

SN54AC00-SP Radiation Hardened Quad 2 Input NAND Gate

1 Features

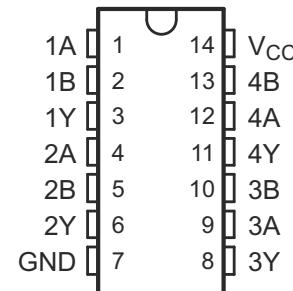
- 5962R87549:
 - Radiation hardness assurance (RHA) up to TID 100 krad (Si)
 - SEL immune to 86 MeV \times cm²/mg
- 5962-87549:
 - Total ionizing dose 50 krad (Si)
- 2 V to 6 V V_{CC} operation
- Inputs accept voltages to 6 V
- Maximum t_{pd} of 7 ns at 5 V

2 Applications

- Satellite payloads
- Satellite power on reset logic
- RHA known good Die (KGD) offering for space hybrids

Pin Functions (Each Gate)			
INPUTS		OUTPUT	
A	B	Y	
H	H	L	
L	X	H	
X	L	H	

Logic Diagram (Positive Logic)


3 Description

The SN54AC00 device contains four independent 2-input NAND gates. Each gate performs the Boolean function of $Y = \overline{A} \cdot \overline{B}$ or $Y = \overline{A} + \overline{B}$ in positive logic.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
SN54AC00-SP	CDIP (14)	5.97 mm \times 9.21 mm
	CFP (14)	6.67 mm \times 19.56 mm
	KGD (0)	Not applicable

(1) For all available packages, see the orderable addendum at the end of the data sheet.

J or W Package
(Top View)

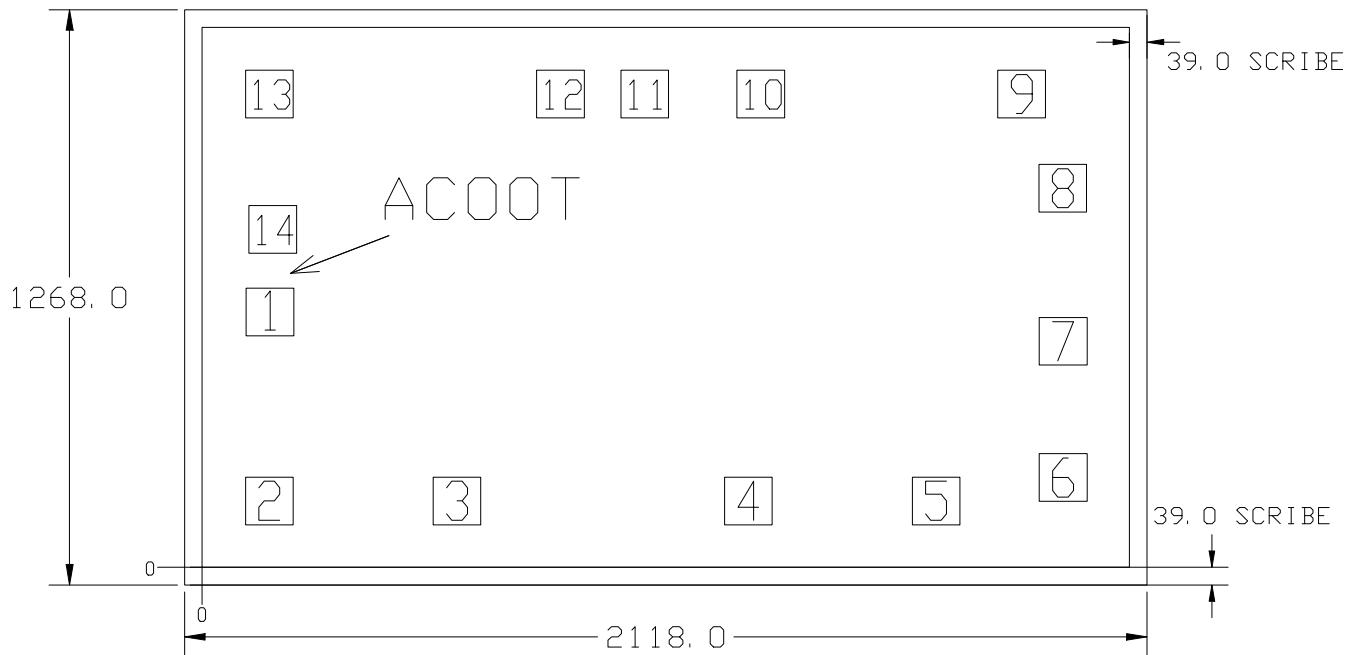
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Table of Contents

1 Features	1	6.6 Switching Characteristics, $V_{CC} = 5$ V.....	6
2 Applications	1	6.7 Operating Characteristics.....	6
3 Description	1	7 Parameter Measurement Information	7
4 Revision History	2	8 Device and Documentation Support	8
5 Bare Die Information	3	8.1 Receiving Notification of Documentation Updates.....	8
6 Specifications	4	8.2 Support Resources.....	8
6.1 Absolute Maximum Ratings.....	4	8.3 Trademarks.....	8
6.2 Recommended Operating Conditions.....	4	8.4 Electrostatic Discharge Caution.....	8
6.3 Thermal Information.....	5	8.5 Glossary.....	8
6.4 Electrical Characteristics.....	5	9 Mechanical, Packaging, and Orderable Information	8
6.5 Switching Characteristics, $V_{CC} = 3.3$ V.....	6		

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Revision B (October 2015) to Revision C (April 2022)	Page
• Updated the numbering format for tables, figures, and cross-references throughout the document.....	1
• Removed <i>SEU</i> from the <i>Features</i> section.....	1
• Changed <i>SEL</i> immune to 86 MeV \times cm 2 /mg.....	1

Changes from Revision A (December 2013) to Revision B (February 2015)	Page
• Added KGD package information	1
• Added <i>Device and Documentation Support</i> section and <i>Mechanical, Packaging, and Orderable Information</i> section	1
• Added <i>Bare Die Information</i> , image, and <i>Bond Pad Coordinates in Microns</i>	3
• Added parameter information for KGD to <i>Section 6.5</i> and <i>Section 6.6</i>	6

Changes from Revision * (October 2008) to Revision A (December 2013)	Page
• Changed <i>Features</i> bullets.....	1
• Deleted <i>Ordering Information</i> table.....	1

5 Bare Die Information

DIE THICKNESS	BACKSIDE FINISH	BACKSIDE POTENTIAL	BOND PAD METALLIZATION COMPOSITION	BOND PAD THICKNESS
15 mils	Silicon with backgrind	Floating	TiW/AlCu2	15800 nm

Bond Pad Coordinates in Microns

DESCRIPTION	PAD NUMBER	X MIN	Y MIN	X MAX	Y MAX
1A	1	96.3	510.5	201.3	615.5
1B	2	95	94	200	199
1Y	3	508	94	613	199
2A	4	1149	94	1254	199
2B	5	1562	94	1667	199
2Y	6	1841.5	145.5	1946.5	250.5
GND	7	1841.5	445.5	1946.5	550.5
3Y	8	1841	783	1946	888
3A	9	1750.5	991	1855.5	1096
3B	10	1176.5	991	1281.5	1096
4Y	11	921	991	1026	1096
4A	12	736	991	841	1096
4B	13	95	991	200	1096
VCC	14	102.5	692	207.5	797

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		-0.5	7	V
V _I	Input voltage ⁽²⁾		-0.5	V _{CC} + 0.5	V
V _O	Output voltage ⁽²⁾		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0 or V _I > V _{CC}		±20	mA
I _{OK}	Output clamp current	V _O < 0 or V _O > V _{CC}		±20	mA
I _O	Continuous output current	V _O = 0 to V _{CC}		±50	mA
	Continuous current through V _{CC} or GND			±200	mA
T _J	Junction temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

6.2 Recommended Operating Conditions

			MIN	MAX	UNIT
V _{CC}	Supply voltage		2	6	V
V _{IH}	High-level input voltage	V _{CC} = 3 V	2.1		V
		V _{CC} = 4.5 V	3.15		
		V _{CC} = 5.5 V	3.85		
V _{IL}	Low-level input voltage	V _{CC} = 3 V		0.9	V
		V _{CC} = 4.5 V		1.35	
		V _{CC} = 5.5 V		1.65	
V _I	Input voltage		0	V _{CC}	V
V _O	Output voltage		0	V _{CC}	V
I _{OH}	High-level output current	V _{CC} = 3 V		12	mA
		V _{CC} = 4.5 V		24	
		V _{CC} = 5.5 V		24	
I _{OL}	Low-level output current	V _{CC} = 3 V		12	mA
		V _{CC} = 4.5 V		24	
		V _{CC} = 5.5 V		24	
Δt/Δv	Input transition rise or fall rate			8	ns/V
T _A	Operating free-air temperature		-55	125	°C

6.3 Thermal Information

THERMAL METRIC ^{(1) (2)}		SN54AC00-SP		UNIT °C/W
		J	W	
		14 PINS	14 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	83.1	125.4	
$R_{\theta JC(\text{top})}$	Junction-to-case (top) thermal resistance	26.6	30.85	
$R_{\theta JB}$	Junction-to-board thermal resistance	47.9	43.4	
Ψ_{JT}	Junction-to-top characterization parameter	N/A	N/A	
Ψ_{JB}	Junction-to-board characterization parameter	N/A	N/A	
$R_{\theta JC(\text{bot})}$	Junction-to-case (bottom) thermal resistance	N/A	N/A	

(1) For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, [SPRA953](#).

(2) The package thermal impedance is calculated in accordance with JESD 51-7 and Mil Std 883 method 1012.1 (see [www.JEDEC.org](#)).

6.4 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{CC}	T _A = 25°C			MIN	MAX	UNIT
			MIN	TYP	MAX			
V _{OH}	I _{OH} = -50 μ A	3 V	2.9			2.9		V
		4.5 V	4.4			4.4		
		5.5 V	5.4			5.4		
	I _{OH} = -12 mA	3 V	2.56			2.4		
		4.5 V	3.86			3.7		
	I _{OH} = -24 mA	5.5 V	4.86			4.7		
		5.5 V				3.85		
	I _{OL} = 50 μ A	3 V			0.1	0.1		V
		4.5 V			0.1	0.1		
		5.5 V			0.1	0.1		
	I _{OL} = 12 mA	3 V			0.36	0.5		
		4.5 V			0.36	0.5		
	I _{OL} = 24 mA	5.5 V			0.36	0.5		
		5.5 V				1.65		
I _I	V _I = V _{CC} or GND	5.5 V			±0.1	±1	μ A	
I _{CC}	V _I = V _{CC} or GND, I _O = 0	5.5 V			4	40	μ A	
C _i	V _I = V _{CC} or GND	5 V			2.6		pF	

(1) Not more than one output should be tested at a time, and the duration of the test should not exceed 2 ms.

6.5 Switching Characteristics, $V_{CC} = 3.3$ V

over recommended operating free-air temperature range, $V_{CC} = 3.3$ V ± 0.3 V (unless otherwise noted) (see [Figure 7-1](#))

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$T_A = 25^\circ\text{C}$			MIN	MAX	UNIT
			MIN	TYP	MAX			
t_{PLH}	A or B	Y	2	7	9.5	1	11	ns
t_{PHL}			1.5	5.5	8	1	9	
t_{PLH} (KGD only) ⁽¹⁾	A or B	Y	1	7	9.5	1	11	ns
t_{PHL} (KGD only) ⁽¹⁾			1	5.5	9.5	1	11	

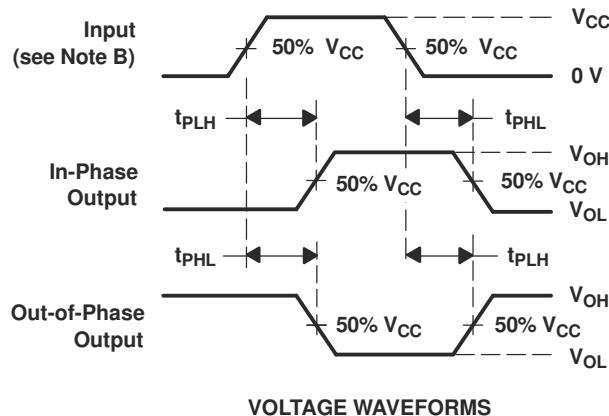
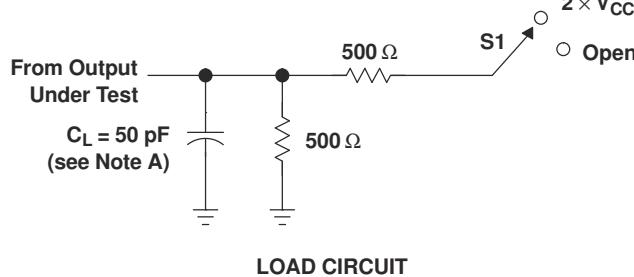
(1) Specification limits for KGD are based on SMD 5962-8754903

6.6 Switching Characteristics, $V_{CC} = 5$ V

over recommended operating free-air temperature range, $V_{CC} = 5$ V ± 0.5 V (unless otherwise noted) (see [Figure 7-1](#))

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$T_A = 25^\circ\text{C}$			MIN	MAX	UNIT
			MIN	TYP	MAX			
t_{PLH}	A or B	Y	1.5	6	8	1	8.5	ns
t_{PHL}			1.5	4.5	6.5	1	7	
t_{PLH} (KGD only) ⁽¹⁾	A or B	Y	1.5	6	8	1	8.5	ns
t_{PHL} (KGD only) ⁽¹⁾			1.5	4.5	8	1	8.5	

(1) Specification limits for KGD are based on SMD 5962-8754903



6.7 Operating Characteristics

$V_{CC} = 5$ V, $T_A = 25^\circ\text{C}$

PARAMETER	TEST CONDITIONS	TYP	UNIT
C_{pd} Power dissipation capacitance	$C_L = 50$ pF, $f = 1$ MHz	40	pF

7 Parameter Measurement Information

TEST	S1
t_{PLH}/t_{PHL}	Open

NOTES: A. C_L includes probe and jig capacitance.
 B. All input pulses are supplied by generators having the following characteristics: $PRR \leq 1$ MHz, $Z_0 = 50 \Omega$, $t_r \leq 2.5$ ns, $t_f \leq 2.5$ ns.
 C. The outputs are measured one at a time with one input transition per measurement.

Figure 7-1. Load Circuit and Voltage Waveforms

8 Device and Documentation Support

8.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on [ti.com](https://www.ti.com). Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.2 Support Resources

[TI E2E™ support forums](#) are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

8.3 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.5 Glossary

[TI Glossary](#) This glossary lists and explains terms, acronyms, and definitions.

9 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
5962-8754903VCA	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-8754903VC A SNV54AC00J
5962-8754903VCA.A	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-8754903VC A SNV54AC00J
5962-8754903VDA	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-8754903VD A SNV54AC00W
5962-8754903VDA.A	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-8754903VD A SNV54AC00W
5962R8754903V9A	Active	Production	XCEPT (KGD) 0	95 JEDEC TRAY (5+1)	Yes	Call TI	N/A for Pkg Type	-55 to 125	
5962R8754903V9A.A	Active	Production	XCEPT (KGD) 0	95 JEDEC TRAY (5+1)	Yes	Call TI	N/A for Pkg Type	-55 to 125	
5962R8754903VCA	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962R8754903VC A SNVR54AC00J
5962R8754903VCA.A	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962R8754903VC A SNVR54AC00J
5962R8754903VDA	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962R8754903VD A SNVR54AC00W
5962R8754903VDA.A	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962R8754903VD A SNVR54AC00W

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

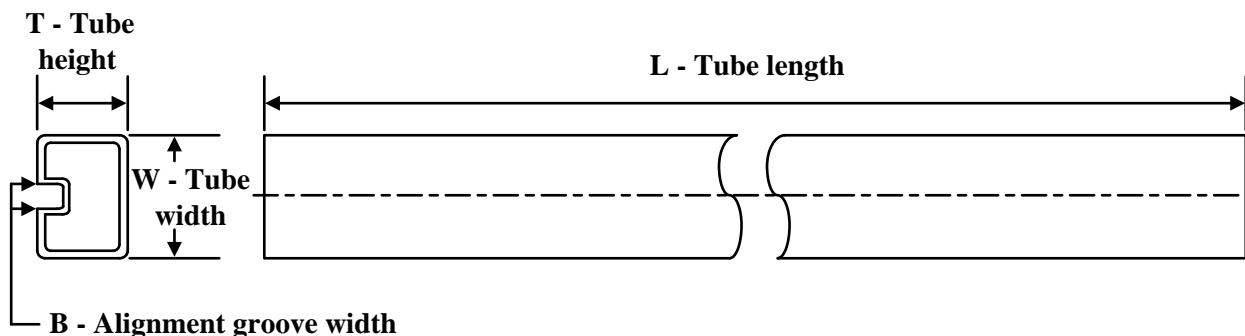
⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

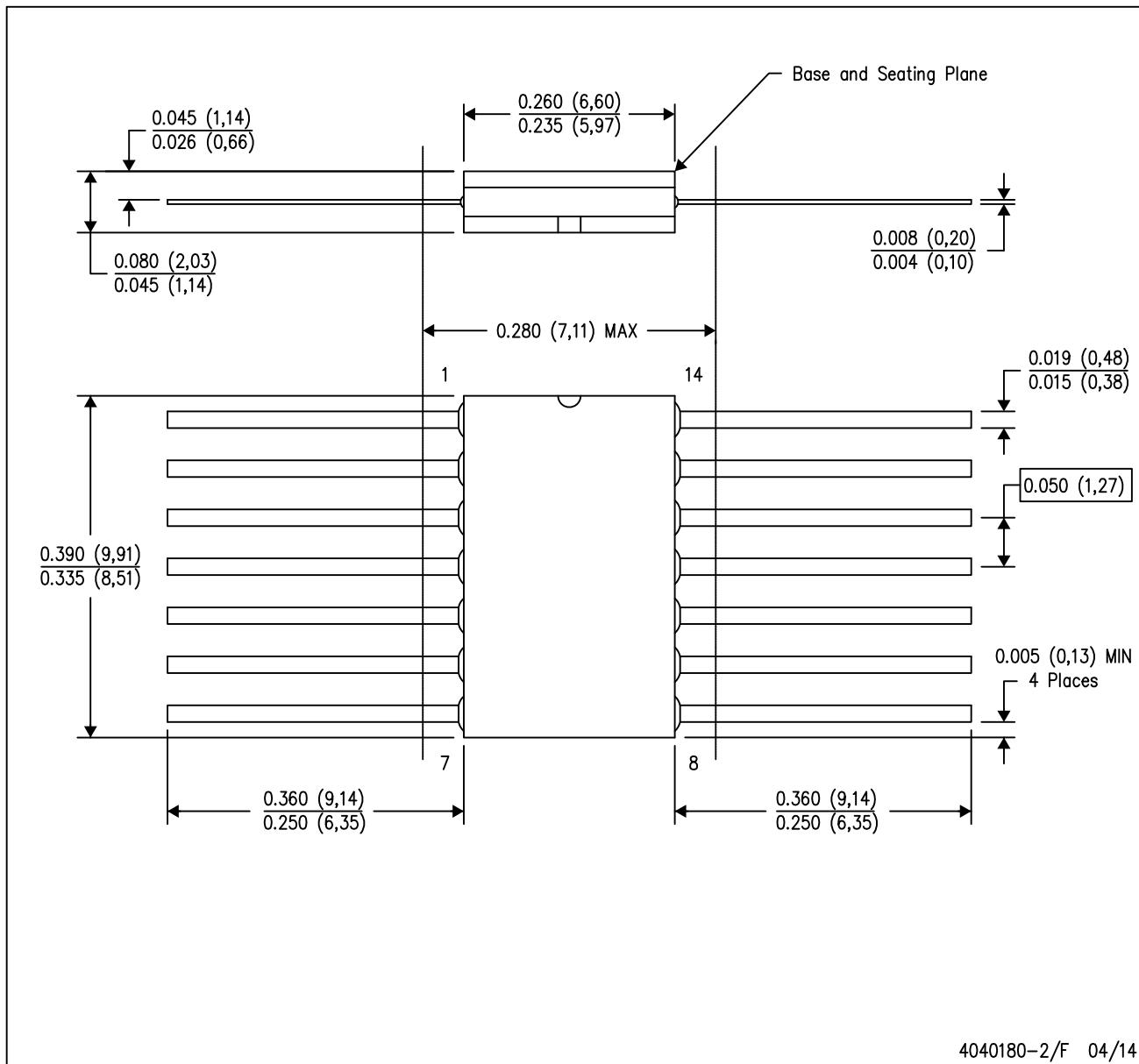

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54AC00-SP :

- Catalog : [SN54AC00](#)

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product


TUBE

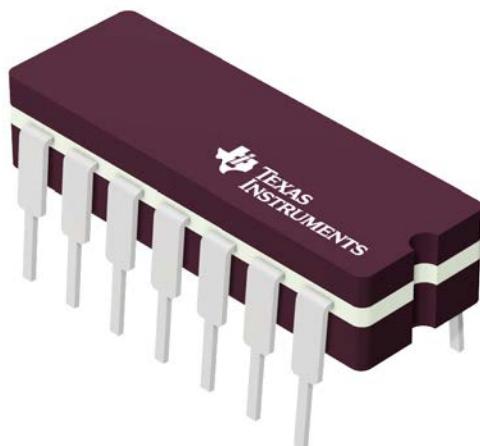
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (μ m)	B (mm)
5962-8754903VDA	W	CFP	14	25	506.98	26.16	6220	NA
5962-8754903VDA.A	W	CFP	14	25	506.98	26.16	6220	NA
5962R8754903VCA	J	CDIP	14	25	506.98	15.24	13440	NA
5962R8754903VCA.A	J	CDIP	14	25	506.98	15.24	13440	NA
5962R8754903VDA	W	CFP	14	25	506.98	26.16	6220	NA
5962R8754903VDA.A	W	CFP	14	25	506.98	26.16	6220	NA

W (R-GDFP-F14)

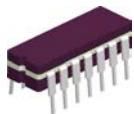
CERAMIC DUAL FLATPACK

NOTES:


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL-STD 1835 GDFP1-F14

GENERIC PACKAGE VIEW

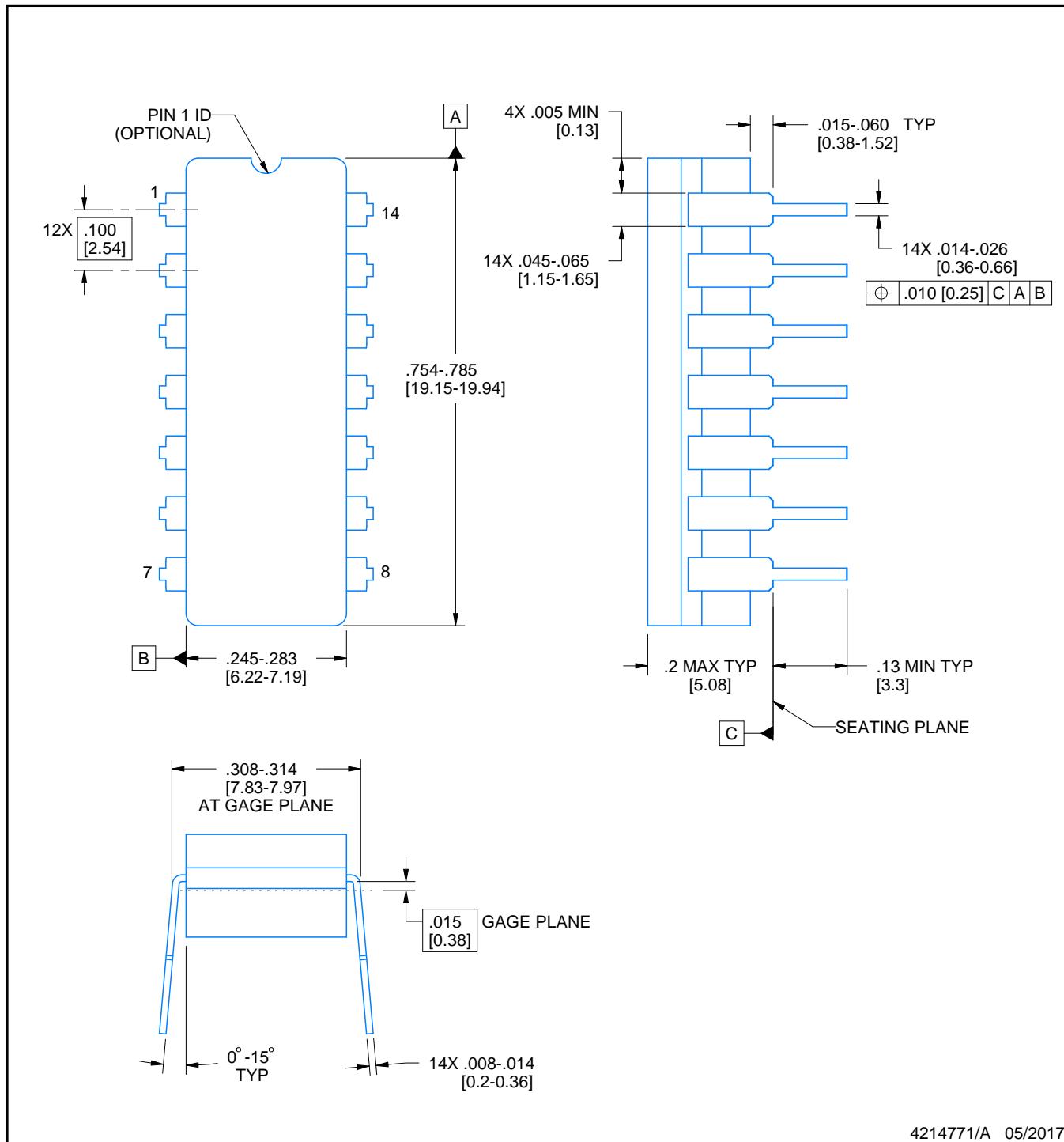
J 14


CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

Images above are just a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.

4040083-5/G



PACKAGE OUTLINE

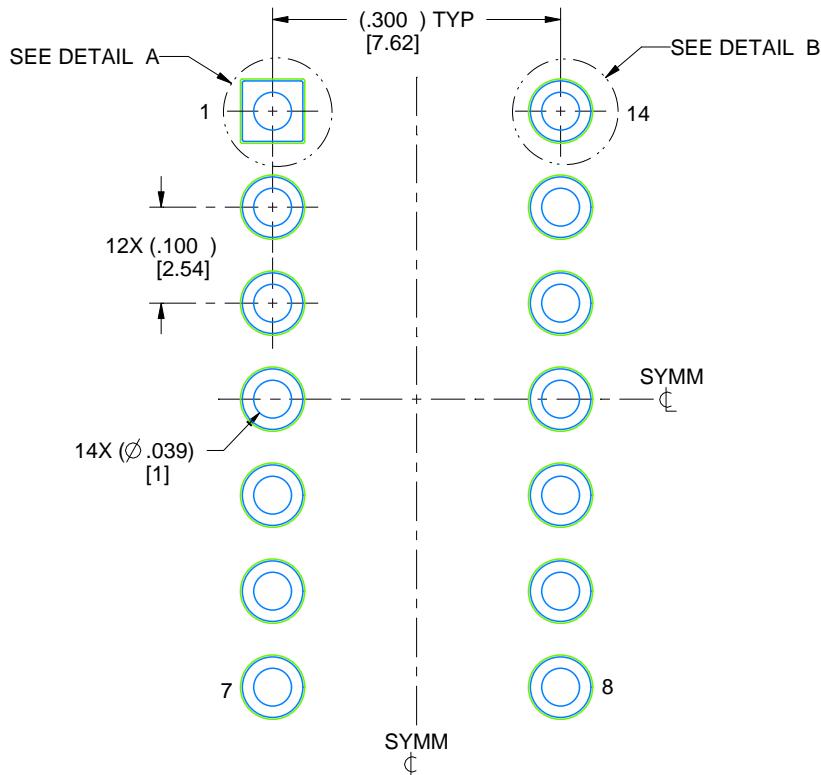
J0014A

CDIP - 5.08 mm max height

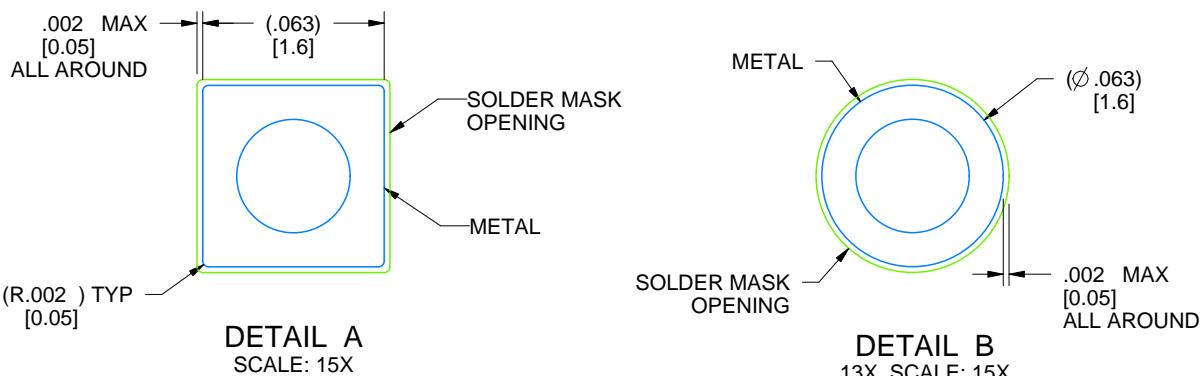
CERAMIC DUAL IN LINE PACKAGE

4214771/A 05/2017

NOTES:


1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This package is hermetically sealed with a ceramic lid using glass frit.
4. Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
5. Falls within MIL-STD-1835 and GDIP1-T14.

EXAMPLE BOARD LAYOUT


J0014A

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

LAND PATTERN EXAMPLE
NON-SOLDER MASK DEFINED
SCALE: 5X

4214771/A 05/2017

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025