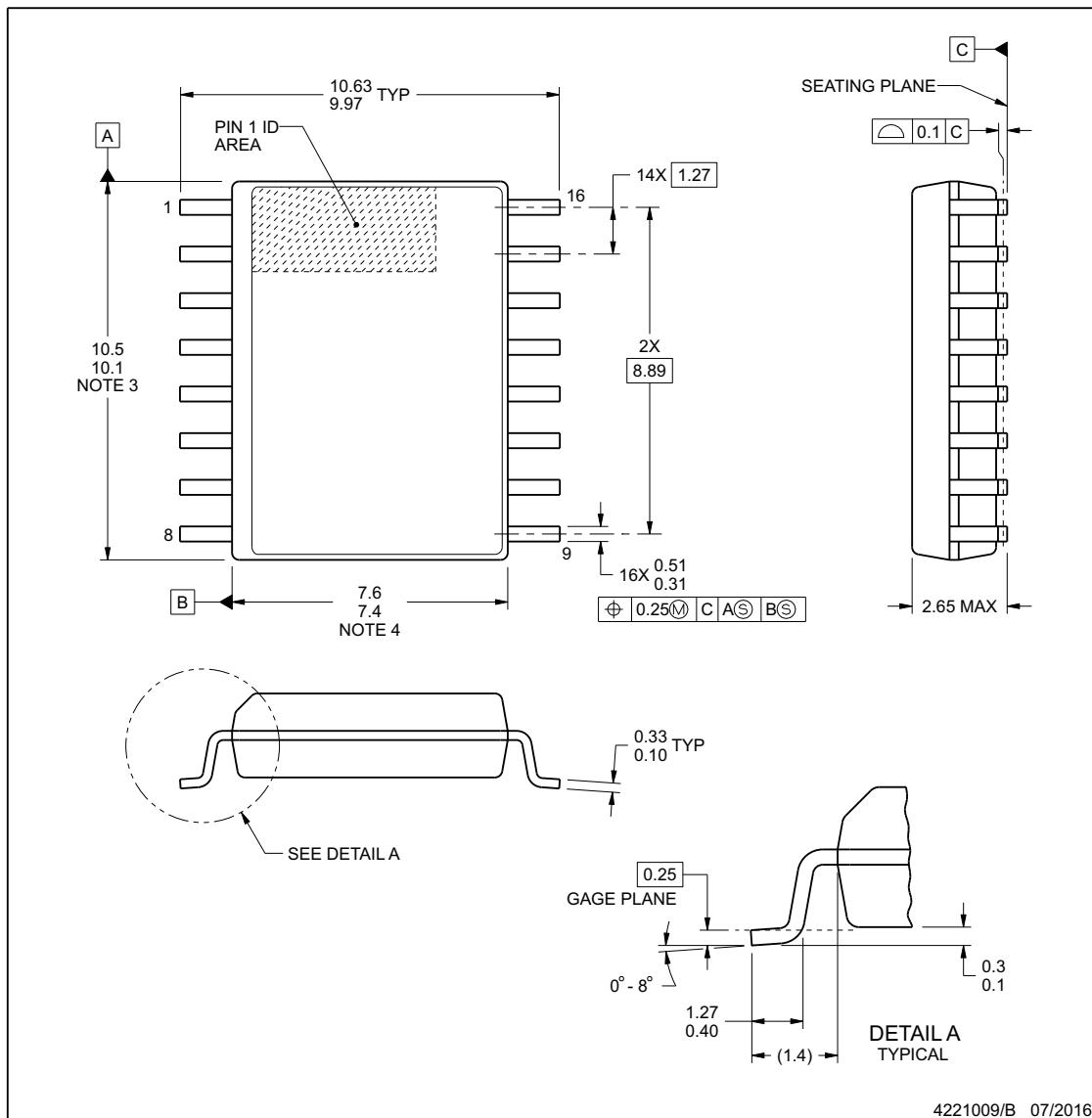
Changes from Revision A (February 2016) to Revision B (July 2025)	Page
• Updated the numbering format for tables, figures, and cross-references throughout the document.....	1
• Added Note (3) to the Section 5.1 table.....	5
• Changed Note (1) of the Section 5.3 table	5
• Added the Section 5.5 table	6
• Changed <i>Insulation Specifications</i> Table.....	7
• Added 15mm(typ) creepage/clearance to <i>Insulation Specifications</i> table.....	7
• Changed Note (1) of Table 7-1	20

Changes from Revision * (July 2015) to Revision A (February 2016)	Page
• Changed the Safety and Regulatory Approvals list of Section 1	1
• Changed Section 1 From: 8000V _{PK} V _{IOTM} and 2121V _{PK} V _{IORM} Reinforced. To: 8000 V _{PK} Reinforced.....	1
• Added Section 1 "TUV Certification per EN 61010-1 and EN 60950-1"	1
• Added package: Extra wide SOIC, DWW (16) to the <i>Device Information</i> table	1
• Changed text in the first paragraph of the <i>Description</i> From: "certifications according to VDE, CSA, and CQC". To: "certifications according to VDE, CSA, CQC, and TUV."	1
• Changed the <i>Simplified Schematic</i>	1

• Added the DWW pinout image	3
• Changed From: V_{CCX} To: V_{CC0} In I_{OH} and I_{OL} of the Section 5.3 table	5
• Changed From: V_{CCX} To: V_{CC1} In V_{IH} and V_{IL} of the Section 5.3 table	5
• Added the DWW package to the Section 5.4	6
• Changed Table 1, added DWW package information.....	7
• Added Note 1 to the <i>Electrical Characteristics</i> sections	7
• Added "Climatic category" to Table 2 and deleted Note 1	7
• Changed the CSA column in #GUID-D3964435-6A8F-4617-9AA3-376809AEBF94/SLLSEM25800	8
• Added TUV to the Section 5.7 section and #GUID-D3964435-6A8F-4617-9AA3-376809AEBF94/SLLSEM25800 . Deleted Note 1 in Table 4	8
• Changed the Supply Current section of the Section 5.9 to include the DWW package information	10
• Deleted Note 1 From the Section 5.9	10
• Changed the Supply Current section of the Section 5.10 to include the DWW package information	10
• Deleted Note 1 From the Section 5.10	10
• Changed the Supply Current section of the Section 5.11 to include the DWW package information	12
• Deleted Note 1 From the Section 5.11	12
• Added "Channel-to-channel output skew time" to Section 5.13	13
• Added "Channel-to-channel output skew time" to Section 5.14	13
• Added "Channel-to-channel output skew time" to Section 5.15	14
• Changed Table 7-1	20
• Changed Figure 7-3	20
• Changed the Section 8.2 text and Figure 8-1	21

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.



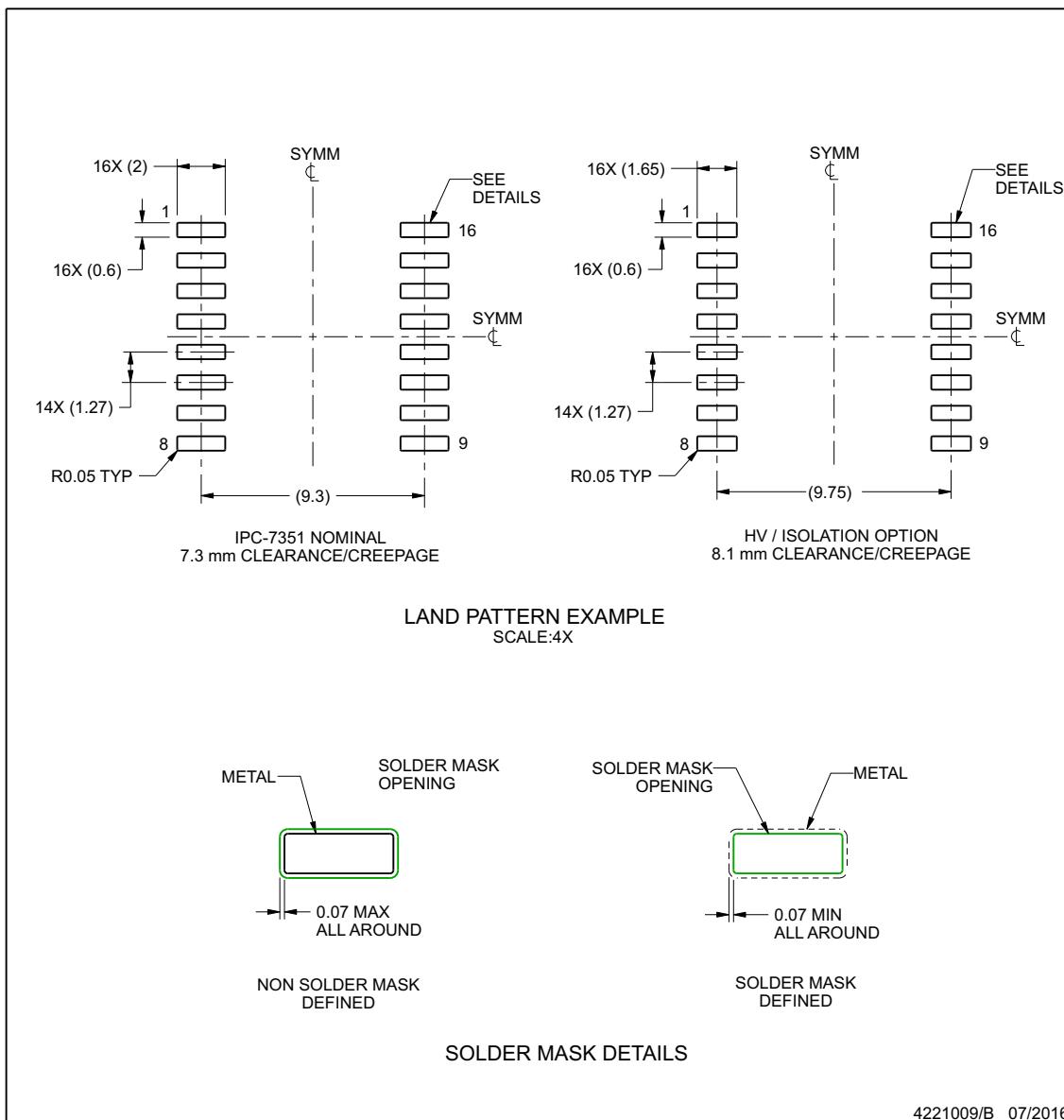
DW0016B

PACKAGE OUTLINE

SOIC - 2.65 mm max height

SOIC

NOTES:


1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
5. Reference JEDEC registration MS-013.

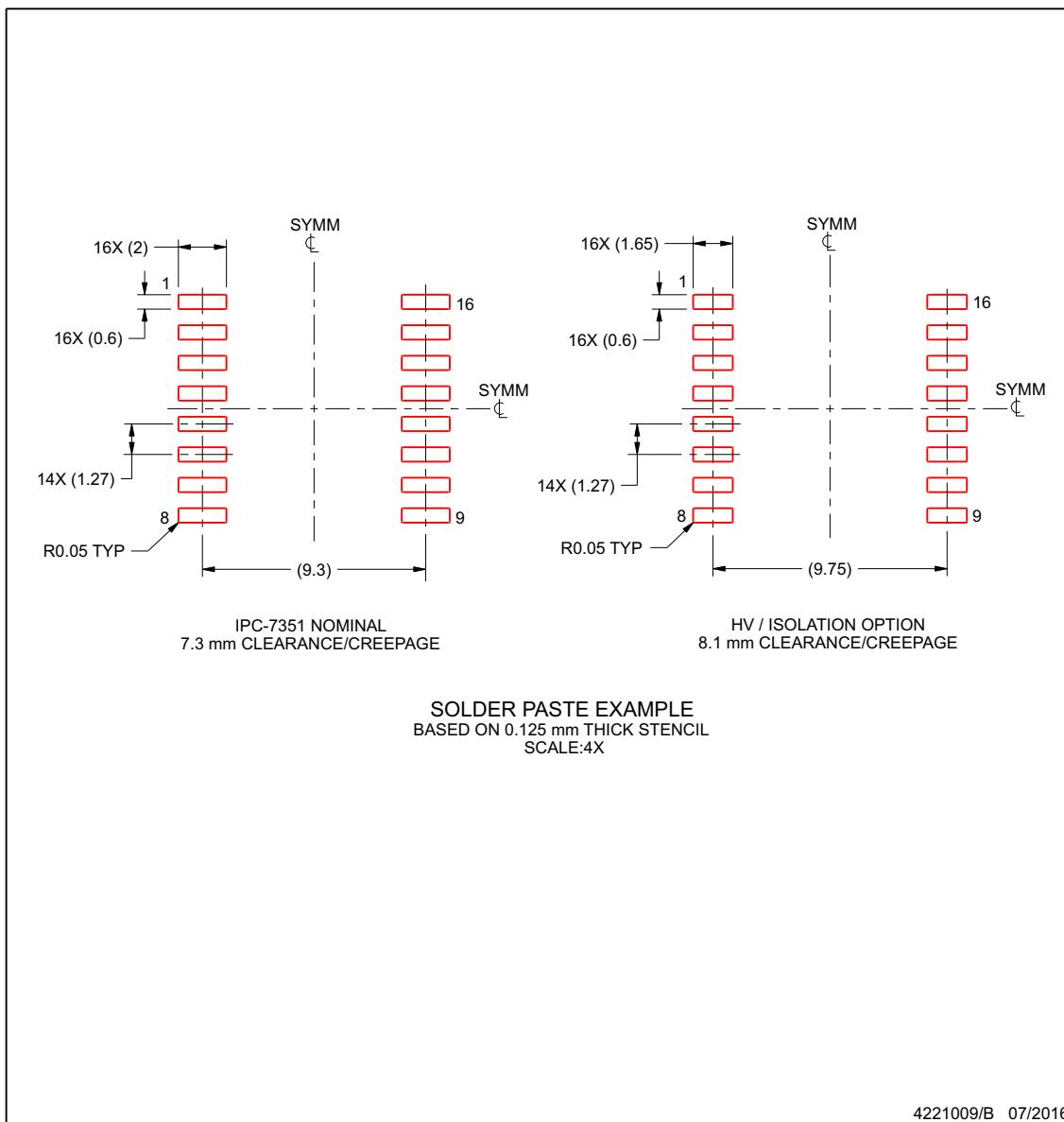
www.ti.com

EXAMPLE BOARD LAYOUT

DW0016B
SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

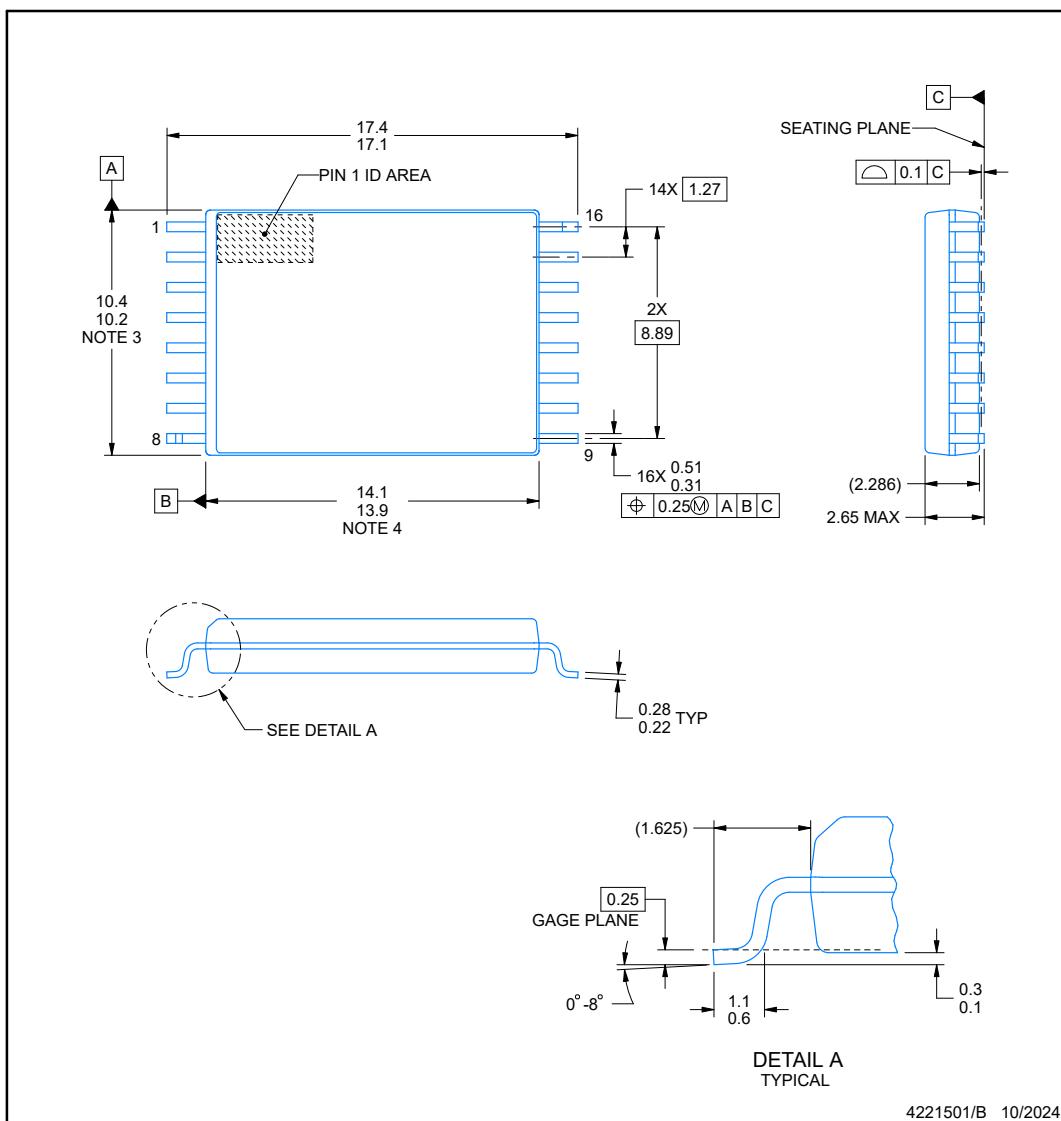

6. Publication IPC-7351 may have alternate designs.
 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

DW0016B

SOIC - 2.65 mm max height

SOIC

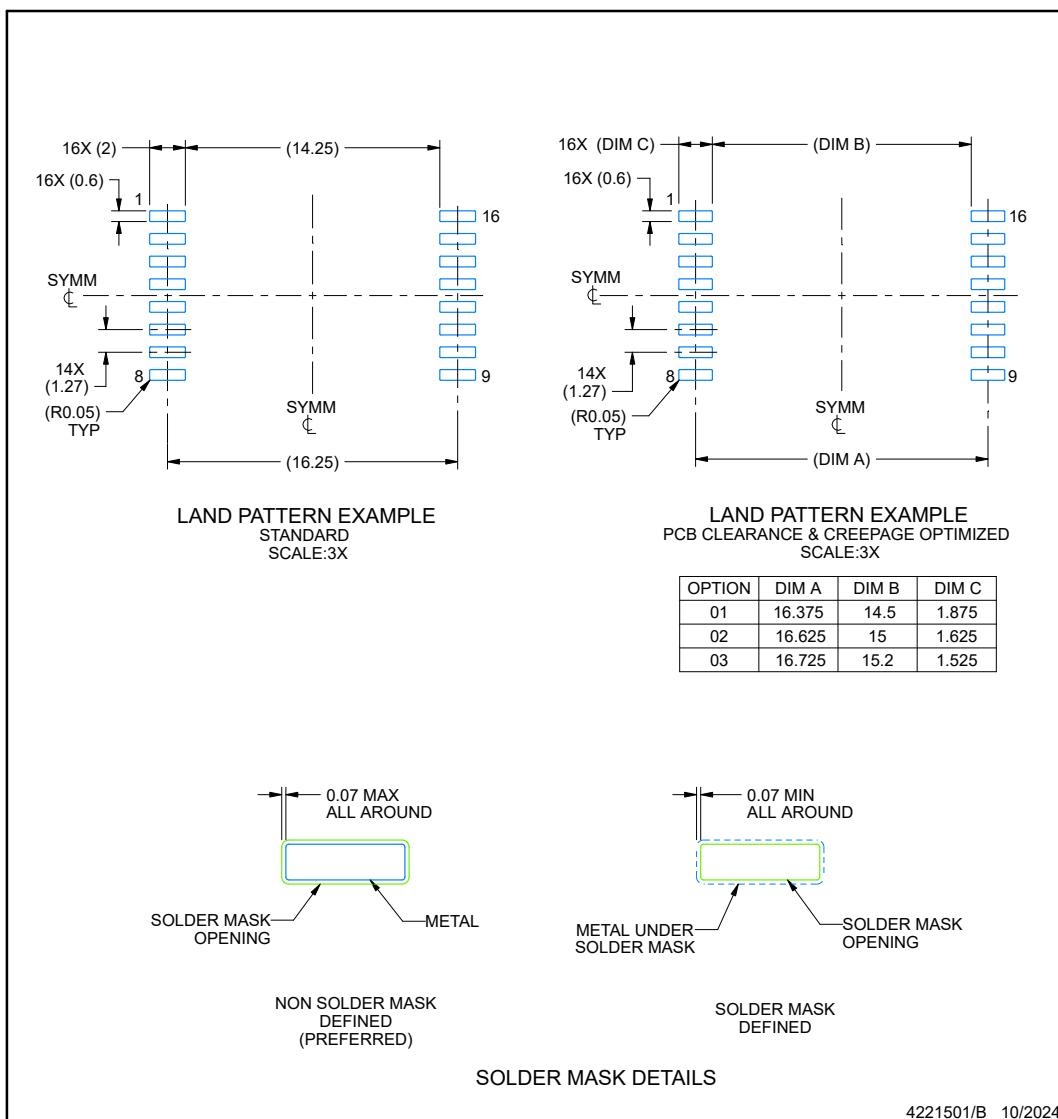


NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

DWW0016A**PACKAGE OUTLINE****SOIC - 2.65 mm max height**

PLASTIC SMALL OUTLINE

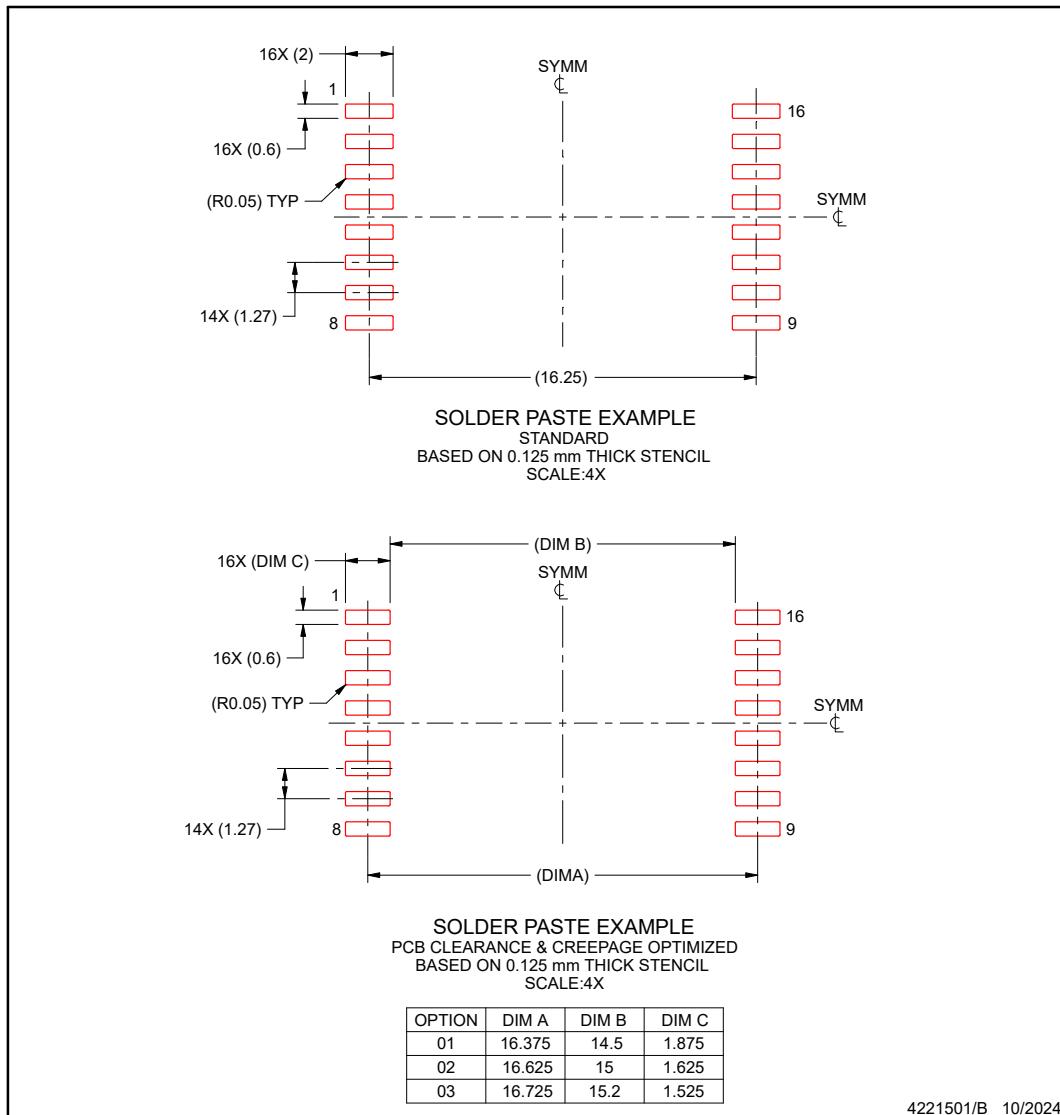


EXAMPLE BOARD LAYOUT

DWW0016A

SOIC - 2.65 mm max height

PLASTIC SMALL OUTLINE


NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

DWW0016A
SOIC - 2.65 mm max height

PLASTIC SMALL OUTLINE

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
 8. Board assembly site may have different recommendations for stencil design.

PACKAGING INFORMATION

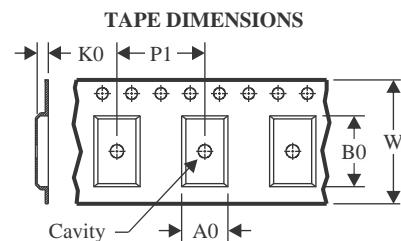
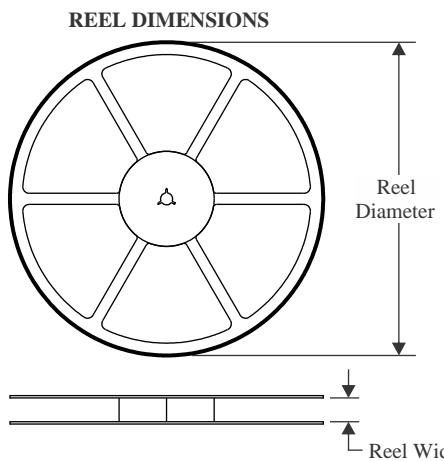
Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
ISO7820DW	Active	Production	SOIC (DW) 16	40 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-55 to 125	ISO7820
ISO7820DW.A	Active	Production	SOIC (DW) 16	40 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-55 to 125	ISO7820
ISO7820DWR	Active	Production	SOIC (DW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-55 to 125	ISO7820
ISO7820DWR.A	Active	Production	SOIC (DW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-55 to 125	ISO7820
ISO7820DWW	Active	Production	SOIC (DWW) 16	45 TUBE	Yes	NIPDAU	Level-3-260C-168 HR	-55 to 125	ISO7820
ISO7820DWW.A	Active	Production	SOIC (DWW) 16	45 TUBE	Yes	NIPDAU	Level-3-260C-168 HR	-55 to 125	ISO7820
ISO7820DWWR	Active	Production	SOIC (DWW) 16	1000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-55 to 125	ISO7820
ISO7820DWWR.A	Active	Production	SOIC (DWW) 16	1000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-55 to 125	ISO7820
ISO7820FDW	Active	Production	SOIC (DW) 16	40 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-55 to 125	ISO7820F
ISO7820FDW.A	Active	Production	SOIC (DW) 16	40 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-55 to 125	ISO7820F
ISO7820FDWR	Active	Production	SOIC (DW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-55 to 125	ISO7820F
ISO7820FDWR.A	Active	Production	SOIC (DW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-55 to 125	ISO7820F
ISO7820FDWW	Active	Production	SOIC (DWW) 16	45 TUBE	Yes	NIPDAU	Level-3-260C-168 HR	-55 to 125	ISO7820F
ISO7820FDWW.A	Active	Production	SOIC (DWW) 16	45 TUBE	Yes	NIPDAU	Level-3-260C-168 HR	-55 to 125	ISO7820F
ISO7820FDWWR	Active	Production	SOIC (DWW) 16	1000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-55 to 125	ISO7820F
ISO7820FDWWR.A	Active	Production	SOIC (DWW) 16	1000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-55 to 125	ISO7820F

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

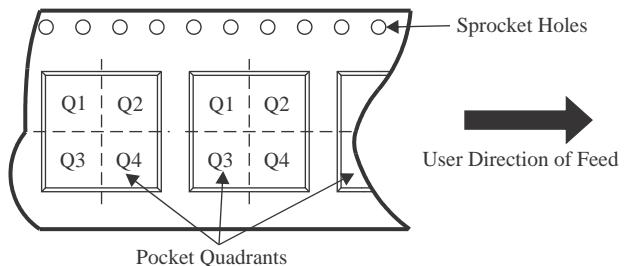
⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

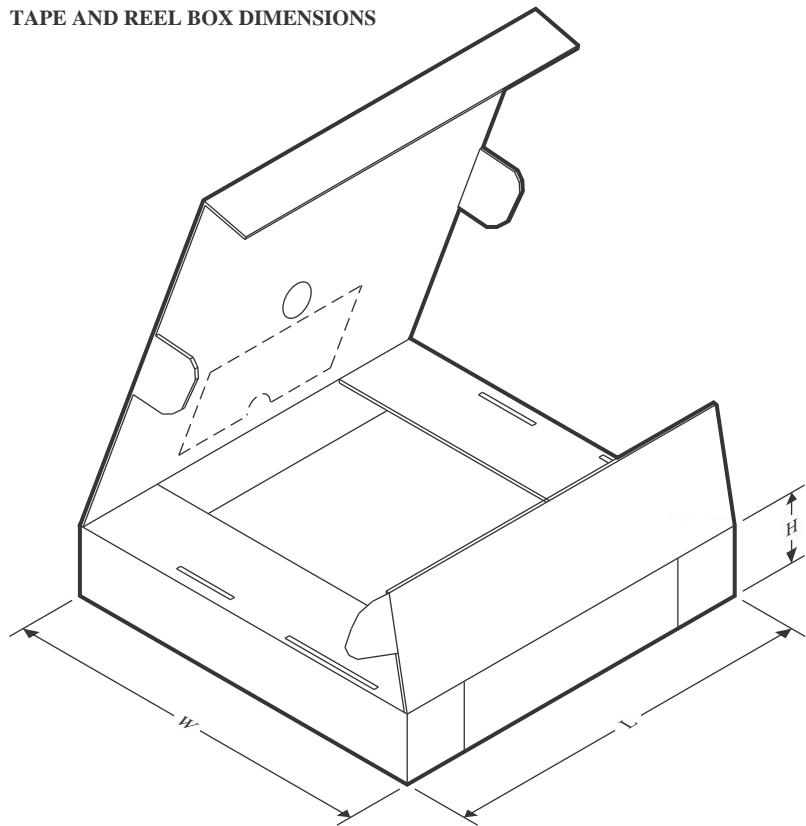


⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

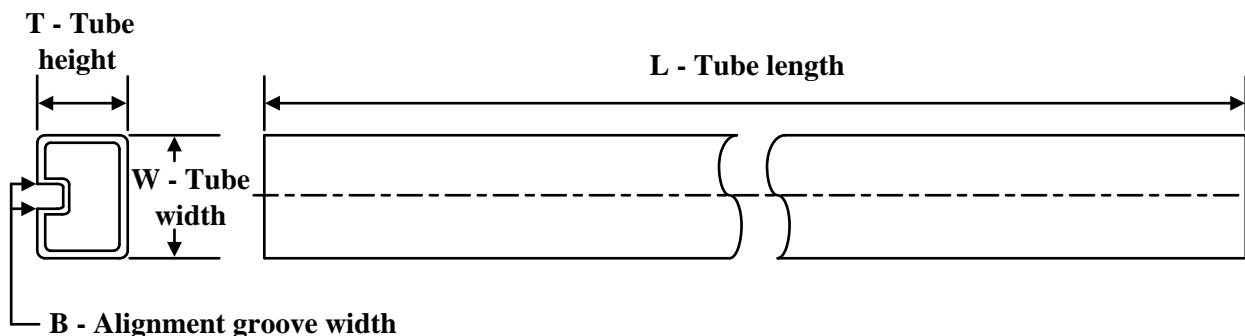
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ISO7820DWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO7820DWWR	SOIC	DWW	16	1000	330.0	24.4	18.0	10.0	3.0	20.0	24.0	Q1
ISO7820FDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO7820FDWWR	SOIC	DWW	16	1000	330.0	24.4	18.0	10.0	3.0	20.0	24.0	Q1

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ISO7820DWR	SOIC	DW	16	2000	350.0	350.0	43.0
ISO7820DWWR	SOIC	DWW	16	1000	350.0	350.0	43.0
ISO7820FDWR	SOIC	DW	16	2000	350.0	350.0	43.0
ISO7820FDWWR	SOIC	DWW	16	1000	350.0	350.0	43.0

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (μ m)	B (mm)
ISO7820DW	DW	SOIC	16	40	506.98	12.7	4826	6.6
ISO7820DW.A	DW	SOIC	16	40	506.98	12.7	4826	6.6
ISO7820DWW	DWW	SOIC	16	45	507	20	5000	9
ISO7820DWW.A	DWW	SOIC	16	45	507	20	5000	9
ISO7820FDW	DW	SOIC	16	40	506.98	12.7	4826	6.6
ISO7820FDW.A	DW	SOIC	16	40	506.98	12.7	4826	6.6
ISO7820FDWW	DWW	SOIC	16	45	507	20	5000	9
ISO7820FDWW.A	DWW	SOIC	16	45	507	20	5000	9

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025