

- Meets or Exceeds the Requirements of IOS 8802.3:1989 and ANSI/IEEE Std 802.3-1988
- Interdevice Loopback Paths for System Testing
- Squelch Function Implemented on the Receiver Inputs
- Drives a Balanced $78\text{-}\Omega$ Load
- Transformer Coupling Not Required in System
- Power-Up/Power-Down Protection (Glitch Free)
- Isolated Ground Pins for Reduced Noise Coupling
- Fault-Condition Protection Built Into the Device
- Driver Inputs Are Level-Shifted ECL Compatible
- Package Options Include Plastic Small-Outline (DW) Package and Standard Plastic (NT) DIP

DW OR NT PACKAGE
(TOP VIEW)

description

The SN75ALS085 is a high-speed, advanced low-power Schottky, dual-channel driver/receiver device designed for use in the AUI of ANSI/IEEE Std 802.3-1988. The two drivers on the device drive a $78\text{-}\Omega$ balanced, terminated twisted-pair transmission line up to a maximum length of 50 meters. In the off (idle) state, the drivers maintain minimal differential output voltage on the twisted-pair line and, at the same time, remain within the required output common-mode range.

With the driver enable (TXEN) high, upon receiving the first falling edge into the driver input, the differential outputs rise to full-amplitude output levels within 25 ns. The output amplitude is maintained for the remainder of the packet. After the last positive packet edge is transmitted into the driver, the driver maintains a minimum of 70% full differential output for a minimum of 200 ns, then decays to a minimum level for the reset (idle) condition within 8 μs . Disabling the driver by taking the driver enable low also forces the output into the idle condition after the normal 8- μs timeout. While operating, the drivers are able to withstand a set of fault conditions and not suffer damage due to the faults being applied. The drivers power up in the idle state to ensure that no activity is placed on the twisted-pair cable, which could be interpreted as network traffic.

The line receiver squelch function interfaces to a differential twisted-pair line terminated external to the device. The receiver squelch circuit allows differential receive signals to pass through, as long as the input amplitude and pulse duration are greater than the minimum squelch threshold. This ensures a good signal-to-noise ratio while the data path is active and prevents system noise from causing false data transitions during line shutdown and line-idle conditions. The receiver outputs (RXO) default to a high level and the receiver-enable (RXEN) outputs default to a low level while the squelch function is blocking the data path through the receiver (idle). The line receiver squelch becomes active within 50 ns when the input squelch threshold is exceeded. RXEN is driven high when the squelch circuit allows data to pass through the receiver. The receiver squelch circuit also can withstand a set of fault conditions while operating, without causing permanent damage to the device.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN75ALS085 LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER

SLLS054D – APRIL 1989 – REVISED OCTOBER 2001

description (continued)

The purpose of the loop functions is to provide a means by which system data-path verification can be done to isolate faulty interfaces and assist in network diagnosis. The LOOP pins are TTL compatible and must be held high for normal operation. When LOOP1 is taken low, the output of driver 1 (TXO1) immediately goes into the idle state. Also, the input to receiver 1 is ignored, and a path from a transmit input (TXI1) to RXO1 is established. When LOOP1 is taken back high, driver 1 and receiver 1 revert back to their normal operation. When LOOP2 is taken low, a similar data path is established between TXI2 and RXO2. TXEN1 must be high for the loop functions to operate, and TXEN1 can be used to gate the loop function if desired. During loop operation, the respective RXEN reflects the status of TXEN1.

The SN75ALS085 is characterized for operation from 0°C to 70°C.

AVAILABLE OPTIONS

TA	PACKAGED DEVICES	
	PLASTIC SMALL OUTLINE (DW)	PLASTIC DIP (NT)
0°C to 70°C	SN75ALS085DW	SN75ALS085NT

The DW package is available taped and reeled. Add the suffix R to device type (e.g., SN75ALS085DWR).

Function Tables

RECEIVER (LOOP = H)

RXI	PREVIOUS RXEN	OUTPUTS	
		RXEN	RXO
V _{ID} = 1315 mV to -175 mV, t _w < 25 ns	L	L	H
V _{ID} = -275 mV to -1315 mV t _w > 50 ns	X	H	L
V _{ID} = 318 mV to 1315 mV, t _w < 142 ns	H	H	H
V _{ID} = 318 mV to 1315 mV, t _w > 187 ns	X	L	H

H = high level, L = low level, X = don't care

DRIVER (LOOP = H)

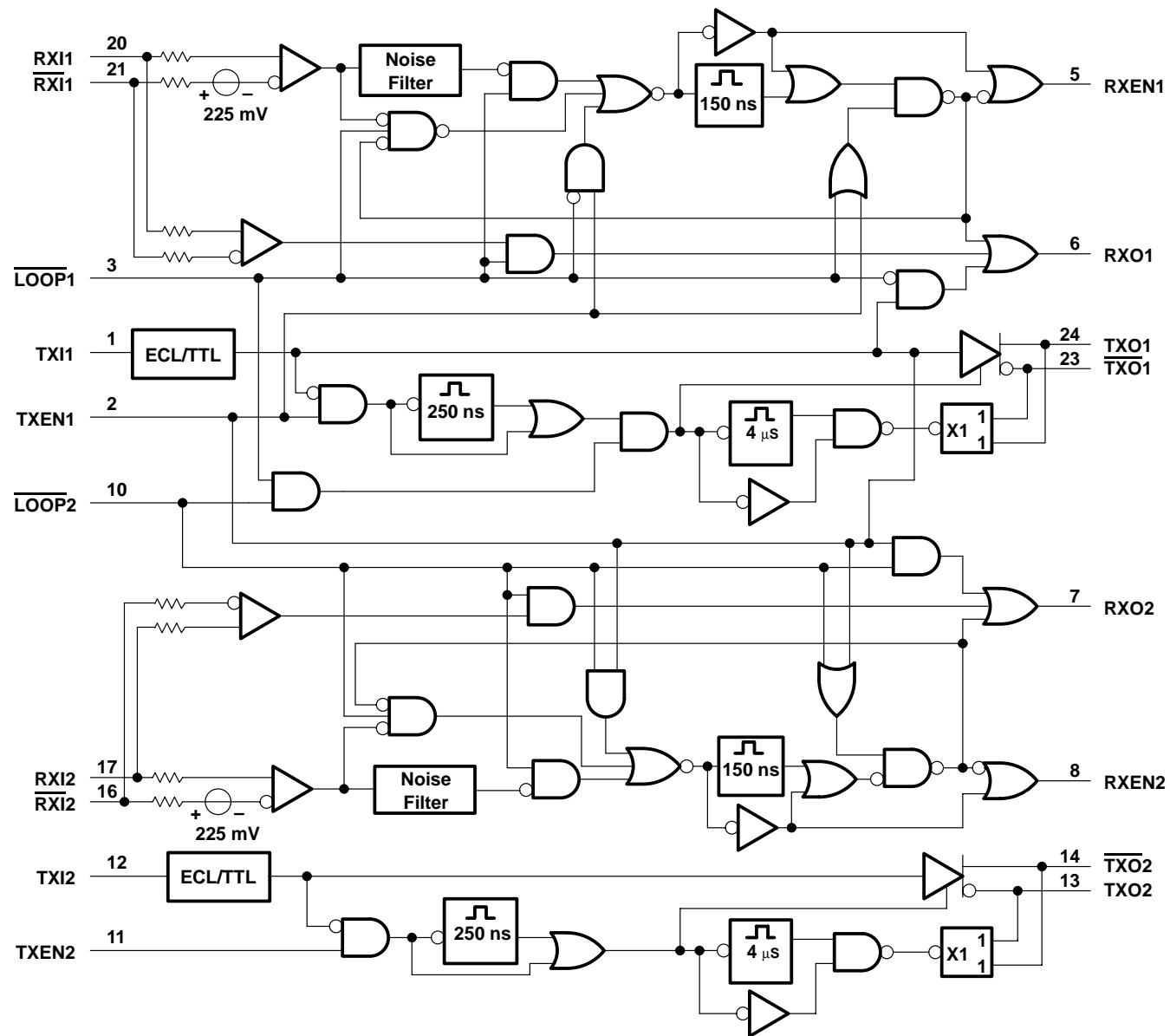
TXI	TXEN	PREVIOUS TXO	OUTPUT TXO
L	L	Idle	Idle
H	L	Idle	Idle
↓	H	Idle	L
L	H	Active	L
H < 260 µs	H	Active	H
H > 8 µs	H	Active	Idle
L	L > 8 µs	Active	Idle
H < 260 ns	L > 8 µs	Active	Idle
H < 260 ns	L < 260 ns	Active	H
H > 8 µs	L < 260 ns	Active	Idle
L	L < 260 ns	Active	L

H = V_I ≥ V_T max, L = V_I ≤ V_T min

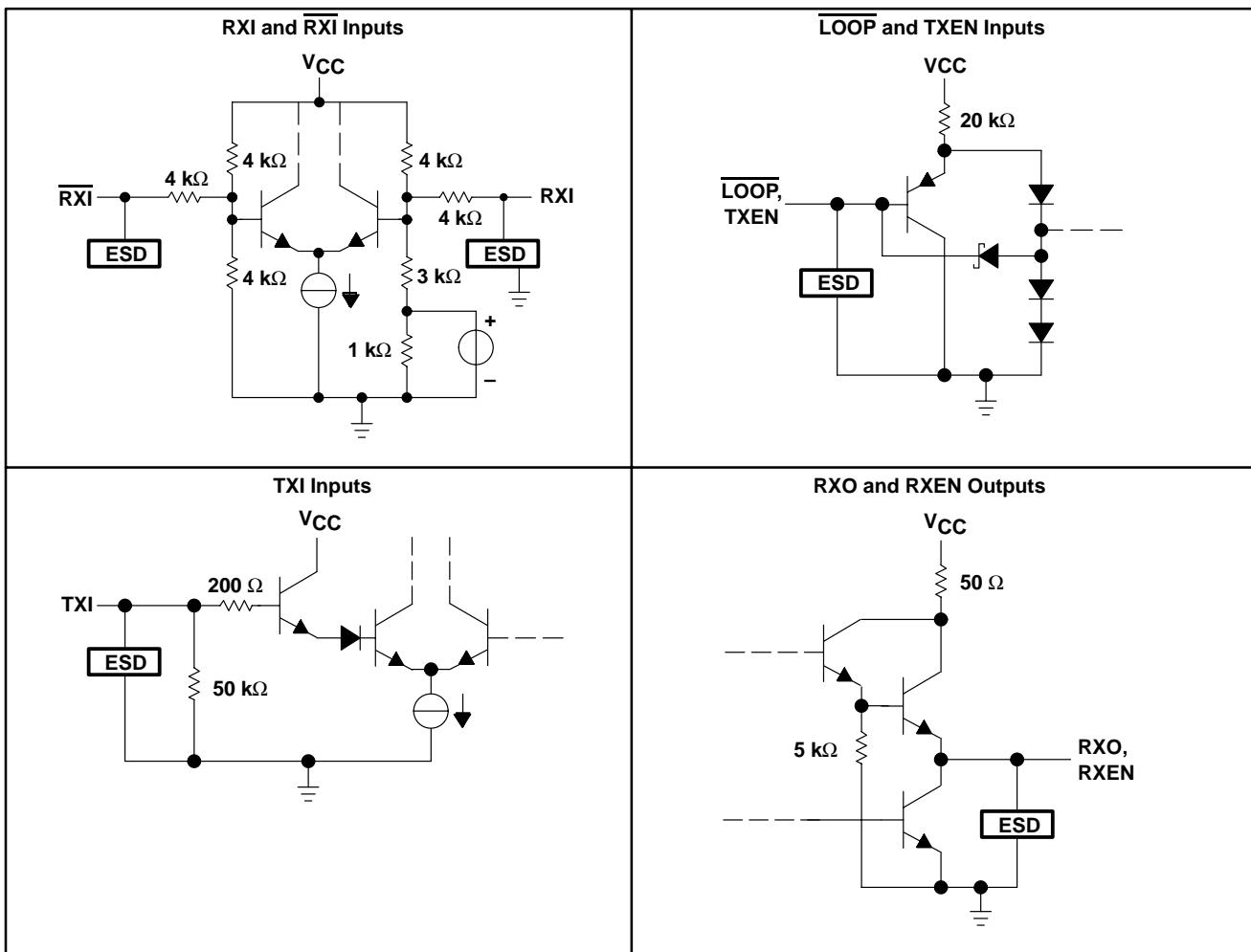
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Function Tables (continued)

LOOP


INPUTS						OUTPUTS				
LOOP1	LOOP2	TXI1	TXEN1	RXI1	RXI2	RXO1	RXO2	RXEN1	RXEN2	TXO1
L	L	L	H	X	X	L	L	H	H	Idle
L	L	H	H	X	X	H	H	H	H	Idle
L	L	X	L	X	X	H	H	L	L	Idle
L	H	L	H	X	Normal	L	Normal	H	Normal	Idle
L	H	H	H	X	Normal	H	Normal	H	Normal	Idle
L	H	X	L	X	Normal	H	Normal	L	Normal	Idle
H	L	L	H	Normal	X	Normal	L	Normal	H	Idle
H	L	H	H	Normal	X	Normal	H	Normal	H	Idle
H	L	X	L	Normal	X	Normal	H	Normal	L	Idle
H	H	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal

H = high level, L = low level, X = don't care


SN75ALS085 LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER

SLLS054D – APRIL 1989 – REVISED OCTOBER 2001

logic diagram (positive logic)

schematics of inputs and outputs

SN75ALS085 LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER

SLLS054D – APRIL 1989 – REVISED OCTOBER 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V_{CC} (see Note 1)	6 V
TXI and <u>LOOP</u> input voltage, V_I	5.5 V
TXO and <u>TXO</u> output voltage, V_O	16 V
RXI and <u>RXI</u> input voltage, V_I	16 V
RXO and RXEN output voltage, V_O	5.5 V
Package thermal impedance, θ_{JA} (see Notes 2 and 3): DW package (see Notes 2 and 4): NT package	46°C/W 67°C/W
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds	260°C
Storage temperature range, T_{stg}	-65 to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Voltage values are with respect to network ground terminal.

2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
3. The package thermal impedance is calculated in accordance with JESD 51-7.
4. The package thermal impedance is calculated in accordance with JESD 51-3.

recommended operating conditions

		MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage	4.75	5	5.25	V
V_{IC}	Common-mode voltage at RXI inputs	1	4.2	4.2	V
V_{ID}	Differential voltage between RXI inputs	±318	±1315	±1315	mV
V_{IH}	High-level input voltage, <u>LOOP</u> and TXEN	2	2	2	V
V_{IL}	Low-level input voltage, <u>LOOP</u> and TXEN	0.8	0.8	0.8	V
I_{OH}	High-level output current, RXO and RXEN	–0.4	–0.4	–0.4	mA
I_{OL}	Low-level output voltage, RXO and RXEN	16	16	16	mA
t_{su1}	Setup time, driver mode, TXEN high before TXI↓ (see Figure 7)	10	10	10	ns
t_{su2}	Setup time, loop mode, <u>LOOP</u> low before TXEN↑ (see Figure 9)	15	15	15	ns
t_{su3}	Setup time, loop mode, TXEN high before TXI↓ (see Figure 9)	10	10	10	ns
t_{h1}	Hold time, loop mode, TXEN high after TXI↑ (see Figure 8)	10	10	10	ns
t_{h2}	Hold time, loop mode, <u>LOOP</u> low after TXEN↓ (see Figure 8)	15	15	15	ns
T_A	Operating free-air temperature	0	70	70	°C

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	MAX	UNIT	
V_{IK}	Clamp voltage at all inputs	$I_I = -18 \text{ mA}$		-1.5		V	
$V_{(TO)}$	Driver input (TXI) threshold voltage	$T_A = 0^\circ\text{C}$	$V_{CC} = 4.75 \text{ V}$	3.202	3.752	V	
			$V_{CC} = 5 \text{ V}$	3.389	3.998		
			$V_{CC} = 5.25 \text{ V}$	3.577	4.244		
		$T_A = 25^\circ\text{C}$	$V_{CC} = 4.75 \text{ V}$	3.213	3.797		
			$V_{CC} = 5 \text{ V}$	3.400	4.043		
			$V_{CC} = 5.25 \text{ V}$	3.588	4.289		
		$T_A = 70^\circ\text{C}$	$V_{CC} = 4.75 \text{ V}$	3.239	3.849		
			$V_{CC} = 5 \text{ V}$	3.426	4.095		
			$V_{CC} = 5.25 \text{ V}$	3.614	4.341		
Receiver differential input threshold voltage				-275		mV	
V_{OC}	Driver output (TXO) common-mode voltage	Idle	\overline{TXEN} at 0.8 V, $\overline{LOOP2}$ at 2 V, See Figure 1	1	4.2	V	
		Active	\overline{TXEN} at 2 V, $\overline{LOOP2}$ at 2 V, See Figure 1	1	4.2		
		Active	\overline{TXEN} at 2 V, $\overline{LOOP2}$ at 2 V, See Figure 1	1	4.2		
V_{OD}	Driver output (TXO) differential voltage	Idle	\overline{TXEN} at 0.8 V, $\overline{LOOP2}$ at 2 V, See Figure 1	± 40		mV	
		Active	\overline{TXEN} at 2 V, $\overline{LOOP2}$ at 2 V, See Figure 1	-600	1315		
		Active	\overline{TXEN} at 2 V, $\overline{LOOP2}$ at 2 V, See Figure 1	600	1315		
V_{OH}	High-level output voltage	RXO, RXEN	$I_{OH} = -0.4 \text{ mA}$	2.4		V	
V_{OL}	Low-level output voltage	RXO, RXEN	$I_{OL} = 16 \text{ mA}$	0.5		V	
I_{IH}	High-level input current	\overline{TXEN} , \overline{LOOP}	$V_I = 2 \text{ V}$	20		μA	
		TXI	$V_I = 4.5 \text{ V}$	400			
		\overline{RXI} , RXI	$V_{ID} = -0.5 \text{ V}$, $V_{IC} = 1 \text{ V to } 4.2 \text{ V}$	1000			
I_{IL}	Low-level input current	\overline{TXEN} , \overline{LOOP}	$V_I = 0.8 \text{ V}$	-200		μA	
		TXI	$V_I = 3.1 \text{ V}$	100			
			$V_I = 0.3 \text{ V}$	4	10		
		RXI, RXI	$V_{ID} = 0.5 \text{ V}$, $V_{IC} = 1 \text{ V to } 4.2 \text{ V}$	1000			
I_{OD}	Driver differential output current	Idle	\overline{TXEN} at 0.8 V, $\overline{LOOP2}$ at 2 V, See Figure 2	± 4		mA	
I_{OS}	Short-circuit output current [†]	RXO, RXEN	V_O at 0 V, RXI at 2 V	\overline{RXI} at 3 V,	-40 – 150	mA	
I_{CC}	Supply current		$\overline{LOOP2}$ at 2 V, TXI at 4.5 V, Outputs open	225		mA	

[†] Not more than one output should be shorted at a time, and the duration of the test should not exceed 1 second.

SN75ALS085 LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER

SLLS054D – APRIL 1989 – REVISED OCTOBER 2001

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

PARAMETER	TEST CONDITIONS			MIN	MAX	UNIT
Driver fault condition current [‡]	TXO shorted to $\overline{\text{TXO}}$,	Current measured in short		150		mA
	TXO at 0 V,	$\overline{\text{TXO}}$ is open,	Current measured at TXO	150		
	TXO is open,	$\overline{\text{TXO}}$ at 0,	Current measured at $\overline{\text{TXO}}$	150		
	TXO at 0 V,	$\overline{\text{TXO}}$ at 0 V,	Current measured at TXO and $\overline{\text{TXO}}$	150		
	TXO at 16 V,	$\overline{\text{TXO}}$ is open,	Current measured at TXO	150		
	TXO is open,	$\overline{\text{TXO}}$ at 16 V,	Current measured at TXO	150		
	TXO at 16 V,	$\overline{\text{TXO}}$ at 16 V,	Current measured at TXO and $\overline{\text{TXO}}$	150		
Receiver fault condition current [‡]	RXI shorted to $\overline{\text{RXI}}$,	Current measured in short		10		mA
	RXI at 0 V,	$\overline{\text{RXI}}$ is open,	Current measured at RXI	3		
	RXI is open,	$\overline{\text{RXI}}$ at 0 V,	Current measured at RXI	3		
	RXI at 0 V,	$\overline{\text{RXI}}$ at 0 V,	Current measured at RXI and $\overline{\text{RXI}}$	3		
	RXI at 16 V,	$\overline{\text{RXI}}$ at open,	Current measured at RXI	10		
	RXI at open,	$\overline{\text{RXI}}$ at 16 V,	Current measured at $\overline{\text{RXI}}$	10		
	RXI at 16 V,	$\overline{\text{RXI}}$ at 16 V,	Current measured at RXI and $\overline{\text{RXI}}$	10		

[‡] Fault conditions should be measured on only one channel at a time.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

driver

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	MAX	UNIT
t_{PLH}	Propagation delay time, low-to-high level output	TXI	TXO, $\overline{\text{TXO}}$	TXEN at 2 V,	See Figure 3	15 ns
t_{PHL}	Propagation delay time, high-to-low level output	TXI	TXO, $\overline{\text{TXO}}$	TXEN at 2 V,	See Figure 3	15 ns
t_{PIL}	Propagation delay time, idle-to-low level output	TXI	TXO, $\overline{\text{TXO}}$	TXEN at 2 V,	See Figure 4	25 ns
t_{PIL}	Propagation delay time, idle-to-low level output	TXEN	TXO, $\overline{\text{TXO}}$	TXI at 3.2 V,	See Figure 5	25 ns
t_w	Output pulse duration, from low-to-high level to 70% output level		TXO, $\overline{\text{TXO}}$	TXEN at 2 V,	See Figure 6	260 8000 ns
$V_{OD(U)}$	Driver output differential undershoot voltage	TXI	TXO, $\overline{\text{TXO}}$	TXEN at 2 V,	See Figure 6	-100 mV
t_{sk}	Driver caused signal skew $t_{PLH} - t_{PHL}$	TXI	TXO, $\overline{\text{TXO}}$	TXEN at 2 V,	See Figure 3	± 3 ns
t_r	Rise time, TXO, $\overline{\text{TXO}}$			TXEN at 2 V,	See Figure 3	1 5 ns
t_f	Fall time, TXO, $\overline{\text{TXO}}$			TXEN at 2 V,	See Figure 3	1 5 ns

receiver

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	MAX	UNIT	
t_{PLH}	Propagation delay time, low-to-high level output	\overline{RXI} , RXI	RXO	$V_{IC} = 1$ V to 4.2 V, See Figure 10		15	ns
t_{PHL}	Propagation delay time, high-to-low level output	\overline{RXI} , RXI	RXO	$V_{IC} = 1$ V to 4.2 V, See Figure 10		15	ns
t_{PLH}	Start-up delay time, low-to-high level output	\overline{RXI} , RXI	RXEN	$V_{IC} = 1$ V to 4.2 V, $V_{ID} = -500$ mV, See Figure 12		55	ns
t_{PHL}	Shutdown delay time, high-to-low level output	\overline{RXI} , RXI	RXEN	$V_{IC} = 1$ V to 4.2 V, $V_{ID} = 500$ mV, See Figure 12	142	181	ns
t_{sk}	Receiver caused signal skew ($t_{PLH} - t_{PHL}$)	\overline{RXI} , RXI	RXO	$V_{IC} = 1$ V to 4.2 V, $V_{ID} = 500$ mV, See Figure 10		± 3	ns
t_w	Pulse duration at \overline{RXI} and RXI (to not activate squelch)			$V_{IC} = 1$ V to 4.2 V, $V_{ID} = -175$ mV, See Figure 11	25		ns
t_w	Pulse duration at \overline{RXI} and RXI (to activate squelch)			$V_{IC} = 1$ V to 4.2 V, $V_{ID} = -275$ mV, See Figure 11		50	ns
t_{r1}	Rise time, RXO			$V_{IC} = 1$ V to 4.2 V, $V_{ID} = \pm 500$ mV, See Figure 10	1	8	ns
t_{r2}	Rise time, RXEN			$V_{IC} = 1$ V to 4.2 V, $V_{ID} = \pm 500$ mV, See Figure 12	1	8	ns
t_{f1}	Fall time, RXO			$V_{IC} = 1$ V to 4.2 V, $V_{ID} = \pm 500$ mV, See Figure 10	1	8	ns
t_{f2}	Fall time, RXEN			$V_{IC} = 2.5$ V, $V_{ID} = \pm 500$ V, See Figure 12	1	8	ns
t_v	RXO valid after RXEN high			See Figure 10	-10	15	ns

loop

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	MAX	UNIT	
t_{PLH}	Propagation delay time, low-to-high level output	TXI	RXO	LOOP at 0.8 V, TXEN at 2 V, See Figure 13		30	ns
t_{PHL}	Propagation delay time, high-to-low level output	TXI	RXO	LOOP at 0.8 V, TXEN at 2 V, See Figure 13		30	ns
t_{PLH}	Propagation delay time, low-to-high level output	TXEN	RXEN	LOOP at 0.8 V, See Figure 14		50	ns
t_{PHL}	Propagation delay time, high-to-low level output	TXEN	RXEN	LOOP at 0.8 V, See Figure 14		50	ns

SN75ALS085 LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER

SLLS054D – APRIL 1989 – REVISED OCTOBER 2001

PARAMETER MEASUREMENT INFORMATION

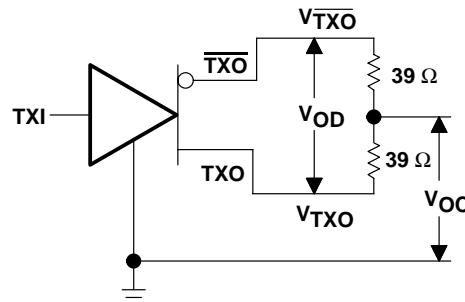


Figure 1. Driver Test Circuit

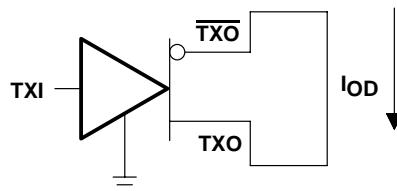
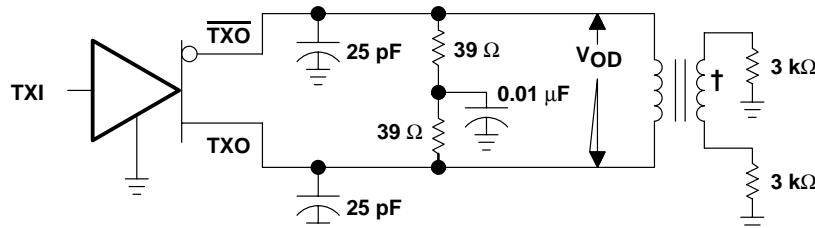
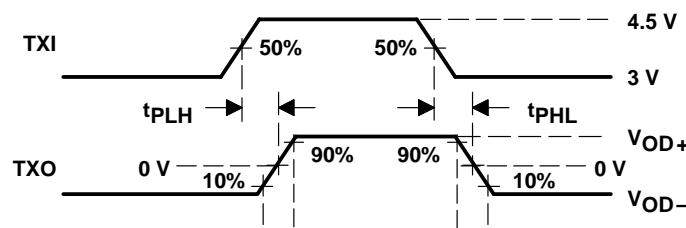
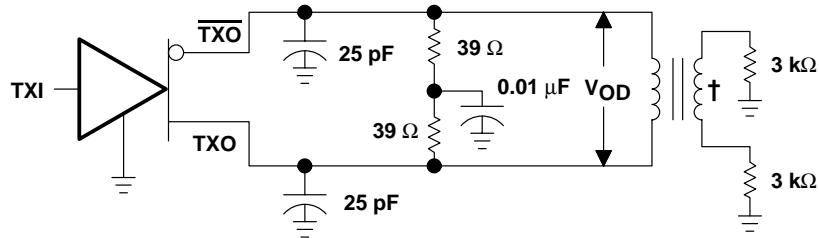




Figure 2. Driver Test Circuit

TEST CIRCUIT


VOLTAGE WAVEFORMS

† Transformer specifications:

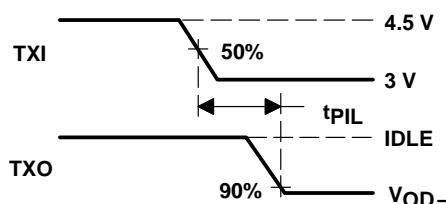
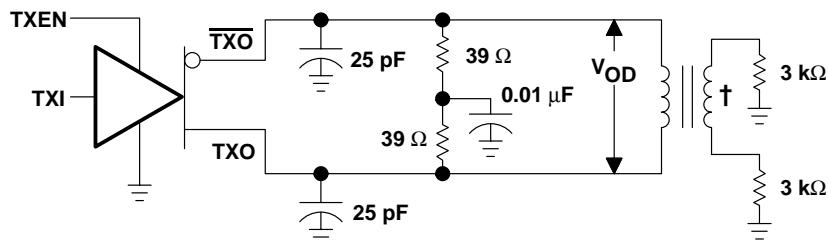
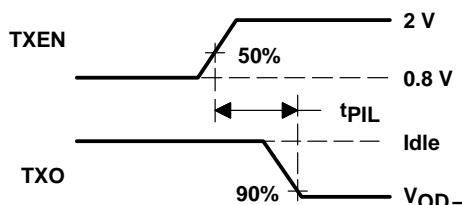

Turns ratio	1:1
Magnetizing inductance	26 to 30 μ H
Winding resistance	0.6 Ω Max
Rise time 10% to 90%	5 ns Max
Interwinding capacitance	25 pF
Leakage inductance	0.25 μ H Max
Inductive Q	1250 Min

Figure 3. Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION


† See Figure 3


VOLTAGE WAVEFORMS

NOTE A: Input $t_r \leq 5$ ns; $t_f \leq 5$ ns

Figure 4. Test Circuit and Voltage Waveforms

[†] See Figure 3

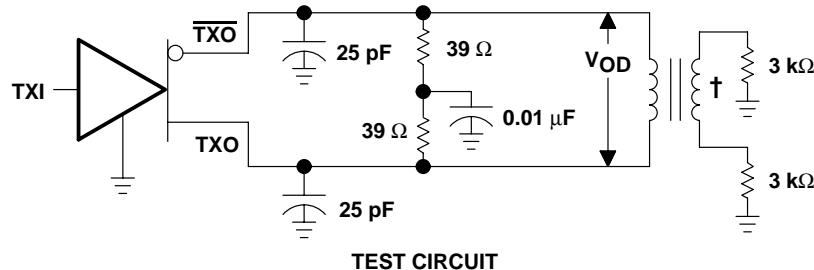
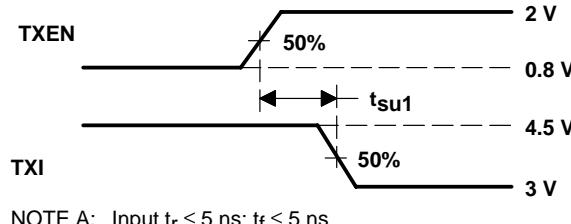

VOLTAGE WAVEFORMS

Figure 5. Test Circuit and Voltage Waveforms

SN75ALS085 LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER

SLLS054D – APRIL 1989 – REVISED OCTOBER 2001


PARAMETER MEASUREMENT INFORMATION

† See Figure 3

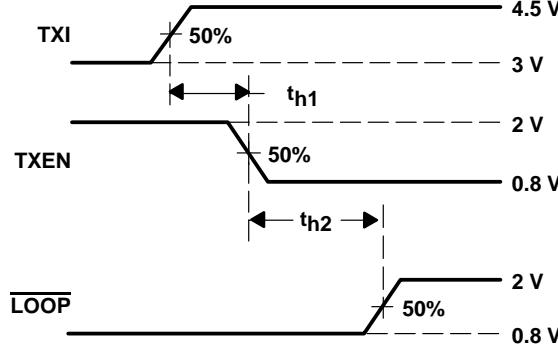


Figure 6. Test Circuit and Voltage Waveforms

NOTE A: Input $t_r \leq 5$ ns; $t_f \leq 5$ ns

Figure 7

NOTE A: Input $t_r \leq 5$ ns; $t_f \leq 5$ ns

Figure 8

PARAMETER MEASUREMENT INFORMATION

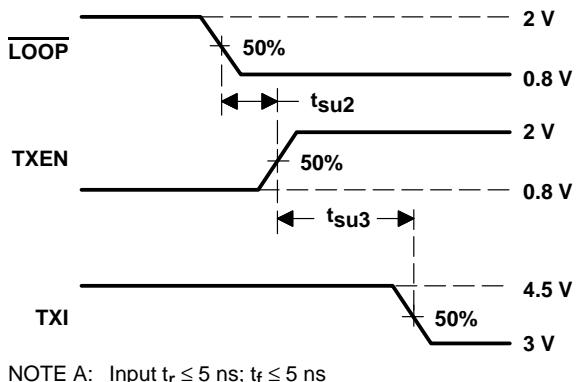


Figure 9

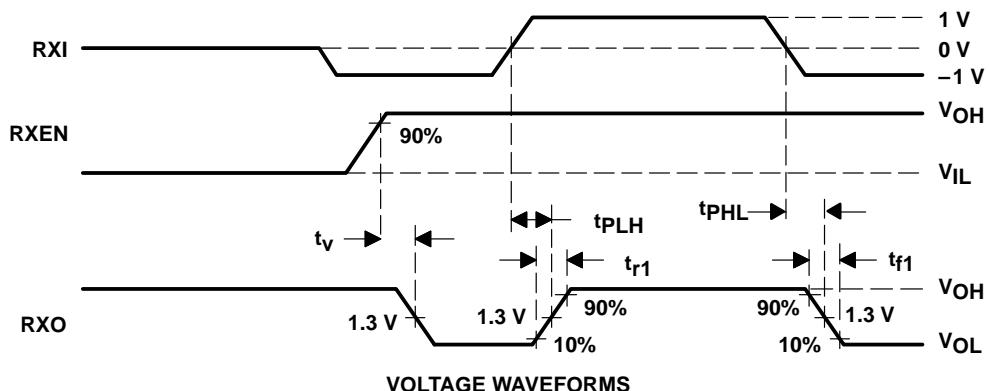
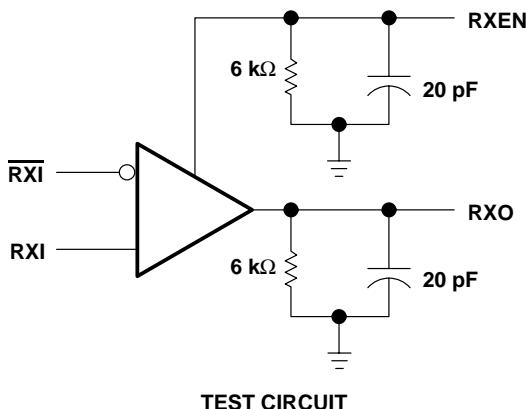
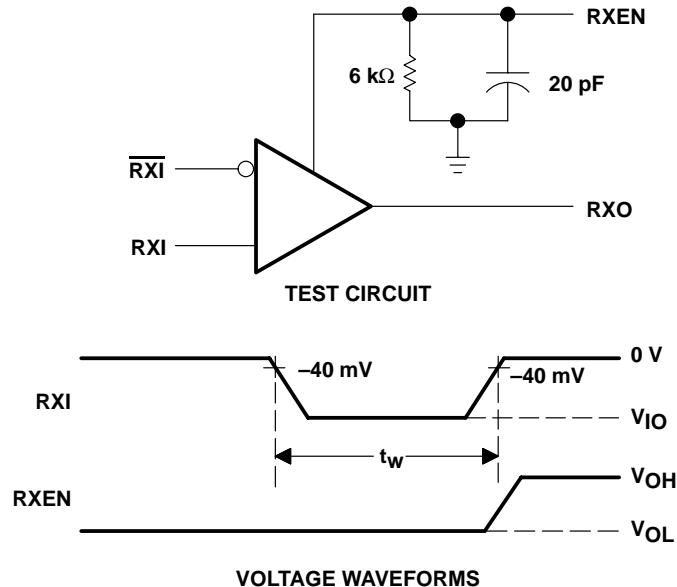
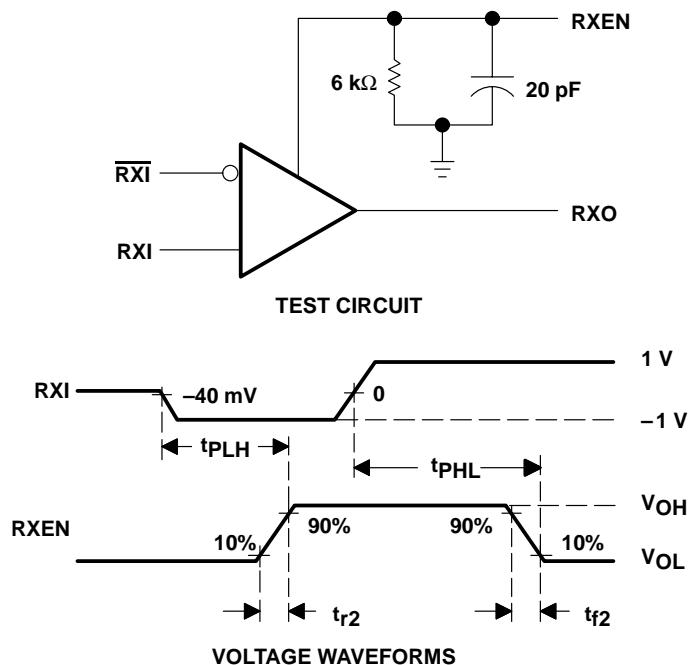




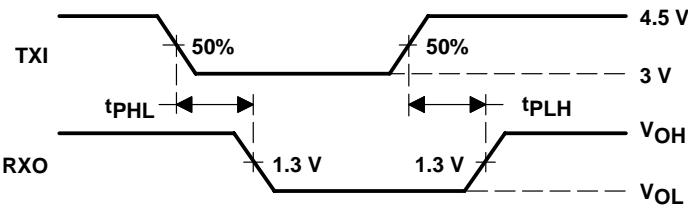
Figure 10. Test Circuit and Voltage Waveforms

SN75ALS085 LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER

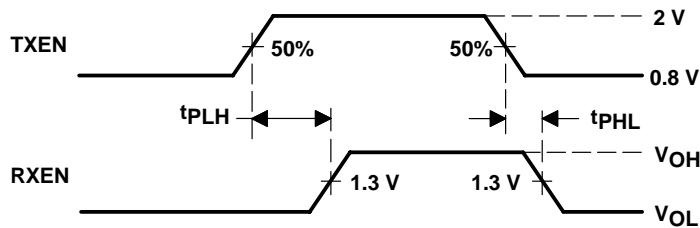

SLLS054D – APRIL 1989 – REVISED OCTOBER 2001

PARAMETER MEASUREMENT INFORMATION

NOTE A: Input $t_r \leq 5$ ns; $t_f \leq 5$ ns


Figure 11. Test Circuit and Voltage Waveforms

NOTE A: Input $t_r \leq 5$ ns; $t_f \leq 5$ ns


Figure 12. Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

NOTE A: Input $t_r \leq 5$ ns; $t_f \leq 5$ ns

Figure 13

NOTE A: Input $t_r \leq 5$ ns; $t_f \leq 5$ ns

Figure 14

PACKAGING INFORMATION

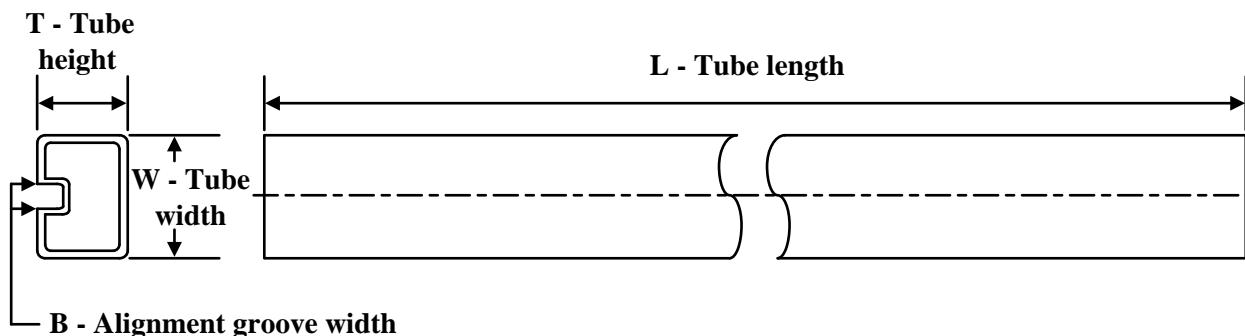
Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
SN75ALS085DW	Active	Production	SOIC (DW) 24	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	75ALS085
SN75ALS085DW.A	Active	Production	SOIC (DW) 24	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	75ALS085

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

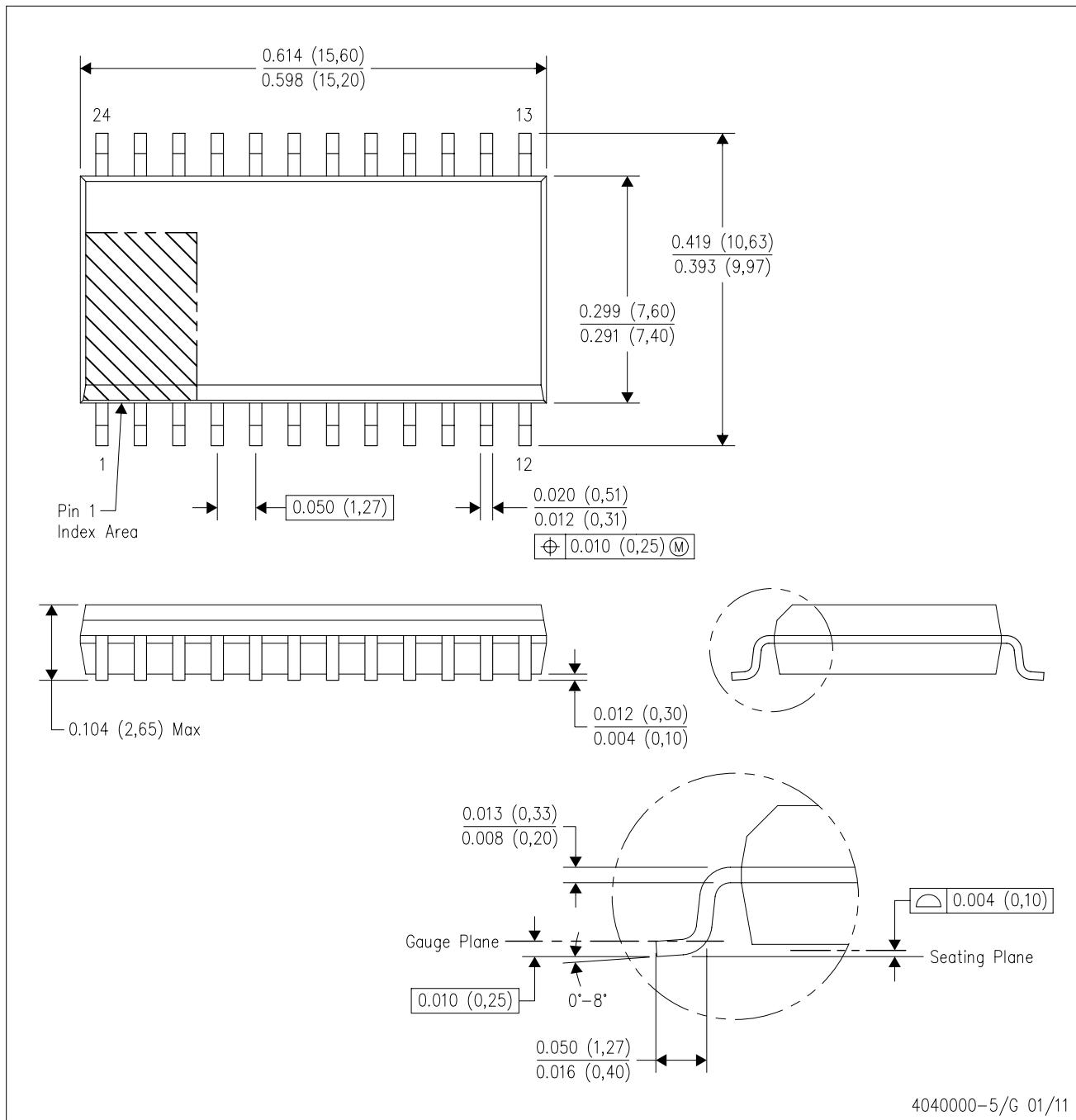

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (μm)	B (mm)
SN75ALS085DW	DW	SOIC	24	25	506.98	12.7	4826	6.6
SN75ALS085DW.A	DW	SOIC	24	25	506.98	12.7	4826	6.6

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES:

- All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.
- This drawing is subject to change without notice.
- Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0.15).
- Falls within JEDEC MS-013 variation AD.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025