

# LMC646x Dual and Quad, Micropower, Rail-to-Rail Input/Output, CMOS Operational Amplifiers

## 1 Features

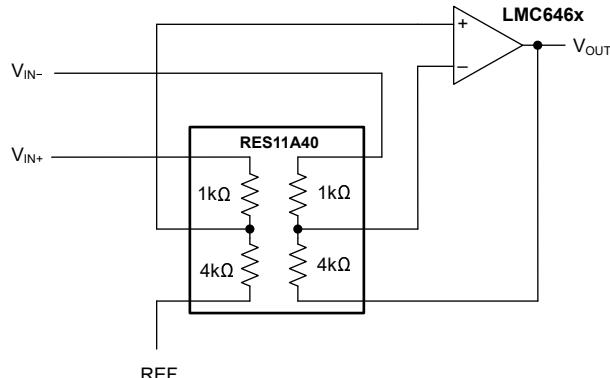
- Typical values unless otherwise noted
- Ultra low supply current; 20 $\mu$ A/amplifier
- Specified characteristics at 3V and 5V
- Rail-to-rail input common-mode voltage range
- Rail-to-rail output swing
  - Within 10mV of rail,  $V_S = 5V$  and  $R_L = 25k\Omega$
- Low input current: 150fA
- Low input offset voltage: 0.25mV

## 2 Applications

- Battery-operated circuits
- Transducer interface circuits
- Portable-communication devices
- Medical applications
- Battery monitoring

## 3 Description

The LMC6462 and LMC6464 (LMC646x) are micropower versions of the popular LMC6482 and LMC6484, combining a rail-to-rail input and output range with very low power consumption.


The LMC646x provide an input common-mode voltage range that exceeds both rails. The rail-to-rail output swing of the amplifiers, specified for loads down to 25k $\Omega$ , provides maximum dynamic signal range. This rail-to-rail performance of the amplifiers, combined with a high voltage gain, makes these device unique among rail-to-rail amplifiers. The LMC646x are an excellent upgrade for circuits using limited common-mode range amplifiers.

The LMC646x, with specifications at 3V and 5V, is an excellent choice for low-voltage applications. A quiescent power consumption of 60 $\mu$ W per amplifier (at  $V_S = 3V$ ) can extend the useful life of battery-operated systems. The 150fA input current, low offset voltage of 0.25mV, and 85dB CMRR maintain accuracy in battery-powered systems.

## Device Information

| PART NUMBER | CHANNEL COUNT | PACKAGE <sup>(1)</sup> |
|-------------|---------------|------------------------|
| LMC6462     | Dual          | D (SOIC, 8)            |
|             |               | P (PDIP, 8)            |
| LMC6464     | Quad          | D (SOIC, 14)           |
|             |               | N (PDIP, 14)           |

(1) For more information, see [Section 10](#).



**Difference Amplifier With RES11A**



An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

## Table of Contents

|                                                                          |           |                                                                 |           |
|--------------------------------------------------------------------------|-----------|-----------------------------------------------------------------|-----------|
| <b>1 Features.....</b>                                                   | <b>1</b>  | <b>7 Application and Implementation.....</b>                    | <b>16</b> |
| <b>2 Applications.....</b>                                               | <b>1</b>  | 7.1 Application Information.....                                | 16        |
| <b>3 Description.....</b>                                                | <b>1</b>  | 7.2 Typical Applications.....                                   | 21        |
| <b>4 Pin Configuration and Functions.....</b>                            | <b>2</b>  | 7.3 Layout.....                                                 | 24        |
| <b>5 Specifications.....</b>                                             | <b>4</b>  | <b>8 Device and Documentation Support.....</b>                  | <b>26</b> |
| 5.1 Absolute Maximum Ratings.....                                        | 4         | 8.1 Device Support.....                                         | 26        |
| 5.2 ESD Ratings.....                                                     | 4         | 8.2 Documentation Support.....                                  | 26        |
| 5.3 Recommended Operating Conditions.....                                | 4         | 8.3 Receiving Notification of Documentation Updates.....        | 26        |
| 5.4 Thermal Information for LMC6462.....                                 | 5         | 8.4 Support Resources.....                                      | 26        |
| 5.5 Thermal Information for LMC6464.....                                 | 5         | 8.5 Trademarks.....                                             | 26        |
| 5.6 Electrical Characteristics for $V_S = \pm 2.25V$ or $V_S = 5V$ ..... | 6         | 8.6 Electrostatic Discharge Caution.....                        | 26        |
| 5.7 Electrical Characteristics for $V_S = \pm 1.5V$ or $V_S = 3V$ .....  | 10        | 8.7 Glossary.....                                               | 26        |
| <b>6 Typical Characteristics.....</b>                                    | <b>11</b> | <b>9 Revision History.....</b>                                  | <b>26</b> |
|                                                                          |           | <b>10 Mechanical, Packaging, and Orderable Information.....</b> | <b>28</b> |

## 4 Pin Configuration and Functions

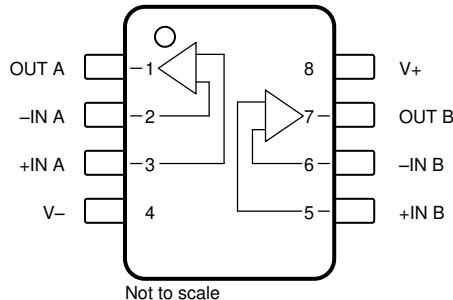
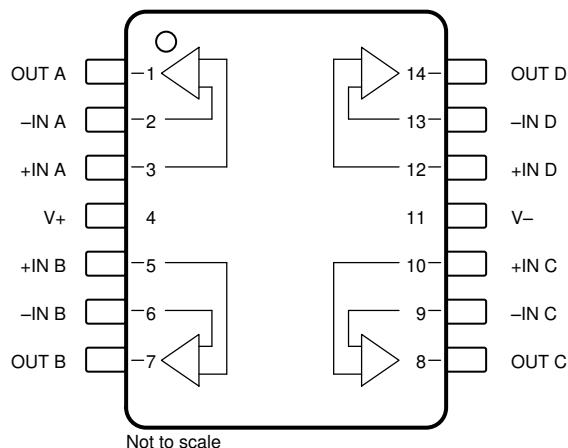




Figure 4-1. LMC6462: D Package, 8-Pin SOIC, and P Package, 8-Pin PDIP (Top View)

Table 4-1. Pin Functions: LMC6462

| PIN   |     | TYPE   | DESCRIPTION                  |
|-------|-----|--------|------------------------------|
| NAME  | NO. |        |                              |
| -IN A | 2   | Input  | Inverting input channel A    |
| -IN B | 6   | Input  | Inverting input channel B    |
| +IN A | 3   | Input  | Noninverting input channel A |
| +IN B | 5   | Input  | Noninverting input channel B |
| OUT A | 1   | Output | Output channel A             |
| OUT B | 7   | Output | Output channel B             |
| V-    | 4   | Power  | Negative supply              |
| V+    | 8   | Power  | Positive supply              |



**Figure 4-2. LMC6464: D Package, 14-Pin SOIC, and N Package, 14-Pin PDIP (Top View)**

**Table 4-2. Pin Functions: LMC6464**

| PIN   |     | TYPE   | DESCRIPTION                  |
|-------|-----|--------|------------------------------|
| NAME  | NO. |        |                              |
| -IN A | 2   | Input  | Inverting input channel A    |
| -IN B | 6   | Input  | Inverting input channel B    |
| -IN C | 9   | Input  | Inverting input channel C    |
| -IN D | 13  | Input  | Inverting input channel D    |
| +IN A | 3   | Input  | Noninverting input channel A |
| +IN B | 5   | Input  | Noninverting input channel B |
| +IN C | 10  | Input  | Noninverting input channel C |
| +IN D | 12  | Input  | Noninverting input channel D |
| OUT A | 1   | Output | Output channel A             |
| OUT B | 7   | Output | Output channel B             |
| OUT C | 8   | Output | Output channel C             |
| OUT D | 14  | Output | Output channel D             |
| V-    | 11  | Power  | Negative supply              |
| V+    | 4   | Power  | Positive supply              |

## 5 Specifications

### 5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)<sup>(1) (2)</sup>

|           |                                          | MIN          | MAX             | UNIT |
|-----------|------------------------------------------|--------------|-----------------|------|
|           | Differential input voltage               |              | ±Supply voltage | V    |
| $V_S$     | Supply voltage, $V_S = (V+) - (V-)$      |              | 16              | V    |
|           | Voltage at input/output pin              | $(V-) - 0.3$ | $(V+) + 0.3$    | V    |
|           | Current at input pin <sup>(3)</sup>      |              | ±5              | mA   |
|           | Current at output pin <sup>(4) (5)</sup> |              | ±30             | mA   |
|           | Current at power supply pin              |              | 40              | mA   |
| $T_J$     | Junction temperature <sup>(6)</sup>      |              | 150             | °C   |
| $T_{stg}$ | Storage temperature                      | -65          | 150             | °C   |
|           | Lead temperature (soldering, 10s)        |              | 260             | °C   |

- (1) Operation outside the *Absolute Maximum Ratings* may cause permanent device damage. *Absolute Maximum Ratings* do not imply functional operation of the device at these or any other conditions beyond those listed under *Recommended Operating Conditions*. If used outside the *Recommended Operating Conditions* but within the *Absolute Maximum Ratings*, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.
- (2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.
- (3) Limiting input pin current is only necessary for input voltages that exceed absolute maximum input voltage ratings.
- (4) Applies to both single supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of ±30mA over long term can adversely affect reliability.
- (5) Do not short circuit output to V+, when V+ is greater than 13V or reliability is adversely affected.
- (6) The maximum power dissipation is a function of  $T_{J(MAX)}$ ,  $\theta_{JA}$ , and  $T_A$ . The maximum allowable power dissipation at any ambient temperature is  $P_D = (T_{J(MAX)} - T_A) / \theta_{JA}$ . All numbers apply for packages soldered directly into a PCB.

### 5.2 ESD Ratings

|             |                         | VALUE                                                             | UNIT    |
|-------------|-------------------------|-------------------------------------------------------------------|---------|
| $V_{(ESD)}$ | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 <sup>(1)</sup> | ±2000 V |

- (1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.

### 5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

|       |                                     | MIN | NOM  | MAX | UNIT |
|-------|-------------------------------------|-----|------|-----|------|
| $V_S$ | Supply voltage, $V_S = (V+) - (V-)$ | 3   | 15.5 | V   |      |
| $T_J$ | Junction temperature                | -40 | 85   | °C  |      |

## 5.4 Thermal Information for LMC6462

| THERMAL METRIC <sup>(1)</sup> |                                              | LMC6462  |          | UNIT |
|-------------------------------|----------------------------------------------|----------|----------|------|
|                               |                                              | D (SOIC) | P (PDIP) |      |
|                               |                                              | 8 PINS   | 8 PINS   |      |
| R <sub>θJA</sub>              | Junction-to-ambient thermal resistance       | 193      | 115      | °C/W |
| R <sub>θJC(top)</sub>         | Junction-to-case(top) thermal resistance     | 52.0     | 53.7     | °C/W |
| R <sub>θJB</sub>              | Junction-to-board thermal resistance         | 56.9     | 39.5     | °C/W |
| Ψ <sub>JT</sub>               | Junction-to-top characterization parameter   | 6.8      | 19.5     | °C/W |
| Ψ <sub>JB</sub>               | Junction-to-board characterization parameter | 56.1     | 38.5     | °C/W |
| R <sub>θJC(bot)</sub>         | Junction-to-case(bottom) thermal resistance  | N/A      | N/A      | °C/W |

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](#) application report.

## 5.5 Thermal Information for LMC6464

| THERMAL METRIC <sup>(1)</sup> |                                              | LMC6464  |            | UNIT |
|-------------------------------|----------------------------------------------|----------|------------|------|
|                               |                                              | D (SOIC) | NFF (PDIP) |      |
|                               |                                              | 14 PINS  | 14 PINS    |      |
| R <sub>θJA</sub>              | Junction-to-ambient thermal resistance       | 126      | 81         | °C/W |
| R <sub>θJC(top)</sub>         | Junction-to-case(top) thermal resistance     | 34.6     | 31.9       | °C/W |
| R <sub>θJB</sub>              | Junction-to-board thermal resistance         | 34.3     | 26.0       | °C/W |
| Ψ <sub>JT</sub>               | Junction-to-top characterization parameter   | 4.7      | 9.9        | °C/W |
| Ψ <sub>JB</sub>               | Junction-to-board characterization parameter | 33.7     | 25.4       | °C/W |
| R <sub>θJC(bot)</sub>         | Junction-to-case(bottom) thermal resistance  | N/A      | N/A        | °C/W |

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](#) application report.

## 5.6 Electrical Characteristics for $V_S = \pm 2.25V$ or $V_S = 5V$

at  $T_A = T_J = 25^\circ C$ ,  $V+ = 5V$ ,  $V- = 0V$ ,  $V_{CM} = V_{OUT} = V+ / 2$ , and  $R_L > 1M\Omega$  connected to  $V+ / 2$  (unless otherwise noted)

| PARAMETER                 | TEST CONDITIONS                     |                                                   | MIN                                               | TYP         | MAX        | UNIT             |
|---------------------------|-------------------------------------|---------------------------------------------------|---------------------------------------------------|-------------|------------|------------------|
| <b>OFFSET VOLTAGE</b>     |                                     |                                                   |                                                   |             |            |                  |
| $V_{OS}$                  | Input offset voltage                | LMC646xA                                          | $T_J = -40^\circ C$ to $+85^\circ C$              | $\pm 0.25$  | $\pm 0.50$ | mV               |
|                           |                                     | LMC646xB                                          | $T_J = -40^\circ C$ to $+85^\circ C$              | $\pm 0.25$  | $\pm 3$    |                  |
| $dV_{OS}/dT$              | Input offset voltage drift          |                                                   | $T_J = -40^\circ C$ to $+85^\circ C$              | 1           |            | $\mu V/^\circ C$ |
| PSRR                      | Power-supply rejection ratio        | Positive<br>$5V \leq V+ \leq 15V$                 | LMC646xA                                          | 70          | 85         | dB               |
|                           |                                     |                                                   | LMC646xA,<br>$T_J = -40^\circ C$ to $+85^\circ C$ | 67          |            |                  |
|                           |                                     |                                                   | LMC646xB                                          | 65          | 85         |                  |
|                           |                                     |                                                   | LMC646xB,<br>$T_J = -40^\circ C$ to $+85^\circ C$ | 62          |            |                  |
|                           |                                     | Negative<br>$V+ = 0V, -15V \leq V- \leq -5V$      | LMC646xA                                          | 70          | 85         |                  |
|                           |                                     |                                                   | LMC646xA,<br>$T_J = -40^\circ C$ to $+85^\circ C$ | 67          |            |                  |
|                           |                                     |                                                   | LMC646xB                                          | 65          | 85         |                  |
|                           |                                     |                                                   | LMC646xB,<br>$T_J = -40^\circ C$ to $+85^\circ C$ | 62          |            |                  |
|                           |                                     |                                                   |                                                   |             |            |                  |
|                           |                                     |                                                   |                                                   |             |            |                  |
| <b>INPUT BIAS CURRENT</b> |                                     |                                                   |                                                   |             |            |                  |
| $I_B$                     | Input bias current <sup>(1)</sup>   |                                                   |                                                   | $\pm 0.15$  |            | pA               |
|                           |                                     | $T_J = -40^\circ C$ to $+85^\circ C$              |                                                   |             | $\pm 10$   |                  |
| $I_{OS}$                  | Input offset current <sup>(1)</sup> |                                                   |                                                   | $\pm 0.075$ |            | pA               |
|                           |                                     | $T_J = -40^\circ C$ to $+85^\circ C$              |                                                   |             | $\pm 5$    |                  |
| <b>NOISE</b>              |                                     |                                                   |                                                   |             |            |                  |
| $e_n$                     | Input voltage noise density         | $f = 1kHz, V_{CM} = 1V$                           |                                                   | 80          |            | $nV/\sqrt{Hz}$   |
| $i_n$                     | Input current noise density         | $f = 1kHz$                                        |                                                   | 30          |            | $fA/\sqrt{Hz}$   |
| <b>INPUT VOLTAGE</b>      |                                     |                                                   |                                                   |             |            |                  |
| V <sub>CM</sub>           | Common-mode voltage                 | To positive rail<br>$V+ = 5V, CMRR \geq 50dB$     |                                                   | 5.25        | 5.30       | V                |
|                           |                                     |                                                   | $T_J = -40^\circ C$ to $+85^\circ C$              | 5.00        |            |                  |
|                           |                                     | To negative rail<br>$V+ = 5V, CMRR \geq 50dB$     |                                                   | -0.20       | -0.10      |                  |
|                           |                                     |                                                   | $T_J = -40^\circ C$ to $+85^\circ C$              | 0.00        |            |                  |
|                           |                                     | To positive rail<br>$V+ = 5V, CMRR \geq 50dB$     |                                                   | 15.25       | 15.30      |                  |
|                           |                                     |                                                   | $T_J = -40^\circ C$ to $+85^\circ C$              | 15.00       |            |                  |
|                           |                                     | To negative rail<br>$V+ = 5V, CMRR \geq 50dB$     |                                                   | -0.20       | -0.15      |                  |
|                           |                                     |                                                   | $T_J = -40^\circ C$ to $+85^\circ C$              | 0.00        |            |                  |
| CMRR                      | Common-mode rejection ratio         | V <sub>+</sub> = 15V<br>$0V \leq V_{CM} \leq 15V$ | LMC646xA                                          | 70          | 85         | dB               |
|                           |                                     |                                                   | LMC646xA,<br>$T_J = -40^\circ C$ to $+85^\circ C$ | 67          |            |                  |
|                           |                                     |                                                   | LMC646xB                                          | 65          | 85         |                  |
|                           |                                     |                                                   | LMC646xB,<br>$T_J = -40^\circ C$ to $+85^\circ C$ | 62          |            |                  |
|                           |                                     |                                                   |                                                   |             |            |                  |
|                           |                                     | V <sub>+</sub> = 5V<br>$0V \leq V_{CM} \leq 5V$   | LMC646xA                                          | 70          | 85         |                  |
|                           |                                     |                                                   | LMC646xA,<br>$T_J = -40^\circ C$ to $+85^\circ C$ | 67          |            |                  |
|                           |                                     |                                                   | LMC646xB                                          | 65          | 85         |                  |
|                           |                                     |                                                   | LMC646xB,<br>$T_J = -40^\circ C$ to $+85^\circ C$ | 62          |            |                  |
|                           |                                     |                                                   |                                                   |             |            |                  |

## 5.6 Electrical Characteristics for $V_S = \pm 2.25V$ or $V_S = 5V$ (continued)

at  $T_A = T_J = 25^\circ C$ ,  $V+ = 5V$ ,  $V- = 0V$ ,  $V_{CM} = V_{OUT} = V+ / 2$ , and  $R_L > 1M\Omega$  connected to  $V+ / 2$  (unless otherwise noted)

| PARAMETER                 |                               | TEST CONDITIONS                                                                                      | MIN                                  | TYP  | MAX | UNIT      |
|---------------------------|-------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------|------|-----|-----------|
| <b>INPUT IMPEDANCE</b>    |                               |                                                                                                      |                                      |      |     |           |
| $R_{IN}$                  | Input resistance              |                                                                                                      |                                      | > 10 |     | $M\Omega$ |
| $C_{IN}$                  | Common-mode input capacitance |                                                                                                      |                                      | 3    |     | $pF$      |
| <b>OPEN-LOOP GAIN</b>     |                               |                                                                                                      |                                      |      |     |           |
| $A_{OL}$                  | Open-loop voltage gain        | Sourcing, $V+ = 15V$ , $7.5V < V_O < 11.5V$ , $V_{CM} = 7.5V$ ,                                      | $R_L = 100k\Omega$ to $7.5V$         | 3000 |     | $V/mV$    |
|                           |                               |                                                                                                      | $R_L = 25k\Omega$ to $7.5V$          | 2500 |     |           |
|                           |                               | Sinking, $V+ = 15V$ , $3.5V < V_O < 7.5V$ , $V_{CM} = 7.5V$ ,                                        | $R_L = 100k\Omega$ to $7.5V$         | 400  |     |           |
|                           |                               |                                                                                                      | $R_L = 25k\Omega$ to $7.5V$          | 200  |     |           |
| <b>FREQUENCY RESPONSE</b> |                               |                                                                                                      |                                      |      |     |           |
| GBW                       | Gain bandwidth product        |                                                                                                      |                                      | 50   |     | $kHz$     |
| SR                        | Slew rate <sup>(2)</sup>      | $V+ = 15V$ , 10V step, $G = 1$                                                                       |                                      | 15   | 28  | $V/ms$    |
|                           |                               |                                                                                                      | $T_J = -40^\circ C$ to $+85^\circ C$ | 8    |     |           |
| $G_m$                     | Gain margin                   |                                                                                                      |                                      | 15   |     | $dB$      |
|                           | Crosstalk                     | Dual and quad channel, $V+ = 15V$ , $R_L = 100k\Omega$ to $7.5V$ , $f = 1kHz$ , $V_{OUT} = 12V_{PP}$ |                                      | 130  |     | $dB$      |

## 5.6 Electrical Characteristics for $V_S = \pm 2.25V$ or $V_S = 5V$ (continued)

at  $T_A = T_J = 25^\circ C$ ,  $V+ = 5V$ ,  $V- = 0V$ ,  $V_{CM} = V_{OUT} = V+ / 2$ , and  $R_L > 1M\Omega$  connected to  $V+ / 2$  (unless otherwise noted)

| PARAMETER     |                      | TEST CONDITIONS                                              | MIN                                               | TYP    | MAX    | UNIT |
|---------------|----------------------|--------------------------------------------------------------|---------------------------------------------------|--------|--------|------|
| <b>OUTPUT</b> |                      |                                                              |                                                   |        |        |      |
| $V_O$         | Voltage output swing | Positive rail<br>$V+ = 5V$ , $R_L = 100k\Omega$ to $V+ / 2$  | LMC646xA                                          | 4.990  | 4.995  | V    |
|               |                      |                                                              | LMC646xA,<br>$T_J = -40^\circ C$ to $+85^\circ C$ | 4.980  |        |      |
|               |                      |                                                              | LMC646xB                                          | 4.950  | 4.995  |      |
|               |                      |                                                              | LMC646xB,<br>$T_J = -40^\circ C$ to $+85^\circ C$ | 4.925  |        |      |
|               |                      | Negative rail<br>$V+ = 5V$ , $R_L = 100k\Omega$ to $V+ / 2$  | LMC646xA                                          | 0.005  | 0.010  |      |
|               |                      |                                                              | LMC646xA,<br>$T_J = -40^\circ C$ to $+85^\circ C$ | 0.020  |        |      |
|               |                      |                                                              | LMC646xB                                          | 0.005  | 0.050  |      |
|               |                      |                                                              | LMC646xB,<br>$T_J = -40^\circ C$ to $+85^\circ C$ | 0.075  |        |      |
|               |                      | Positive rail<br>$V+ = 5V$ , $R_L = 25k\Omega$ to $V+ / 2$   | LMC646xA                                          | 4.975  | 4.990  |      |
|               |                      |                                                              | LMC646xA,<br>$T_J = -40^\circ C$ to $+85^\circ C$ | 4.965  |        |      |
|               |                      |                                                              | LMC646xB                                          | 4.950  | 4.990  |      |
|               |                      |                                                              | LMC646xB,<br>$T_J = -40^\circ C$ to $+85^\circ C$ | 4.850  |        |      |
|               |                      | Negative rail<br>$V+ = 5V$ , $R_L = 25k\Omega$ to $V+ / 2$   | LMC646xA                                          | 0.01   | 0.02   |      |
|               |                      |                                                              | LMC646xA,<br>$T_J = -40^\circ C$ to $+85^\circ C$ | 0.035  |        |      |
|               |                      |                                                              | LMC646xB                                          | 0.01   | 0.050  |      |
|               |                      |                                                              | LMC646xB,<br>$T_J = -40^\circ C$ to $+85^\circ C$ | 0.150  |        |      |
|               |                      | Positive rail<br>$V+ = 15V$ , $R_L = 100k\Omega$ to $V+ / 2$ | LMC646xA                                          | 14.975 | 14.990 |      |
|               |                      |                                                              | LMC646xA,<br>$T_J = -40^\circ C$ to $+85^\circ C$ | 14.965 |        |      |
|               |                      |                                                              | LMC646xB                                          | 14.950 | 14.990 |      |
|               |                      |                                                              | LMC646xB,<br>$T_J = -40^\circ C$ to $+85^\circ C$ | 14.925 |        |      |
|               |                      | Negative rail<br>$V+ = 15V$ , $R_L = 100k\Omega$ to $V+ / 2$ | LMC646xA                                          | 0.01   | 0.025  |      |
|               |                      |                                                              | LMC646xA,<br>$T_J = -40^\circ C$ to $+85^\circ C$ | 0.035  |        |      |
|               |                      |                                                              | LMC646xB                                          | 0.01   | 0.050  |      |
|               |                      |                                                              | LMC646xB,<br>$T_J = -40^\circ C$ to $+85^\circ C$ | 0.075  |        |      |
|               |                      | Positive rail<br>$V+ = 15V$ , $R_L = 25k\Omega$ to $V+ / 2$  | LMC646xA                                          | 14.900 | 14.965 |      |
|               |                      |                                                              | LMC646xA,<br>$T_J = -40^\circ C$ to $+85^\circ C$ | 14.850 |        |      |
|               |                      |                                                              | LMC646xB                                          | 14.850 | 14.965 |      |
|               |                      |                                                              | LMC646xB,<br>$T_J = -40^\circ C$ to $+85^\circ C$ | 14.800 |        |      |
|               |                      | Negative rail<br>$V+ = 15V$ , $R_L = 25k\Omega$ to $V+ / 2$  | LMC646xA                                          | 0.025  | 0.050  |      |
|               |                      |                                                              | LMC646xA,<br>$T_J = -40^\circ C$ to $+85^\circ C$ | 0.150  |        |      |
|               |                      |                                                              | LMC646xB                                          | 0.025  | 0.100  |      |
|               |                      |                                                              | LMC646xB,<br>$T_J = -40^\circ C$ to $+85^\circ C$ | 0.200  |        |      |

## 5.6 Electrical Characteristics for $V_S = \pm 2.25V$ or $V_S = 5V$ (continued)

at  $T_A = T_J = 25^\circ C$ ,  $V+ = 5V$ ,  $V- = 0V$ ,  $V_{CM} = V_{OUT} = V+ / 2$ , and  $R_L > 1M\Omega$  connected to  $V+ / 2$  (unless otherwise noted)

| PARAMETER       |                       | TEST CONDITIONS                               | MIN                                              | TYP | MAX | UNIT |
|-----------------|-----------------------|-----------------------------------------------|--------------------------------------------------|-----|-----|------|
| I <sub>SC</sub> | Short-circuit current | Sourcing<br>$V_{OUT} = 0V$                    | 19                                               | 27  |     | mA   |
|                 |                       | $T_J = -40^\circ C$ to $+85^\circ C$          | 15                                               |     |     |      |
|                 |                       | Sinking<br>$V_{OUT} = 5V$                     | 22                                               | 27  |     |      |
|                 |                       | $T_J = -40^\circ C$ to $+85^\circ C$          | 17                                               |     |     |      |
|                 |                       | Sourcing<br>$V+ = 15V$ , $V_{OUT} = 0V$       | 24                                               | 38  |     |      |
|                 |                       | $T_J = -40^\circ C$ to $+85^\circ C$          | 17                                               |     |     |      |
|                 |                       | Sinking<br>$V+ = 15V$ , $V_{OUT} = 12V^{(3)}$ | 28                                               | 38  |     |      |
|                 |                       | $T_J = -40^\circ C$ to $+85^\circ C$          | 22                                               |     |     |      |
| POWER SUPPLY    |                       |                                               |                                                  |     |     |      |
| I <sub>Q</sub>  | Quiescent current     | $V_{OUT} = V+ / 2$                            | LMC6462                                          | 40  | 55  | µA   |
|                 |                       |                                               | LMC6462,<br>$T_J = -40^\circ C$ to $+85^\circ C$ |     | 70  |      |
|                 |                       |                                               | LMC6464                                          | 80  | 110 |      |
|                 |                       |                                               | LMC6464,<br>$T_J = -40^\circ C$ to $+85^\circ C$ |     | 140 |      |
|                 |                       |                                               | LMC6462                                          | 50  | 60  |      |
|                 |                       | $V+ = 15V$ , $V_{OUT} = V+ / 2$               | LMC6462,<br>$T_J = -40^\circ C$ to $+85^\circ C$ |     | 70  |      |
|                 |                       |                                               | LMC6464                                          | 90  | 120 |      |
|                 |                       |                                               | LMC6464,<br>$T_J = -40^\circ C$ to $+85^\circ C$ |     | 140 |      |
|                 |                       |                                               |                                                  |     |     |      |
|                 |                       |                                               |                                                  |     |     |      |

(1) Specified limits are dictated by tester limitations and not device performance. Actual performance is reflected in the typical value.

(2) Number specified is the slower of either the positive or negative slew rates.

(3) Do not short circuit output to  $V+$ , when  $V+$  is greater than 13V or reliability is adversely affected.

## 5.7 Electrical Characteristics for $V_S = \pm 1.5V$ or $V_S = 3V$

at  $T_A = 25^\circ C$ ,  $V+ = 3V$ ,  $V- = 0V$ ,  $V_{CM} = V_{OUT} = V+ / 2$ , and  $R_L > 1M\Omega$  connected to  $V+ / 2$  (unless otherwise noted)

| PARAMETER                 | TEST CONDITIONS                     |                                                  | MIN                                           | TYP         | MAX      | UNIT            |
|---------------------------|-------------------------------------|--------------------------------------------------|-----------------------------------------------|-------------|----------|-----------------|
| <b>OFFSET VOLTAGE</b>     |                                     |                                                  |                                               |             |          |                 |
| $V_{OS}$                  | Input offset voltage                | LMC646xA                                         | $T_A = -40^\circ C$ to $+85^\circ C$          | $\pm 0.9$   | $\pm 2$  | mV              |
|                           |                                     | LMC646xB                                         | $T_A = -40^\circ C$ to $+85^\circ C$          | $\pm 0.9$   | $\pm 3$  |                 |
|                           | d $V_{OS}$ /dT                      | Input offset voltage drift                       | $T_A = -40^\circ C$ to $+85^\circ C$          | 2           |          | $\mu V^\circ C$ |
| PSRR                      | Power-supply rejection ratio        | 3V $\leq V+ \leq 15V$                            |                                               | 60          | 80       | dB              |
| <b>INPUT BIAS CURRENT</b> |                                     |                                                  |                                               |             |          |                 |
| $I_B$                     | Input bias current <sup>(1)</sup>   |                                                  |                                               | $\pm 0.15$  |          | pA              |
|                           |                                     | $T_A = -40^\circ C$ to $+85^\circ C$             |                                               |             | $\pm 10$ |                 |
| $I_{OS}$                  | Input offset current <sup>(1)</sup> |                                                  |                                               | $\pm 0.075$ |          | pA              |
|                           |                                     | $T_A = -40^\circ C$ to $+85^\circ C$             |                                               |             | $\pm 5$  |                 |
| <b>NOISE</b>              |                                     |                                                  |                                               |             |          |                 |
| $e_n$                     | Input voltage noise density         | $f = 1kHz$ , $V_{CM} = 1V$                       |                                               | 80          |          | $nV/\sqrt{Hz}$  |
| $i_n$                     | Input current noise density         | $f = 1kHz$                                       |                                               | 30          |          | $fA/\sqrt{Hz}$  |
| <b>INPUT VOLTAGE</b>      |                                     |                                                  |                                               |             |          |                 |
| $V_{CM}$                  | Common-mode voltage range           | To positive rail<br>$V+ = 5V$ , CMRR $\geq 50dB$ |                                               | 3           | 3        | V               |
|                           |                                     | To negative rail<br>$V+ = 5V$ , CMRR $\geq 50dB$ |                                               |             | $-0.1$   |                 |
| CMRR                      | Common-mode rejection ratio         | $0V \leq V_{CM} \leq 3V$                         |                                               | 60          | 74       | dB              |
| <b>FREQUENCY RESPONSE</b> |                                     |                                                  |                                               |             |          |                 |
| GBW                       | Gain bandwidth product              |                                                  |                                               | 50          |          | kHz             |
| SR                        | Slew rate <sup>(2)</sup>            | $G = 1$ , 2V step                                |                                               | 23          |          | V/ms            |
| <b>OUTPUT</b>             |                                     |                                                  |                                               |             |          |                 |
| $V_O$                     | Voltage output swing                | Positive rail<br>$R_L = 25k\Omega$ to $V+ / 2$   |                                               | 2.95        | 2.9      | V               |
|                           |                                     | Negative rail<br>$R_L = 25k\Omega$ to $V+ / 2$   |                                               |             | 0.1      |                 |
| <b>POWER SUPPLY</b>       |                                     |                                                  |                                               |             |          |                 |
| $I_Q$                     | Quiescent current                   | $V_{OUT} = V+ / 2$                               | LMC6462                                       | 40          | 55       | $\mu A$         |
|                           |                                     |                                                  | LMC6462, $T_A = -40^\circ C$ to $+85^\circ C$ |             | 70       |                 |
|                           |                                     |                                                  | LMC6464                                       | 80          | 110      |                 |
|                           |                                     |                                                  | LMC6464, $T_A = -40^\circ C$ to $+85^\circ C$ |             | 140      |                 |

(1) Specified limits are dictated by tester limitations and not device performance. Actual performance is reflected in the typical value.  
 (2) Number specified is the slower of either the positive or negative slew rates.

## 6 Typical Characteristics

at  $V_S = 5V$ , single supply, and  $T_A = 25^\circ C$  (unless otherwise specified)

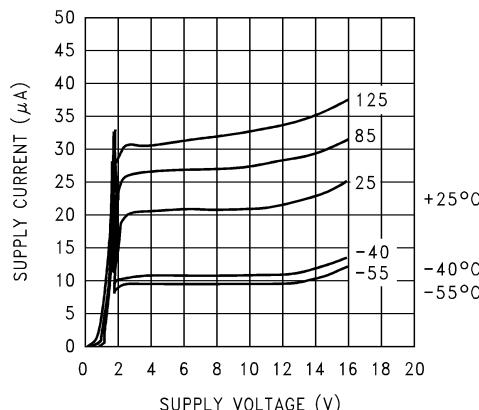



Figure 6-1. Supply Current vs Supply Voltage

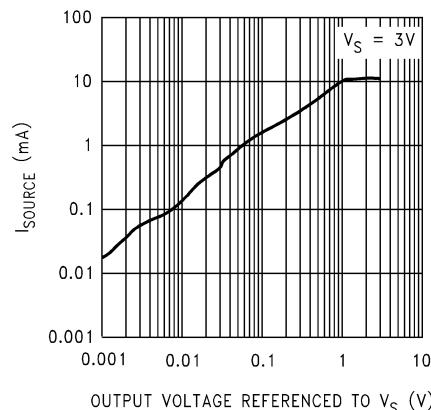



Figure 6-2. Sourcing Current vs Output Voltage

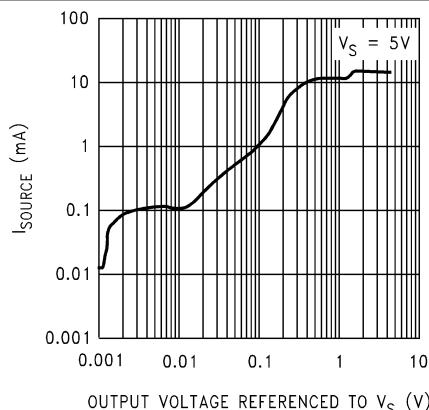



Figure 6-3. Sourcing Current vs Output Voltage

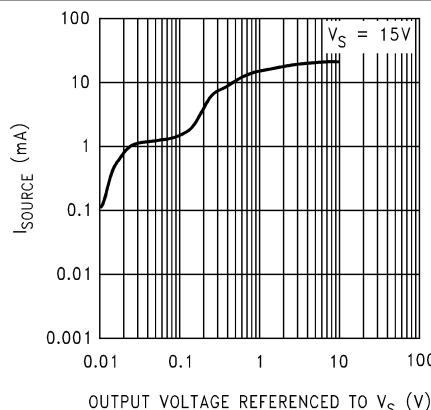



Figure 6-4. Sourcing Current vs Output Voltage

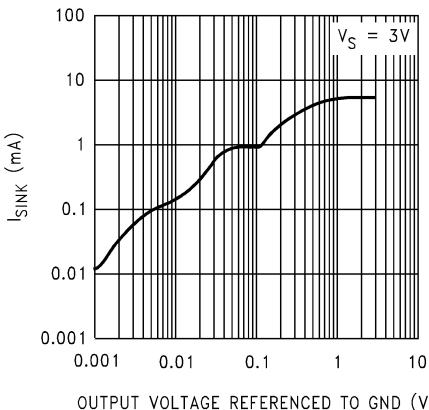



Figure 6-5. Sinking Current vs Output Voltage

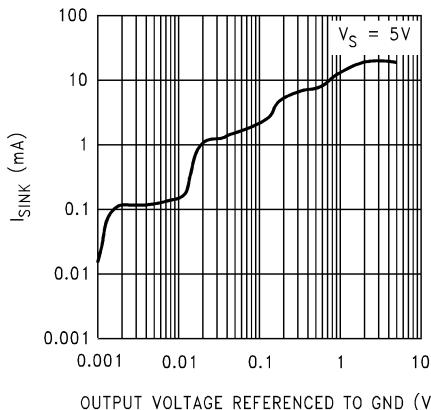



Figure 6-6. Sinking Current vs Output Voltage

## 6 Typical Characteristics (continued)

at  $V_S = 5V$ , single supply, and  $T_A = 25^\circ\text{C}$  (unless otherwise specified)

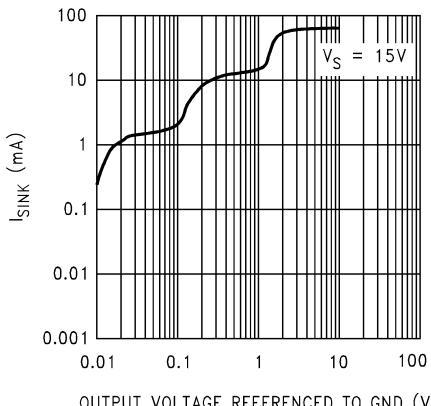



Figure 6-7. Sinking Current vs Output Voltage

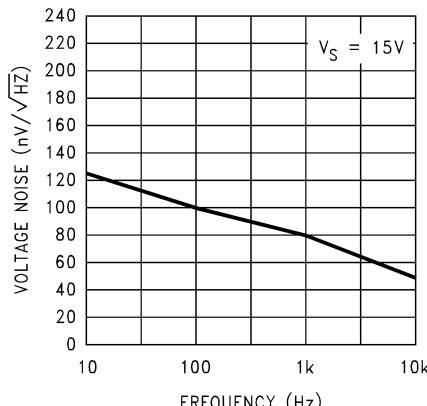



Figure 6-8. Input Voltage Noise vs Frequency

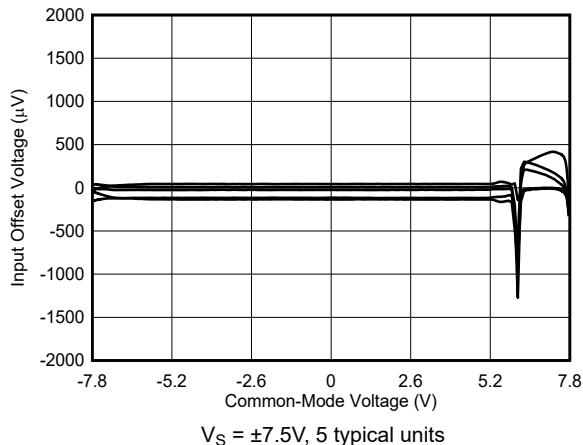



Figure 6-9. Input Offset Voltage vs Common-Mode Voltage

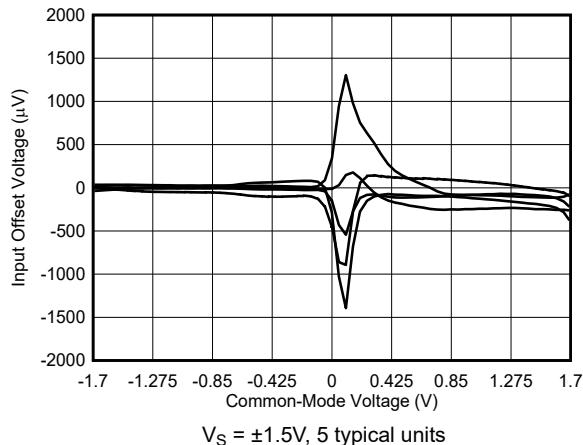



Figure 6-10. Input Offset Voltage vs Common-Mode Voltage

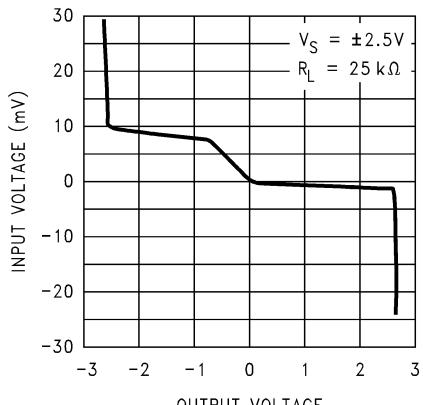



Figure 6-11. Input Voltage vs Output Voltage

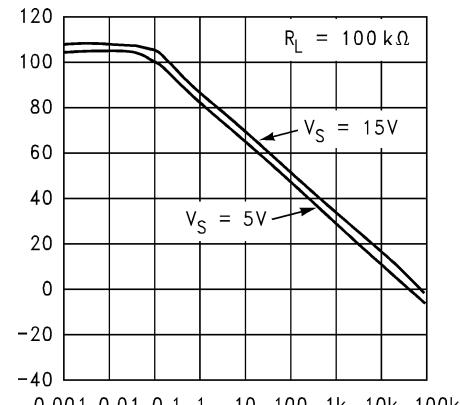



Figure 6-12. Open-Loop Frequency Response

## 6 Typical Characteristics (continued)

at  $V_S = 5V$ , single supply, and  $T_A = 25^\circ\text{C}$  (unless otherwise specified)

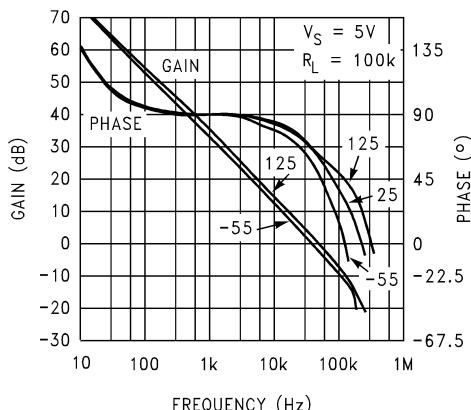



Figure 6-13. Open-Loop Frequency Response vs Temperature

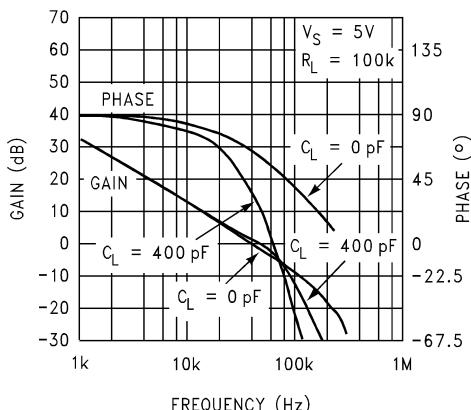



Figure 6-14. Gain and Phase vs Capacitive Load

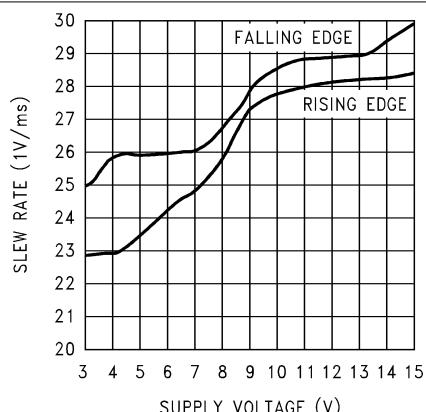



Figure 6-15. Slew Rate vs Supply Voltage

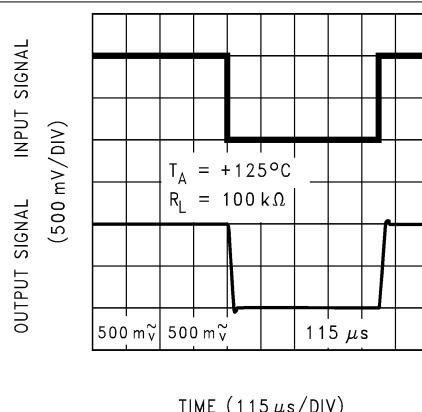



Figure 6-16. Noninverting Large-Signal Pulse Response

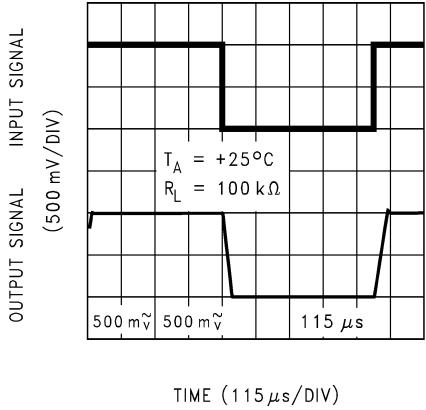



Figure 6-17. Noninverting Large-Signal Pulse Response

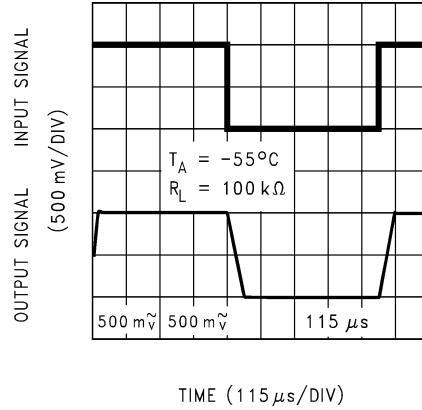



Figure 6-18. Noninverting Large-Signal Pulse Response

## 6 Typical Characteristics (continued)

at  $V_S = 5V$ , single supply, and  $T_A = 25^\circ C$  (unless otherwise specified)

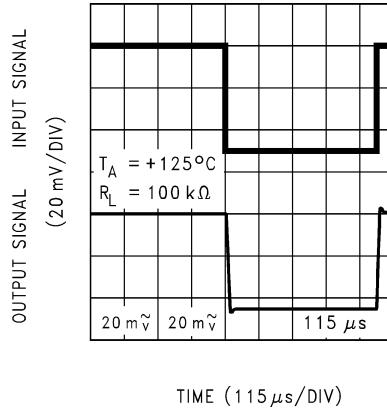



Figure 6-19. Noninverting Small-Signal Pulse Response

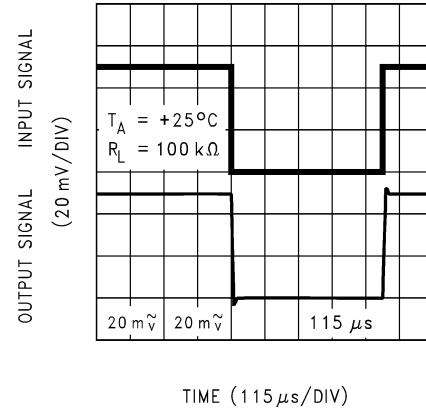



Figure 6-20. Noninverting Small-Signal Pulse Response

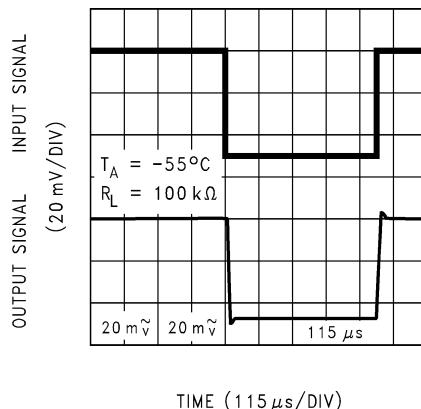



Figure 6-21. Noninverting Small-Signal Pulse Response

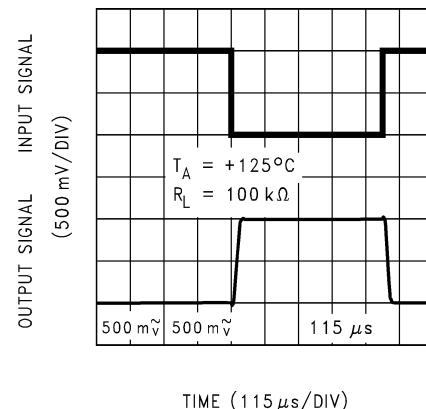



Figure 6-22. Inverting Large-Signal Pulse Response

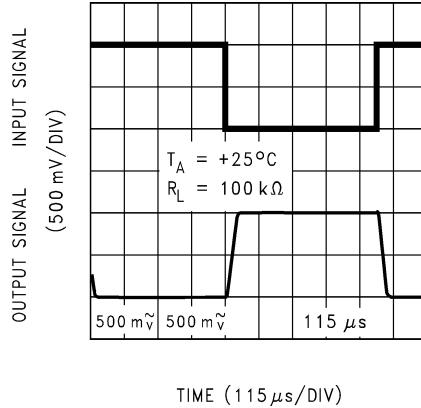



Figure 6-23. Inverting Large-Signal Pulse Response

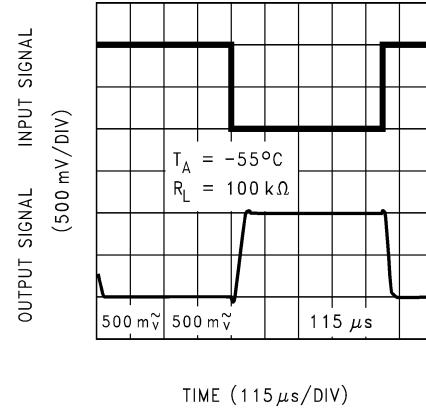



Figure 6-24. Inverting Large-Signal Pulse Response

## 6 Typical Characteristics (continued)

at  $V_S = 5V$ , single supply, and  $T_A = 25^\circ C$  (unless otherwise specified)

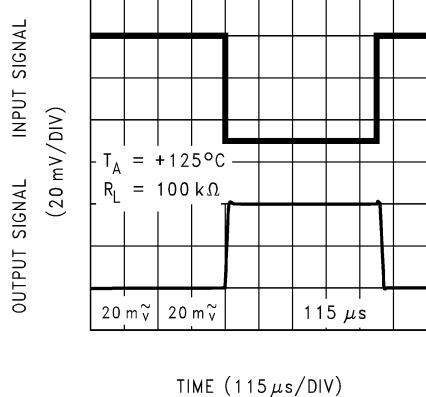



Figure 6-25. Inverting Small-Signal Pulse Response

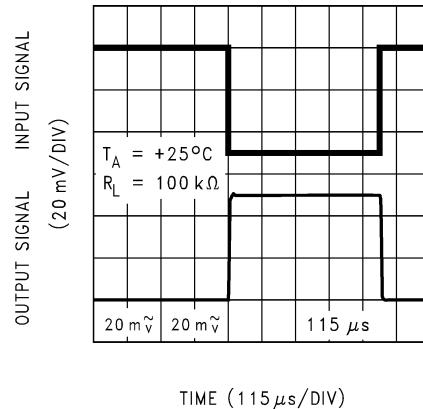



Figure 6-26. Inverting Small-Signal Pulse Response

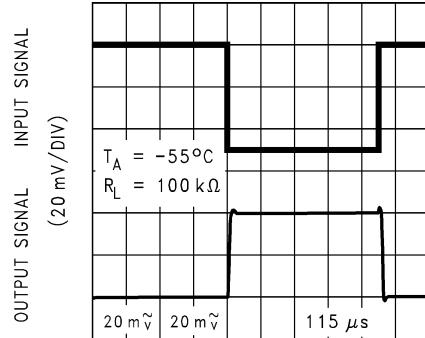
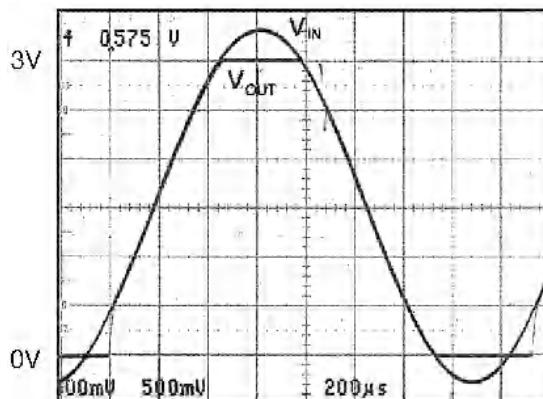



Figure 6-27. Inverting Small-Signal Pulse Response

## 7 Application and Implementation

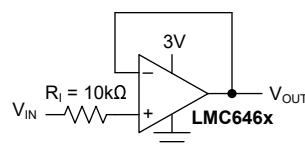

### Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

### 7.1 Application Information

#### 7.1.1 Input Common-Mode Voltage Range

The LMC646x have a rail-to-rail input common-mode voltage range. Some dc parameters such as input offset voltage, common-mode rejection, and power supply rejection can be degraded for common-mode voltages ( $V_{CM}$ ) near the positive supply rail. The LMC646x is designed to achieve the best dc precision when the common-mode is limited to  $V_{CM} < (V+) - 2V$ . [Figure 7-1](#) shows an input voltage exceeding both supplies with no resulting phase inversion on the output.




**Figure 7-1. An Input Voltage Signal Exceeds the LMC646x Power Supply Voltage with No Output Phase Inversion**

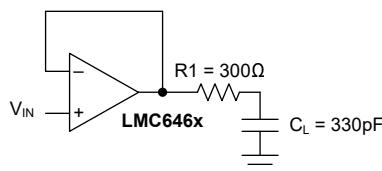


**Figure 7-2. A  $\pm 7.5V$  Input Signal Greatly Exceeds the 3V Supply in [Figure 7-3](#) Causing No Phase Inversion Due to  $R_I$**

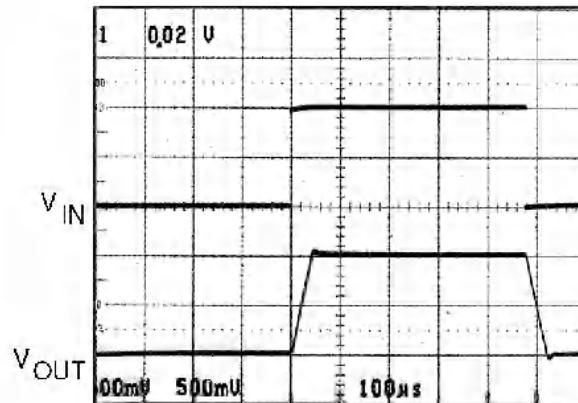
The absolute maximum input voltage at  $V+ = 3V$  is 300mV beyond either supply rail at room temperature. Voltages greatly exceeding this absolute maximum rating, as in [Figure 7-2](#), can cause excessive current to flow in or out of the input pins, possibly affecting reliability. The input current can be externally limited to  $\pm 5mA$ , with an input resistor, as shown in [Figure 7-3](#).



**Figure 7-3. Input Current Protection for Voltages Exceeding the Supply Voltage**


### 7.1.2 Rail-to-Rail Output

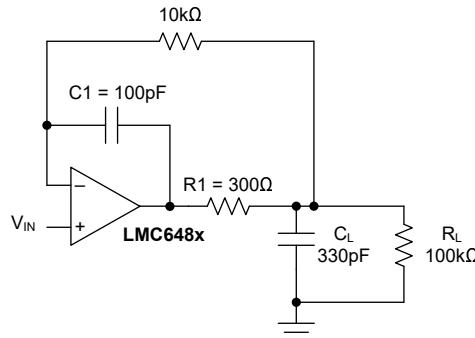
The approximated output resistance of the LMC646x is  $180\Omega$  sourcing, and  $130\Omega$  sinking at  $V_S = 3V$ , and  $110\Omega$  sourcing and  $83\Omega$  sinking at  $V_S = 5V$ . The maximum output swing can be estimated as a function of load using the calculated output resistance.


### 7.1.3 Capacitive Load Tolerance

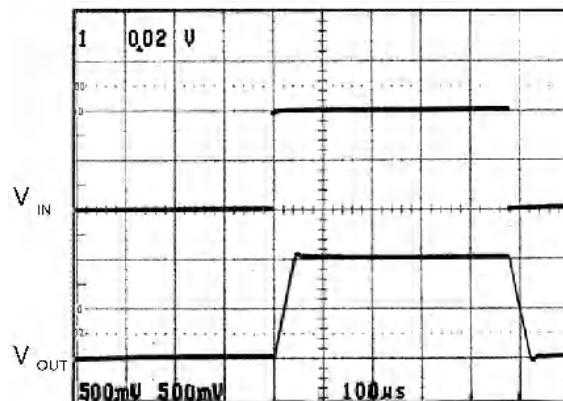
The LMC646x can typically drive a  $200\text{pF}$  load with  $V_S = 5V$  at unity gain without oscillating. The unity gain follower is the most sensitive configuration to capacitive load. Direct capacitive loading reduces the phase margin of op amps. The combination of the op amp output impedance and the capacitive load induces phase lag. This results in either an underdamped pulse response or oscillation.

Capacitive load compensation can be accomplished using resistive isolation as shown in [Figure 7-4](#). If there is a resistive component of the load in parallel to the capacitive component, the isolation resistor and the resistive load create a voltage divider at the output. This introduces a DC error at the output.




**Figure 7-4. Resistive Isolation of a  $300\text{pF}$  Capacitive Load**




**Figure 7-5. Pulse Response of the LMC6462 Circuit Shown in [Figure 7-4](#)**

[Figure 7-5](#) displays the pulse response of the LMC646x circuit in [Figure 7-4](#).

Another circuit, shown in [Figure 7-6](#), is also used to indirectly drive capacitive loads. This circuit is an improvement to the circuit shown in [Figure 7-4](#) because [Figure 7-6](#) provides dc accuracy as well as ac stability.  $R1$  and  $C1$  serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifiers inverting input, thereby preserving phase margin in the overall feedback loop. The values of  $R1$  and  $C1$  can be experimentally determined by the system designer for the desired pulse response. Increased capacitive drive is possible by increasing the value of the capacitor in the feedback loop.



**Figure 7-6. Noninverting Amplifier, Compensated to Handle a 300pF Capacitive and 100kΩ Resistive Load**




**Figure 7-7. Pulse Response of LMC6462 Circuit in Figure 7-6**

The pulse response of the circuit shown in Figure 7-6 is shown in Figure 7-7

#### 7.1.4 Compensating for Input Capacitance

The use of large values of feedback resistance is quite common to do with amplifiers that have ultra-low input current, like the LMC646x. Large feedback resistors can react with small values of input capacitance due to transducers, photodiodes, and circuits board parasitics to reduce phase margins.



**Figure 7-8. Canceling the Effect of Input Capacitance**

The effect of input capacitance can be compensated for by adding a feedback capacitor. The feedback capacitor (as in Figure 7-8),  $C_F$ , is first estimated by:

$$\frac{1}{2\pi R_1 C_{IN}} \geq \frac{1}{2\pi R_2 C_F} \quad (1)$$

or

$$R_1 C_{IN} \leq R_2 C_F \quad (2)$$

which typically provides significant overcompensation.

Printed circuit board stray capacitance can be larger or smaller than that of a breadboard, so the actual optimum value for  $C_F$  can be different. Check the values of  $C_F$  on the actual circuit. (Refer to the LMC660 quad CMOS amplifier data sheet for a more detailed discussion.)

### 7.1.5 Offset Voltage Adjustment

Offset voltage adjustment circuits are illustrated in Figure 7-9 and Figure 7-10. Large-value resistances and potentiometers are used to reduce power consumption while providing typically  $\pm 2.5\text{mV}$  of adjustment range, referred to the input, for both configurations with  $V_S = \pm 5\text{V}$ .

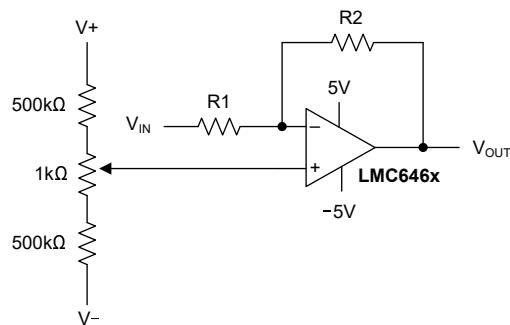



Figure 7-9. Inverting Configuration Offset Voltage Adjustment

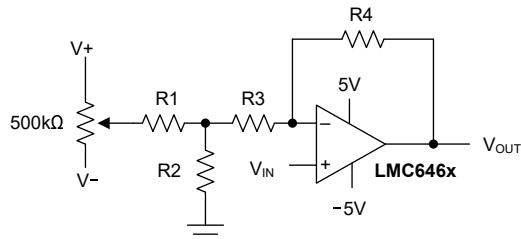
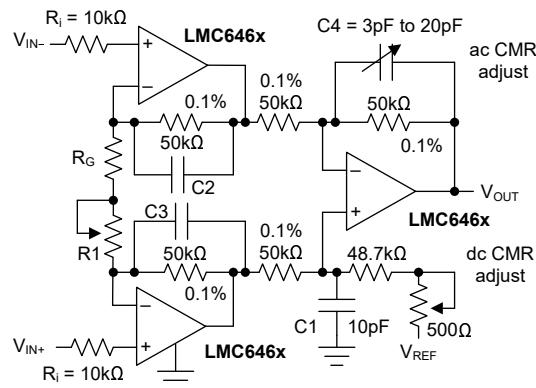
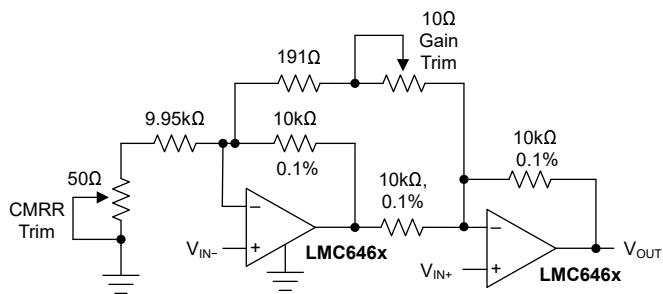




Figure 7-10. Noninverting Configuration Offset Voltage Adjustment

### **7.1.6 Instrumentation Circuits**

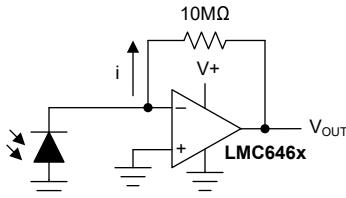
The LMC646x has the high input impedance, large common-mode range and high CMRR needed for designing instrumentation circuits. Instrumentation circuits designed with the LMC646x can reject a larger range of common-mode signals than most in-amps. This makes instrumentation circuits designed with the LMC646x an excellent choice for noisy or industrial environments. Other applications that benefit from these features include analytic medical instruments, magnetic field detectors, gas detectors, and silicon-based transducers.


A small valued potentiometer is used in series with  $R_G$  to set the differential gain of the three op-amp instrumentation circuit in [Figure 7-11](#). This combination is used instead of one large valued potentiometer to increase gain trim accuracy and reduce error due to vibration.



**Figure 7-11. Low-Power Three Op-Amp Instrumentation Amplifier**

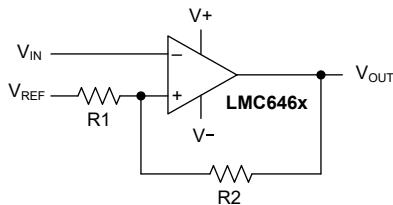
A two op-amp instrumentation amplifier designed for a gain of 100 is shown in [Figure 7-12](#). Low sensitivity trimming is made for offset voltage, CMRR and gain. Low cost and low power consumption are the main advantages of this two op-amp circuit.


Higher frequency and larger common-mode range applications are best facilitated by a three op-amp instrumentation amplifier.



**Figure 7-12. Low-Power Two Op Amp Instrumentation Amplifier**

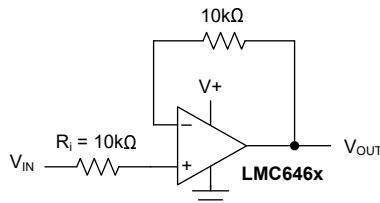
## 7.2 Typical Applications


### 7.2.1 Transducer Interface Circuits



**Figure 7-13. Photo Detector Circuit**

Photocells can be used in portable light measuring instruments. The LMC646x, which can be operated off a battery, is an excellent choice for this circuit because of the very low input current and offset voltage performance.


### 7.2.2 LMC646x as a Comparator



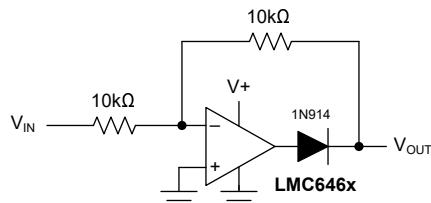

**Figure 7-14. Comparator with Hysteresis**

Figure 7-14 shows the application of the LMC646x as a comparator. The hysteresis is determined by the ratio of the two resistors. The LMC646x can thus be used as a micropower comparator, in applications where the quiescent current is an important parameter.

### 7.2.3 Half-Wave and Full-Wave Rectifiers



**Figure 7-15. Half-Wave Rectifier with Input Current Protection ( $R_i$ )**



**Figure 7-16. Full-Wave Rectifier with Input Current Protection ( $R_i$ )**

In Figure 7-15 Figure 7-16,  $R_i$  limits current into the amplifier since excess current can be caused by the input voltage exceeding the supply voltage.

### 7.2.4 Precision Current Source

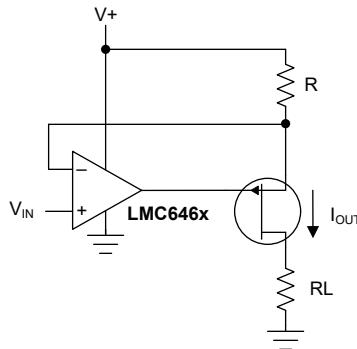



Figure 7-17. Precision Current Source

The output current  $I_{OUT}$  is given by:

$$I_{OUT} = \frac{(V+) - (V_{IN})}{R} \quad (3)$$

### 7.2.5 Oscillators

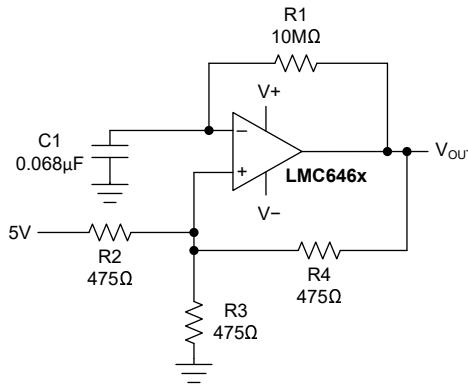



Figure 7-18. 1Hz Square-Wave Oscillator

For single supply 5V operation, the output of the circuit swings from 0V to 5V. The voltage divider set up by  $R_2$ ,  $R_3$  and  $R_4$  cause the noninverting input of the LMC646x to move from 1.67V (1/3 of 5V) to 3.33V (2/3 of 5V). This voltage behaves as the threshold voltage.

$R_1$  and  $C_1$  determine the time constant of the circuit. The frequency of oscillation,  $f_{OSC}$ , is:

$$\frac{1}{2\Delta t} \quad (4)$$

where

- $\Delta t$  = time the amplifier input takes to move from 1.67V to 3.33V.

The calculations are as follows:

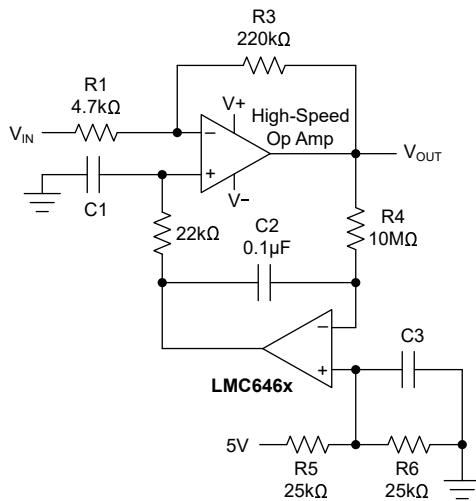
$$1.67 = 5 \left( 1 - e^{-\frac{t_1}{\tau}} \right) \quad (5)$$

where

- $\tau = RC = 0.68$  seconds
- $t_1 = 0.27$  seconds.

and

$$3.33 = 5 \left( 1 - e^{-\frac{t_2}{\tau}} \right) \quad (6)$$


where

- $t_2 = 0.75$  seconds

Then,

$$f_{OSC} = \frac{1}{2\Delta t} = \frac{1}{2(0.75 - 0.27)} \cong 1\text{Hz} \quad (7)$$

### 7.2.6 Low Frequency Null

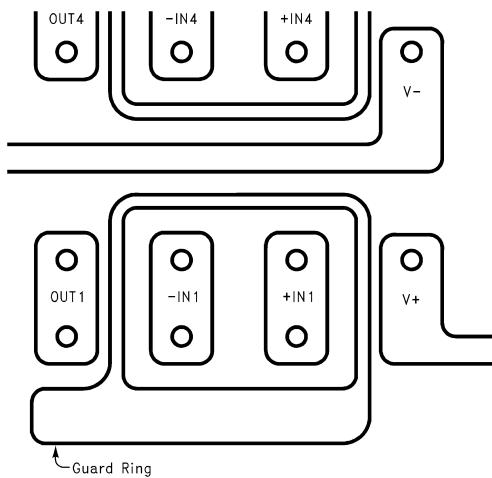


**Figure 7-19. High Gain Amplifier with Low Frequency Null**

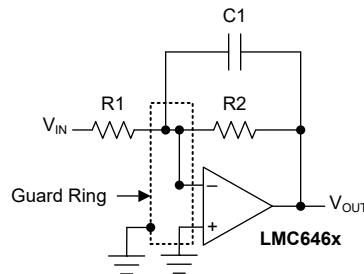
Output offset voltage,  $V_{OS\_OUT}$ , is the error introduced in the output voltage due to the inherent input offset voltage  $V_{OS}$ , of an amplifier.

$$V_{OS\_OUT} = V_{OS} \times \text{Gain}$$

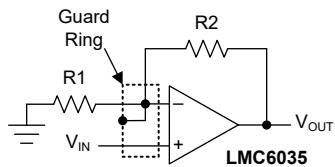
In the above configuration, the resistors  $R_5$  and  $R_6$  determine the nominal voltage around which the input signal,  $V_{IN}$ , is symmetrical. The high frequency component of  $V_{IN}$  is unaffected while the low frequency component is nulled since the dc level of the output is the input offset voltage of the LMC646x plus the bias voltage. This implies that the output offset voltage due to the top amplifier is eliminated.


## 7.3 Layout

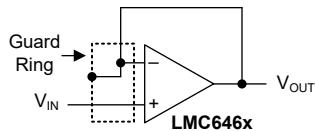
### 7.3.1 Layout Guidelines


#### 7.3.1.1 PCB Layout for High-Impedance Work

As a general rule, any circuit that must operate with less than 1000pA of leakage current requires special layout of the printed circuit board (PCB). When one wishes to take advantage of the ultra-low input current of the LMC646x, typically 150fA, an excellent layout is essential. Fortunately, the techniques of obtaining low leakages are quite simple. First, do not ignore the surface leakage of the PCB, even though the leakage current can sometimes appear acceptably low, because under conditions of high humidity or dust or contamination, the surface leakage can be appreciable.

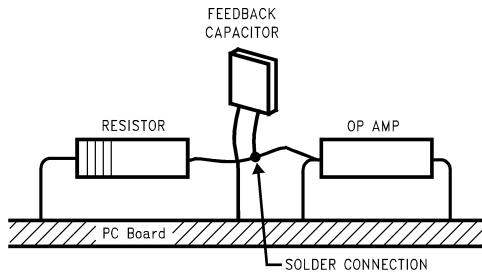

To minimize the effect of any surface leakage, lay out a ring of foil completely surrounding the LMC646x inputs and the terminals of capacitors, diodes, conductors, resistors, relay terminals, and so forth connected to the inputs of the op amp, as in [Figure 7-20](#). To have a significant effect, place guard rings on both the top and bottom of the PCB. This PC foil must then be connected to a voltage that is at the same voltage as the amplifier inputs, because no leakage current can flow between two points at the same potential. For example, a PCB trace-to-pad resistance of  $10^{12}$ , which is normally considered a very large resistance, can leak 5pA if the trace were a 5V bus adjacent to the pad of the input. This leakage can cause a 250 times degradation from the actual performance of the LMC646x. However, if a guard ring is held within 5mV of the inputs, then even a resistance of  $10^{11}\Omega$  causes only 0.05pA of leakage current. See [Figure 7-21](#) through [Figure 7-23](#) for typical connections of guard rings for standard op-amp configurations




**Figure 7-20. Example of Guard Ring in P.C. Board Layout**



**Figure 7-21. Typical Connections of Guard Rings – Inverting Amplifier**




**Figure 7-22. Typical Connections of Guard Rings – Non-Inverting Amplifier**



**Figure 7-23. Typical Connections of Guard Rings – Follower**

Be aware that when laying out a PCB for the sake of just a few circuits is not practical, another technique is even better than a guard ring on a PCB: Do not insert the input pin of the amplifier into the PCB at all, but bend the pin up in the air, and use only air as an insulator. Air is an excellent insulator. In this case you forgo some of the advantages of PCB construction, but the advantages are sometimes well worth the effort of using point-to-point up-in-the-air wiring. See [Figure 7-24](#).



(Input pins are lifted out of PCB and soldered directly to components. All other pins connected to PCB.)

**Figure 7-24. Air Wiring**

## 8 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

### 8.1 Device Support

#### 8.1.1 Development Support

##### 8.1.1.1 PSpice® for TI

PSpice® for TI is a design and simulation environment that helps evaluate performance of analog circuits. Create subsystem designs and prototype solutions before committing to layout and fabrication, reducing development cost and time to market.

### 8.2 Documentation Support

### 8.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on [ti.com](http://ti.com). Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

### 8.4 Support Resources

[TI E2E™ support forums](#) are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

### 8.5 Trademarks

TI E2E™ is a trademark of Texas Instruments.

PSpice® is a registered trademark of Cadence Design Systems, Inc.

All trademarks are the property of their respective owners.

### 8.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.



ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

### 8.7 Glossary

[TI Glossary](#) This glossary lists and explains terms, acronyms, and definitions.

## 9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| Changes from Revision D (March 2013) to Revision E (March 2025)                                       | Page |
|-------------------------------------------------------------------------------------------------------|------|
| • Updated the numbering format for tables, figures, and cross-references throughout the document..... | 1    |
| • Updated first page figure.....                                                                      | 1    |
| • Added <i>Pin Configuration and Functions</i> .....                                                  | 2    |
| • Deleted note 2 from <i>Absolute Maximum Ratings</i> .....                                           | 4    |
| • Added <i>ESD Ratings</i> .....                                                                      | 4    |
| • Added <i>Thermal Information</i> .....                                                              | 5    |
| • Updated parameter names and symbols in both <i>Electrical Characteristics</i> .....                 | 6    |
| • Deleted notes 1, 2, and 3 from previous DC <i>Electrical Characteristics</i> .....                  | 6    |
| • Deleted notes 1 and 2 from previous AC <i>Electrical Characteristics</i> .....                      | 6    |

- Moved note 4 conditions from previous DC *Electrical Characteristics* to open-loop gain test conditions..... 6
- Updated note 3 in previous AC *Electrical Characteristics* and moved conditions to slew rate test conditions... 6
- Deleted phase margin from *Electrical Characteristics* ..... 6
- Moved note 3 conditions from previous AC *Electrical Characteristics* to crosstalk test conditions..... 6
- Changed short-circuit current ( $V_+ = 15V$ , sinking) TYP from 75mA to 38mA and MIN from 55mA to 28mA.... 6
- Changed short-circuit current ( $V_+ = 15V$ , sinking,  $T_J = -40^{\circ}C$  to  $+85^{\circ}C$ ) MIN from 45mA to 22mA..... 6
- Added Figure 6-9 and Figure 6-10..... 11
- Deleted Figures 12 to 15..... 11
- Updated description in *Input Common-Mode Voltage Range* ..... 16

---

| Changes from Revision C (March 2013) to Revision D (March 2013) | Page |
|-----------------------------------------------------------------|------|
| • Changed layout of National Data Sheet to TI format.....       | 23   |

---

## 10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

**PACKAGING INFORMATION**

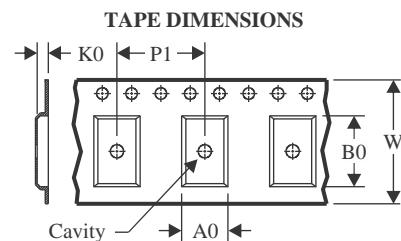
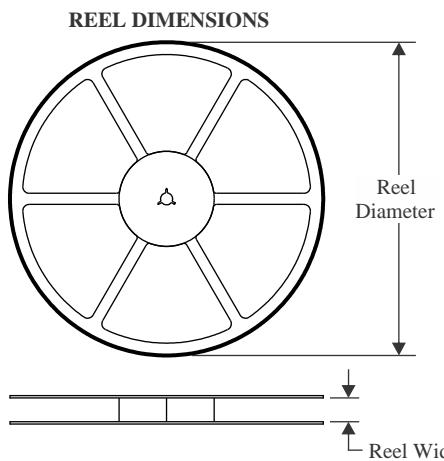
| Orderable part number | Status<br>(1) | Material type<br>(2) | Package   Pins | Package qty   Carrier | RoHS<br>(3) | Lead finish/<br>Ball material<br>(4) | MSL rating/<br>Peak reflow<br>(5) | Op temp (°C) | Part marking<br>(6) |
|-----------------------|---------------|----------------------|----------------|-----------------------|-------------|--------------------------------------|-----------------------------------|--------------|---------------------|
| LMC6462AIM/NOPB       | Obsolete      | Production           | SOIC (D)   8   | -                     | -           | Call TI                              | Call TI                           | -40 to 85    | LMC6462AIM          |
| LMC6462AIMX/NOPB      | Active        | Production           | SOIC (D)   8   | 2500   LARGE T&R      | Yes         | SN                                   | Level-1-260C-UNLIM                | -40 to 85    | LMC6462AIM          |
| LMC6462AIMX/NOPB.A    | Active        | Production           | SOIC (D)   8   | 2500   LARGE T&R      | Yes         | SN                                   | Level-1-260C-UNLIM                | -40 to 85    | LMC6462AIM          |
| LMC6462AIMX/NOPB.B    | Active        | Production           | SOIC (D)   8   | 2500   LARGE T&R      | Yes         | SN                                   | Level-1-260C-UNLIM                | -40 to 85    | LMC6462AIM          |
| LMC6462AIN/NOPB       | Obsolete      | Production           | PDIP (P)   8   | -                     | -           | Call TI                              | Call TI                           | -40 to 85    | LMC6462AIN          |
| LMC6462BIM/NOPB       | Obsolete      | Production           | SOIC (D)   8   | -                     | -           | Call TI                              | Call TI                           | -40 to 85    | LMC6462BIM          |
| LMC6462BIMX/NOPB      | Active        | Production           | SOIC (D)   8   | 2500   LARGE T&R      | Yes         | SN                                   | Level-1-260C-UNLIM                | -40 to 85    | LMC6462BIM          |
| LMC6462BIMX/NOPB.A    | Active        | Production           | SOIC (D)   8   | 2500   LARGE T&R      | Yes         | SN                                   | Level-1-260C-UNLIM                | -40 to 85    | LMC6462BIM          |
| LMC6462BIMX/NOPB.B    | Active        | Production           | SOIC (D)   8   | 2500   LARGE T&R      | Yes         | SN                                   | Level-1-260C-UNLIM                | -40 to 85    | LMC6462BIM          |
| LMC6462BIN/NOPB       | Obsolete      | Production           | PDIP (P)   8   | -                     | -           | Call TI                              | Call TI                           | -40 to 85    | LMC6462BIN          |
| LMC6464AIM/NOPB       | Obsolete      | Production           | SOIC (D)   14  | -                     | -           | Call TI                              | Call TI                           | -40 to 85    | LMC6464AIM          |
| LMC6464AIMX/NOPB      | Active        | Production           | SOIC (D)   14  | 2500   LARGE T&R      | Yes         | SN                                   | Level-1-260C-UNLIM                | -40 to 85    | LMC6464AIM          |
| LMC6464AIMX/NOPB.A    | Active        | Production           | SOIC (D)   14  | 2500   LARGE T&R      | Yes         | SN                                   | Level-1-260C-UNLIM                | -40 to 85    | LMC6464AIM          |
| LMC6464BIM/NOPB       | Obsolete      | Production           | SOIC (D)   14  | -                     | -           | Call TI                              | Call TI                           | -40 to 85    | LMC6464BIM          |
| LMC6464BIMX/NOPB      | Active        | Production           | SOIC (D)   14  | 2500   LARGE T&R      | Yes         | SN                                   | Level-1-260C-UNLIM                | -40 to 85    | LMC6464BIM          |
| LMC6464BIMX/NOPB.A    | Active        | Production           | SOIC (D)   14  | 2500   LARGE T&R      | Yes         | SN                                   | Level-1-260C-UNLIM                | -40 to 85    | LMC6464BIM          |
| LMC6464BIN/NOPB       | Obsolete      | Production           | PDIP (N)   14  | -                     | -           | Call TI                              | Call TI                           | -40 to 85    | LMC6464BIN          |

<sup>(1)</sup> **Status:** For more details on status, see our [product life cycle](#).

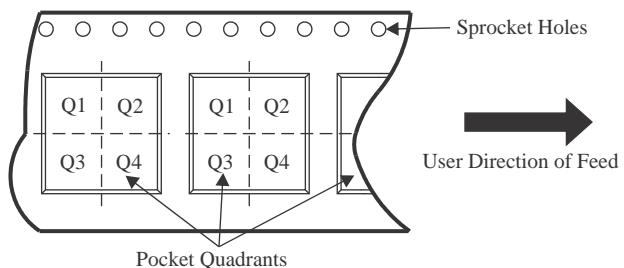
<sup>(2)</sup> **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

<sup>(3)</sup> **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

<sup>(4)</sup> **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

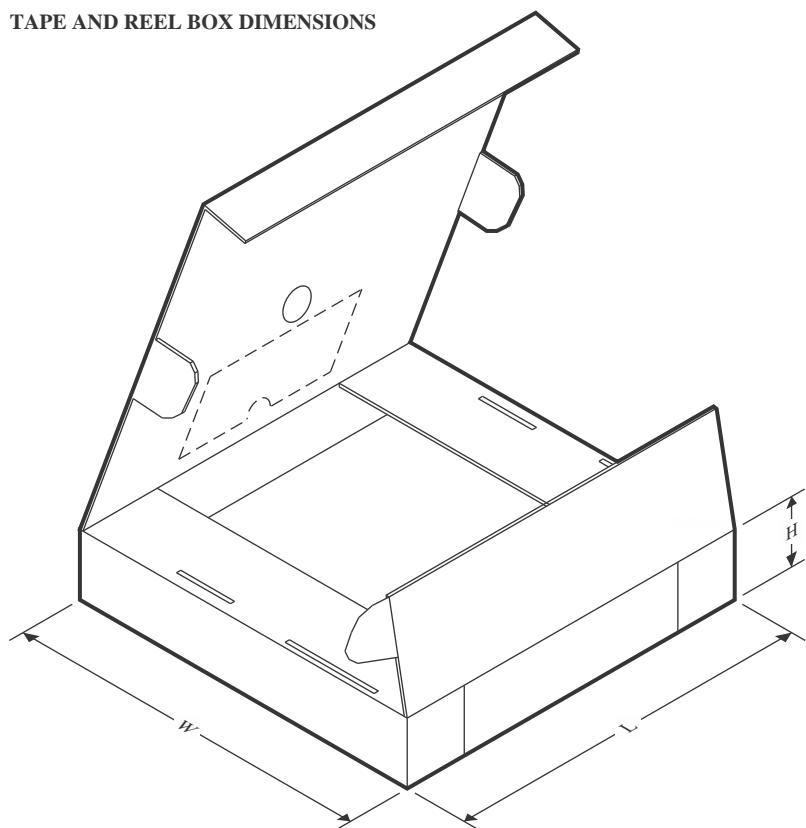


<sup>(5)</sup> **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

<sup>(6)</sup> **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


**TAPE AND REEL INFORMATION**


|    |                                                           |
|----|-----------------------------------------------------------|
| A0 | Dimension designed to accommodate the component width     |
| B0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

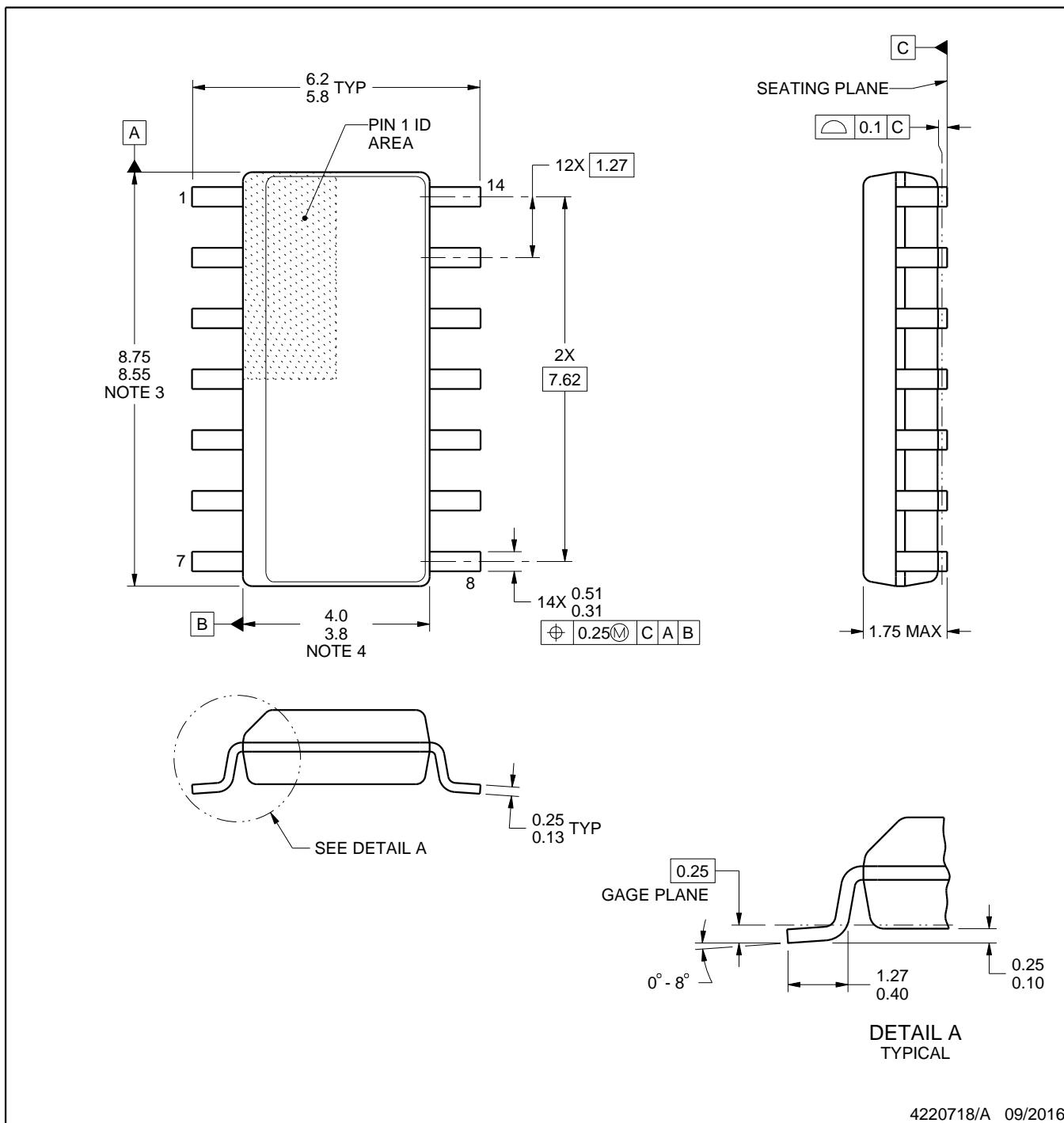
**QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE**


\*All dimensions are nominal

| Device           | Package Type | Package Drawing | Pins | SPQ  | Reel Diameter (mm) | Reel Width W1 (mm) | A0 (mm) | B0 (mm) | K0 (mm) | P1 (mm) | W (mm) | Pin1 Quadrant |
|------------------|--------------|-----------------|------|------|--------------------|--------------------|---------|---------|---------|---------|--------|---------------|
| LMC6462AIMX/NOPB | SOIC         | D               | 8    | 2500 | 330.0              | 12.4               | 6.5     | 5.4     | 2.0     | 8.0     | 12.0   | Q1            |
| LMC6462BIMX/NOPB | SOIC         | D               | 8    | 2500 | 330.0              | 12.4               | 6.5     | 5.4     | 2.0     | 8.0     | 12.0   | Q1            |
| LMC6464AIMX/NOPB | SOIC         | D               | 14   | 2500 | 330.0              | 16.4               | 6.5     | 9.35    | 2.3     | 8.0     | 16.0   | Q1            |
| LMC6464BIMX/NOPB | SOIC         | D               | 14   | 2500 | 330.0              | 16.4               | 6.5     | 9.35    | 2.3     | 8.0     | 16.0   | Q1            |

**TAPE AND REEL BOX DIMENSIONS**


\*All dimensions are nominal


| Device           | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|------------------|--------------|-----------------|------|------|-------------|------------|-------------|
| LMC6462AIMX/NOPB | SOIC         | D               | 8    | 2500 | 367.0       | 367.0      | 35.0        |
| LMC6462BIMX/NOPB | SOIC         | D               | 8    | 2500 | 367.0       | 367.0      | 35.0        |
| LMC6464AIMX/NOPB | SOIC         | D               | 14   | 2500 | 356.0       | 356.0      | 35.0        |
| LMC6464BIMX/NOPB | SOIC         | D               | 14   | 2500 | 367.0       | 367.0      | 35.0        |

# PACKAGE OUTLINE

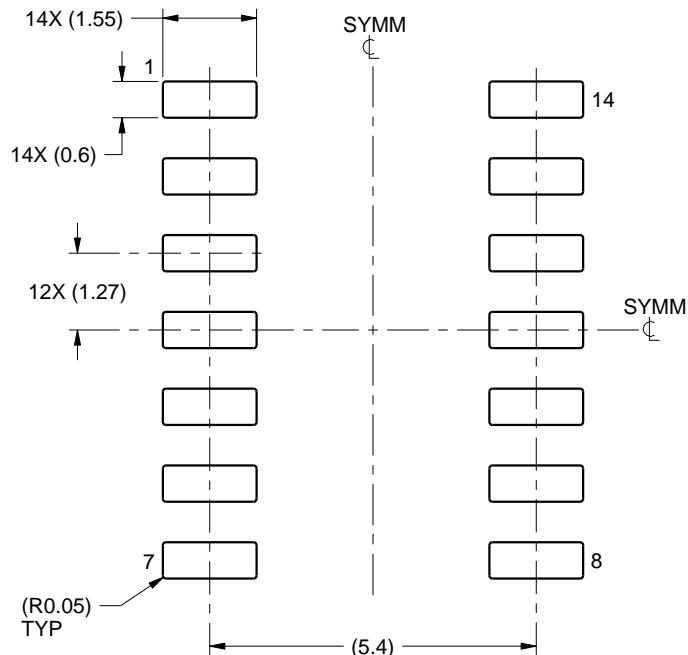
D0014A

SOIC - 1.75 mm max height

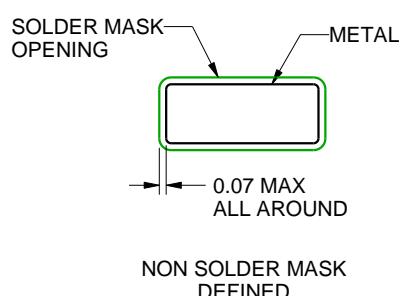
SMALL OUTLINE INTEGRATED CIRCUIT



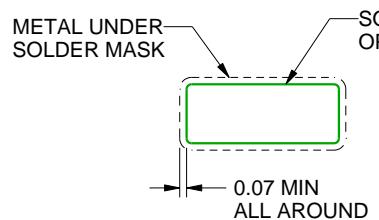
## NOTES:


1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side.
5. Reference JEDEC registration MS-012, variation AB.

# EXAMPLE BOARD LAYOUT


D0014A

SOIC - 1.75 mm max height


SMALL OUTLINE INTEGRATED CIRCUIT



LAND PATTERN EXAMPLE  
SCALE:8X



NON SOLDER MASK  
DEFINED



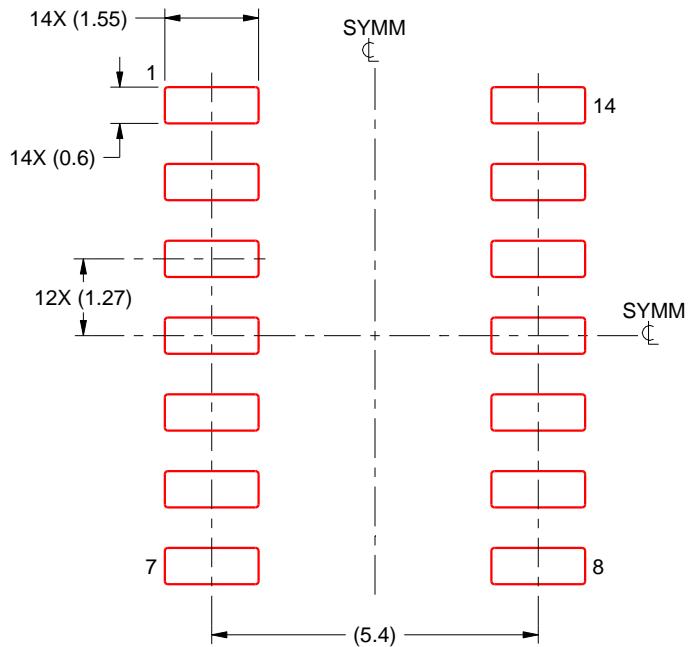
SOLDER MASK  
DEFINED

SOLDER MASK DETAILS

4220718/A 09/2016

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.


7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

# EXAMPLE STENCIL DESIGN

D0014A

SOIC - 1.75 mm max height

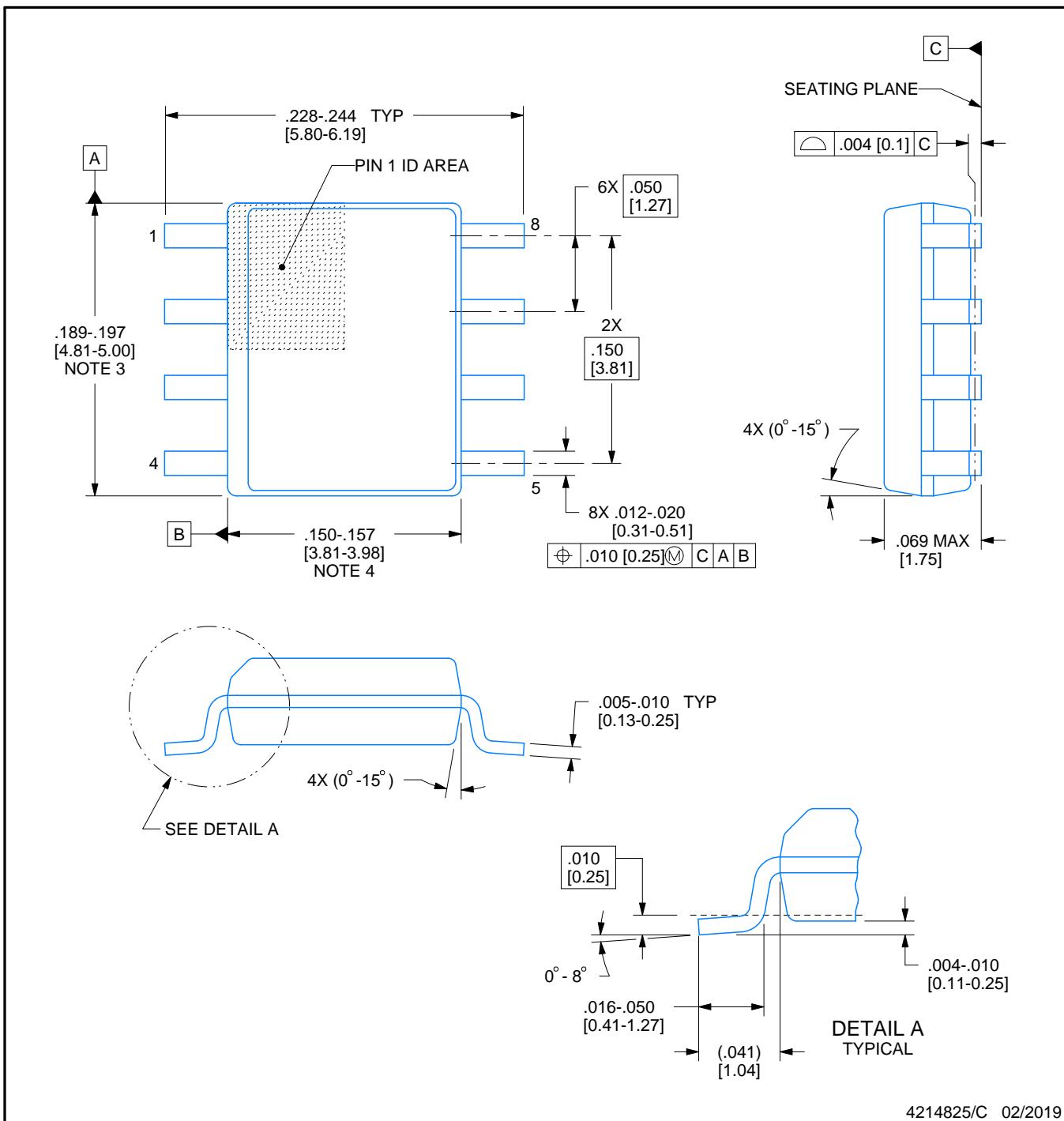
SMALL OUTLINE INTEGRATED CIRCUIT



SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:8X

4220718/A 09/2016

NOTES: (continued)


8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.



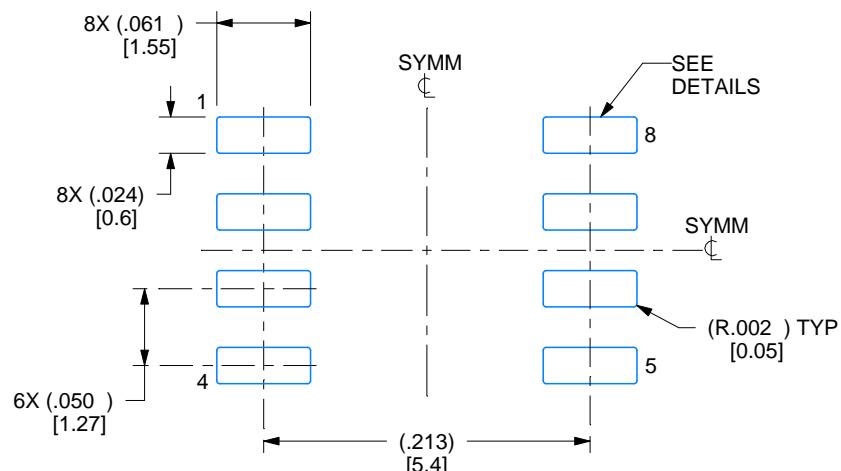
# PACKAGE OUTLINE

## SOIC - 1.75 mm max height

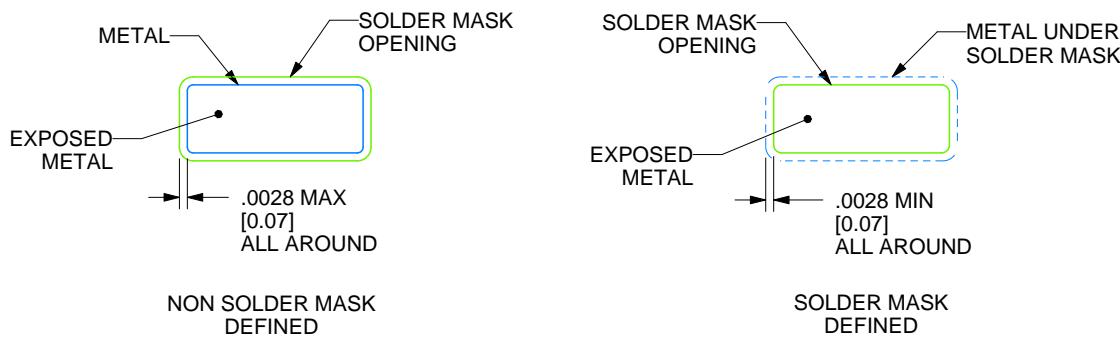
SMALL OUTLINE INTEGRATED CIRCUIT



### NOTES:


1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.

# EXAMPLE BOARD LAYOUT


D0008A

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT



LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X

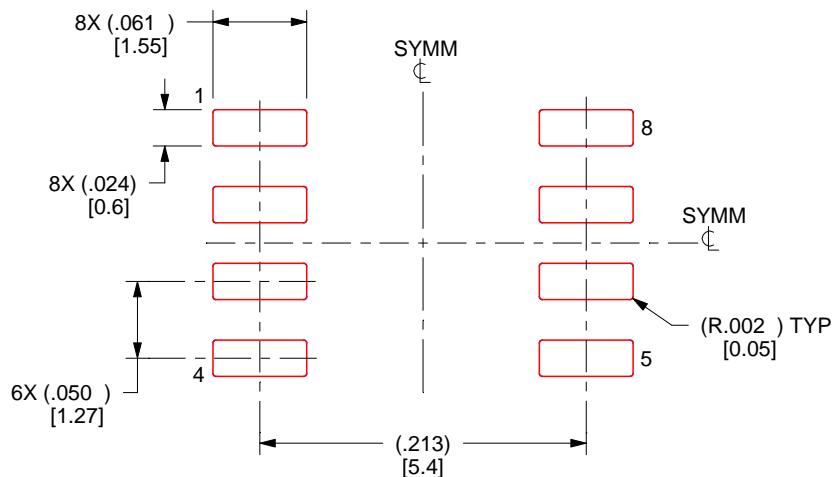


SOLDER MASK DETAILS

4214825/C 02/2019

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.


7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

# EXAMPLE STENCIL DESIGN

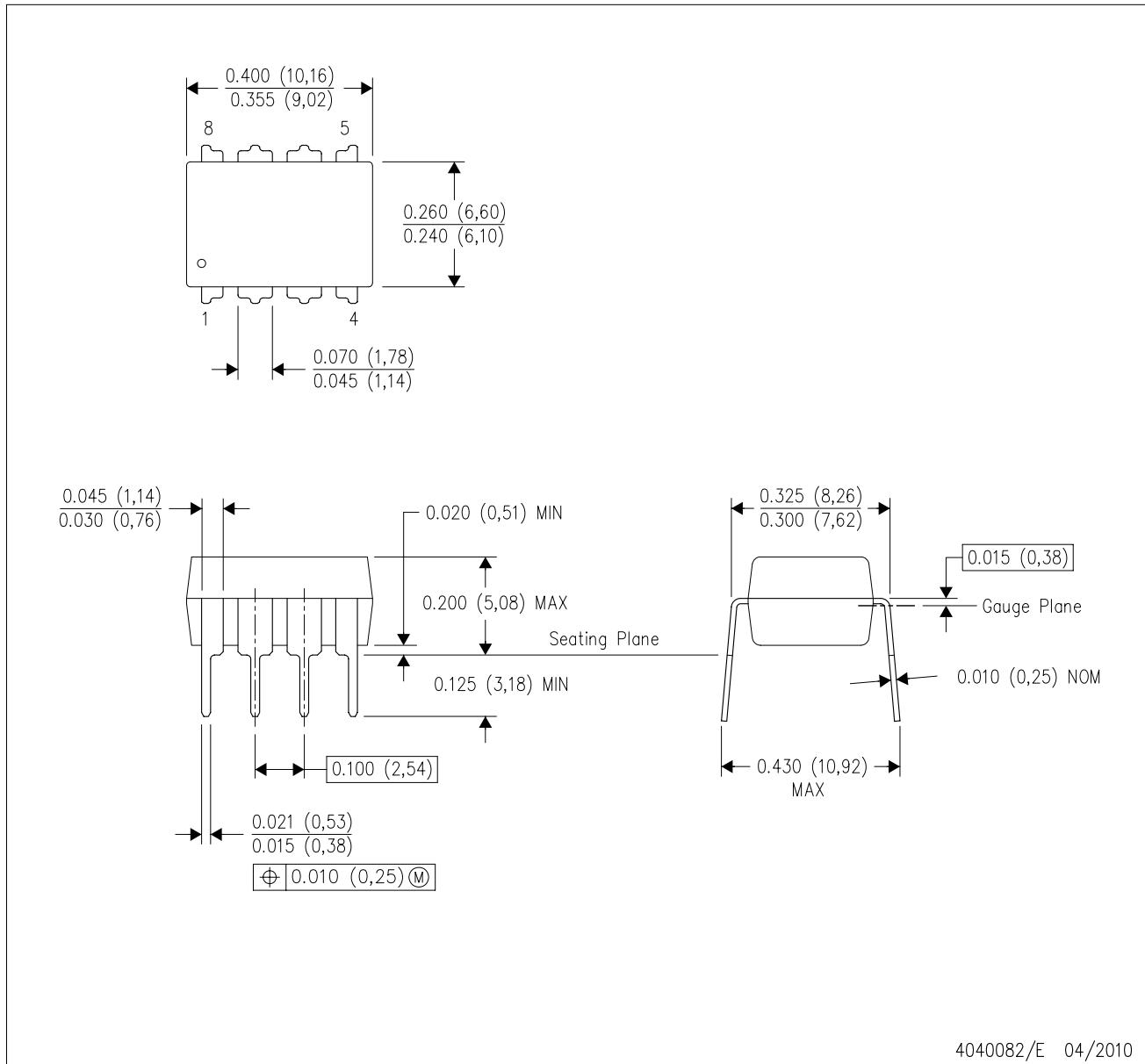
D0008A

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT



SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X


4214825/C 02/2019

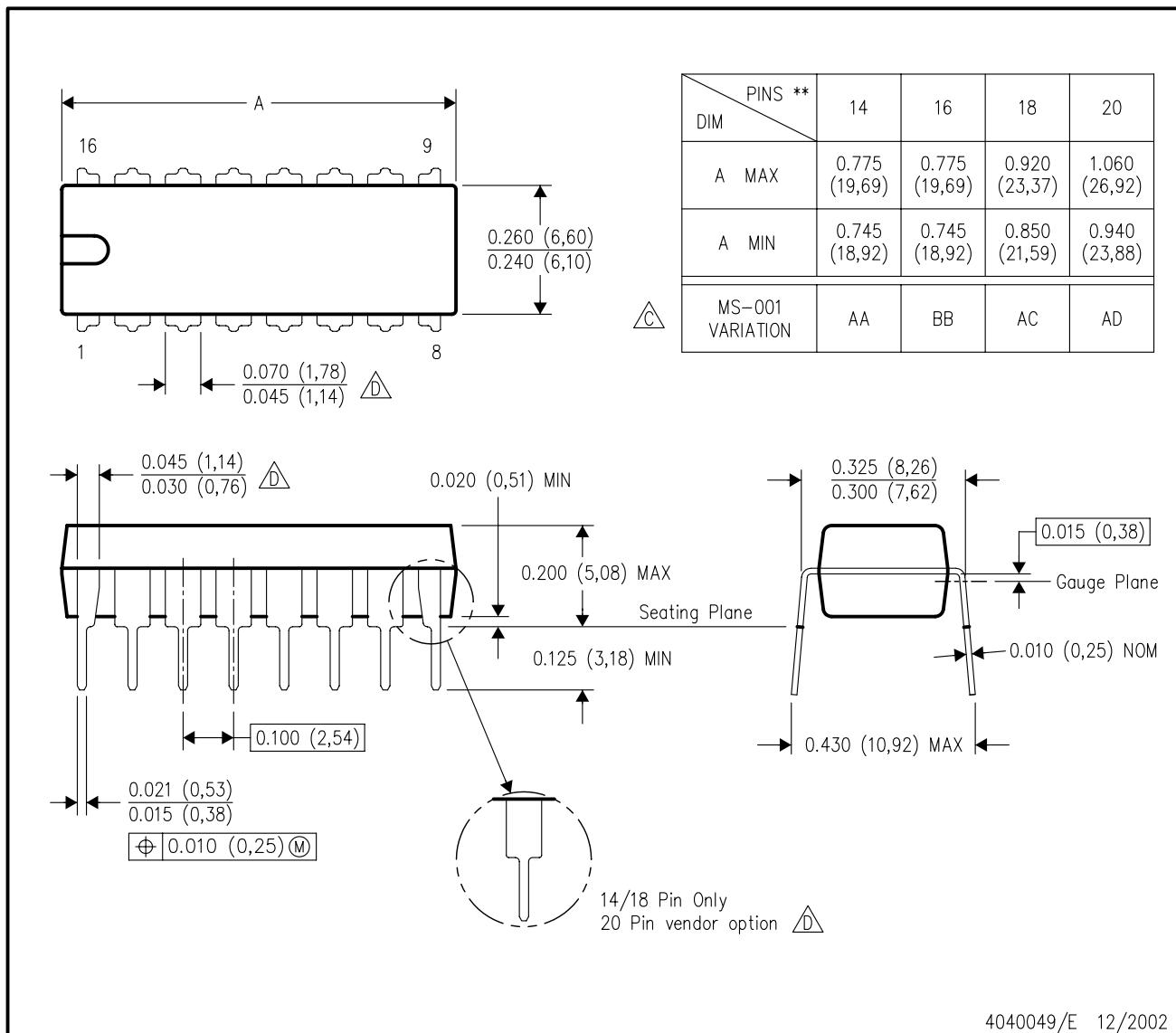
NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE




NOTES: A. All linear dimensions are in inches (millimeters).  
 B. This drawing is subject to change without notice.  
 C. Falls within JEDEC MS-001 variation BA.

4040082/E 04/2010

## N (R-PDIP-T\*\*)

16 PINS SHOWN

## PLASTIC DUAL-IN-LINE PACKAGE



## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025