

XTR106 4mA to 20mA Current Transmitter With Bridge Excitation and Linearization

1 Features

- Low total unadjusted error
- 2.5V, 5V bridge excitation references
- 5.1V regulator output
- Low span drift: $\pm 25\text{ppm}/^\circ\text{C}$ maximum
- Low offset drift: $0.25\mu\text{V}/^\circ\text{C}$
- High PSRR: 110dB minimum
- High CMRR: 86dB minimum
- Wide supply range: 7.5V to 36V
- 14-pin DIP and SOIC package options

2 Applications

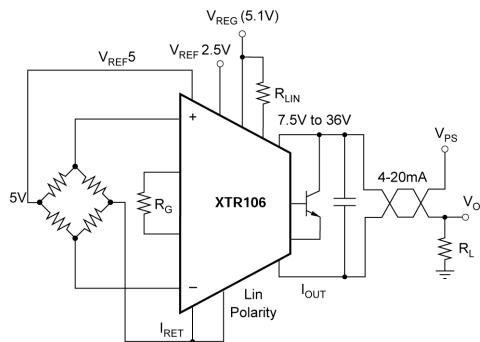
- Field transmitter and sensor
- Factory automation
- Compatible with HART modem
- Pressure and temperature bridge transmitters
- Industrial process control
- SCADA remote data acquisition
- Weighing systems
- Strain gauge transmitters
- Accelerometers

3 Description

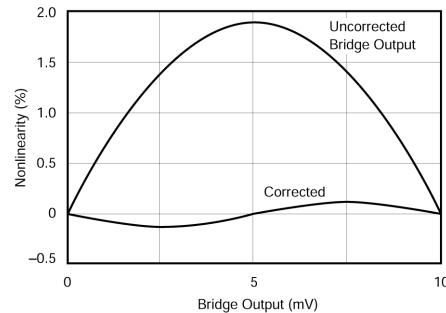
The XTR106 is a monolithic 4mA to 20mA, two-wire current transmitter designed for cost-optimized bridge sensor applications. This device provides complete bridge excitation (2.5V or 5V reference), instrumentation amplifier, sensor linearization, and current output circuitry. Current for powering additional external input circuitry is available from the V_{REG} pin.

The instrumentation amplifier can be used over a wide range of gain, accommodating a variety of input signal types and sensors. Total unadjusted error of the complete current transmitter, including the linearized bridge, is low enough to permit use without adjustment in many applications. The XTR106 operates on loop power supply voltages down to 7.5V.

Linearization circuitry provides second-order correction to the transfer function by controlling bridge excitation voltage. The device provides up to a 20:1 improvement in nonlinearity, even with cost-optimized transducers.


The XTR106 is available in 14-pin plastic DIP and 14-pin SOIC surface-mount packages, and is specified for the -40°C to $+85^\circ\text{C}$ temperature range. The device operates from -40°C to $+125^\circ\text{C}$.

Package Information

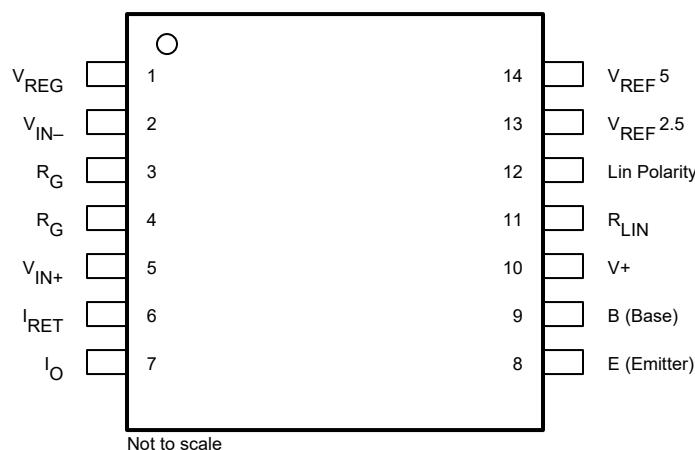

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾
XTR106	D (SOIC, 14)	8.65mm \times 6mm
	N (PDIP, 14)	19.3mm \times 9.4mm

(1) For all available packages, see [Section 10](#).

(2) The package size (length \times width) is a nominal value and includes pins, where applicable.

Bridge Nonlinearity Correction Schematic Using the XTR106

XTR106 Bridge Nonlinearity Correction



An **IMPORTANT NOTICE** at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. **PRODUCTION DATA**.

Table of Contents

1 Features	1	7.1 Application Information.....	17
2 Applications	1	7.2 Typical Applications.....	23
3 Description	1	7.3 Layout.....	24
4 Pin Configuration and Functions	3	7.4 Layout Guidelines.....	24
5 Specifications	4	8 Device and Documentation Support	25
5.1 Absolute Maximum Ratings.....	4	8.1 Device Nomenclature.....	25
5.2 Recommended Operating Conditions.....	4	8.2 Documentation Support.....	25
5.3 Thermal Information.....	4	8.3 Related Documentation.....	25
5.4 Electrical Characteristics.....	5	8.4 Receiving Notification of Documentation Updates.....	25
5.5 Typical Characteristics.....	7	8.5 Support Resources.....	25
6 Detailed Description	11	8.6 Trademarks.....	25
6.1 Overview.....	11	8.7 Electrostatic Discharge Caution.....	25
6.2 Functional Block Diagram.....	12	8.8 Glossary.....	25
6.3 Feature Description.....	12	9 Revision History	26
6.4 Device Functional Modes.....	16	10 Mechanical, Packaging, and Orderable Information	26
7 Application and Implementation	17		

4 Pin Configuration and Functions

Figure 4-1. D Package, 14-Pin SOIC, and N Package, 14-Pin PDIP (Top View)

Table 4-1. Pin Functions

PIN		TYPE	DESCRIPTION
NAME	NO.		
B (Base)	9	Output	Base connection for external transistor
E (Emitter)	8	Input	Emitter connection for external transistor
I_O	7	Output	Regulated 4mA to 20mA current loop output
I_{RET}	6	Input	<i>Local ground</i> return pin for V_{REG} , V_{REF5} , and $V_{REF2.5}$
Lin Polarity	12	Input	Linearity correction circuit polarity setting. Connect to I_{RET} to correct for positive nonlinearity, or connect to V_{REG} to correct for negative nonlinearity or if not using the linearity correction feature
R_G	3, 4	—	Input stage gain setting pins. The resistance R_G between pins 3 and 4 sets the gain of the voltage-to-current transfer function
R_{LIN}	11	—	Linearity correction resistor pin. The resistance R_{LIN} between pins 1 and 11 sets the corrective factor of the linearity correction circuit
V_+	10	Power	Loop power supply
V_{IN-}	2	Input	Negative (inverting) differential voltage input
V_{IN+}	5	Input	Positive (noninverting) differential voltage input
V_{REF5}	14	Output	5V reference voltage output
$V_{REF2.5}$	13	Output	2.5V reference voltage output
V_{REG}	1	Output	5.1V regulator voltage output

5 Specifications

Note

TI has qualified multiple fabrication flows for this device. Differences in performance are labeled by chip site origin (CSO). For system robustness, designing for all flows is highly recommended. For more information, please see [Section 8.1](#).

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

			MIN	MAX	UNIT
V ₊	Power supply (referenced to I _O pin)			40	V
	Input voltage, V _{IN+} or V _{IN-} (referenced to I _{RET} pin)		0	V ₊	V
	Output current limit			Continuous	
T _{stg}	Storage temperature		-55	125	°C
	Lead temperature (soldering, 10s)			300	°C
T _J	Junction temperature			165	°C
T _A	Operating temperature		-40	125	°C

(1) Operation outside the *Absolute Maximum Ratings* may cause permanent device damage. *Absolute Maximum Ratings* do not imply functional operation of the device at these or any other conditions beyond those listed under *Recommended Operating Conditions*. If used outside the *Recommended Operating Conditions* but within the *Absolute Maximum Ratings*, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

5.2 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V ₊	Power supply (referenced to the I _O pin)	7.5	24	36	V
T _A	Specified temperature	-40		85	°C

5.3 Thermal Information

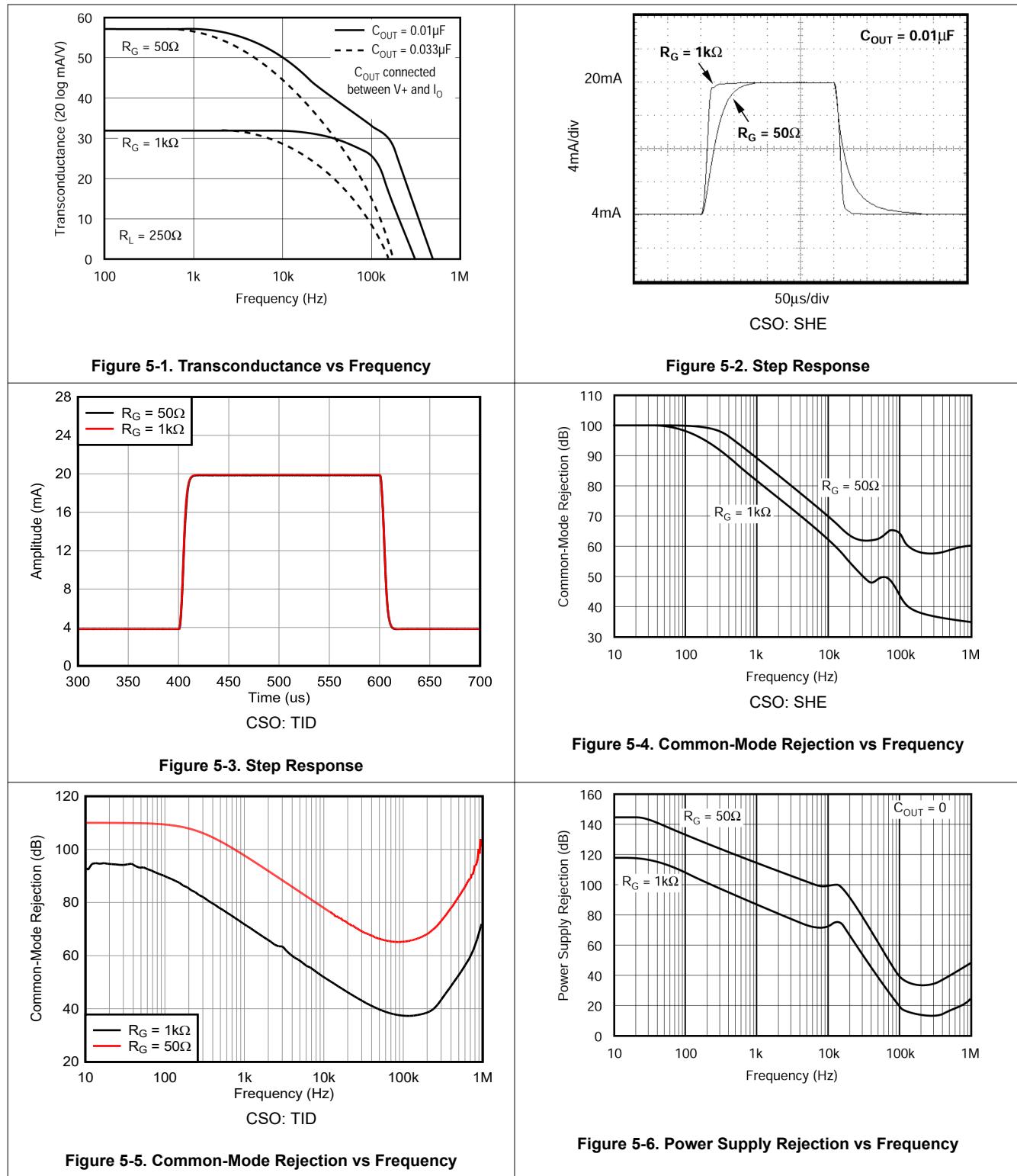
THERMAL METRIC ⁽¹⁾		XTR106		UNIT	
		14 PINS			
		D (SOIC)	N (PDIP)		
R _{θJA}	Junction-to-ambient thermal resistance	86.8	51.8	°C/W	
R _{θJC(top)}	Junction-to-case (top) thermal resistance	46.9	29.4	°C/W	
R _{θJB}	Junction-to-board thermal resistance	46.0	24.2	°C/W	
Ψ _{JT}	Junction-to-top characterization parameter	9.6	7.8	°C/W	
Ψ _{JB}	Junction-to-board characterization parameter	45.6	23.7	°C/W	
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	°C/W	

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](#) application note.

5.4 Electrical Characteristics

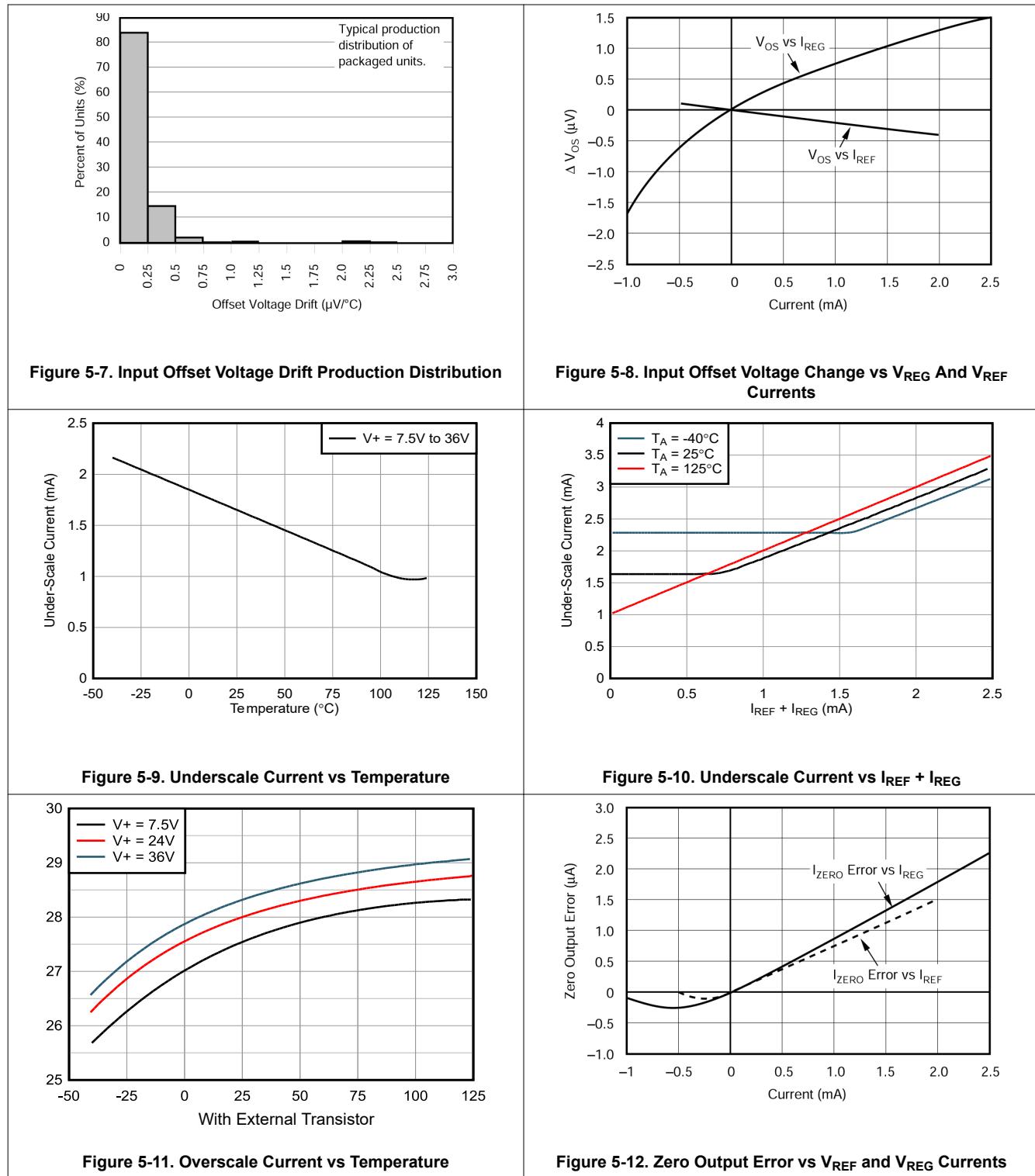
at $T_A = +25^\circ\text{C}$, $V+ = 24\text{V}$, TIP29C external transistor, and all chip site origins (CSO), unless otherwise noted.

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT	
OUTPUT								
I_O	Output current equation	V_{IN} in Volts and R_G in Ω		$I_O = V_{IN} * (40/R_G) + 4\text{mA}$		A		
	Output current, specified range			4	20	20	mA	
I_{OVER}	Overscale limit			24	28	30	mA	
I_{UNDER}	Underscale limit	$I_{REG} = 0$, $I_{REF} = 0$		1	1.6	2.2	mA	
		$I_{REF} + I_{REG} = 2.5\text{mA}$		2.9	3.4	4		
ZERO OUTPUT								
I_{ZERO}	Zero output ⁽¹⁾	$(V_{IN} = 0\text{V}, RG = \infty)$		4		mA		
	Initial error	XTR106P, XTR106U		± 5	± 25	μA		
		XTR106PA, XTR106UA		± 5				
	vs temperature	$T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$		± 0.07	± 0.9	$\mu\text{A}/^\circ\text{C}$		
	vs supply voltage, $V+$	$V+ = 7.5\text{V}$ to 36V		0.04	0.2	$\mu\text{A}/\text{V}$		
	vs common-mode voltage (CMRR)	$V_{CM} = 1.1\text{V}$ to 3.5V ⁽⁵⁾		0.02	$\mu\text{A}/\text{V}$			
	vs V_{REG} (I_O)			0.8	$\mu\text{A}/\text{mA}$			
i_n	Noise	0.1Hz to 10Hz		CSO: TID	0.016	μApp		
				CSO: SHE	0.035			
SPAN								
S	Span equation (transconductance)			$S = 40 / R_G$		A/V		
	Untrimmed error	Full scale (V_{IN}) = 50mV	XTR106P, XTR106U	± 0.05	± 0.2	$\%$		
			XTR106PA, XTR106UA	± 0.05				
	vs temperature ⁽²⁾	$T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$		± 3	± 25	$\text{ppm}/^\circ\text{C}$		
	Nonlinearity: ideal input ⁽³⁾	Full Scale (V_{IN}) = 50mV		± 0.001	± 0.01	$\%$		
INPUT								
V_{OS}	Offset voltage ⁽⁴⁾	$V_{CM} = 2.5\text{V}$	XTR106P, XTR106U	± 50	± 100	μV		
			XTR106PA, XTR106UA	± 50	± 250			
	vs temperature	$T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$	XTR106P, XTR106U	± 0.25	± 1.5	$\mu\text{V}/^\circ\text{C}$		
			XTR106PA, XTR106UA	± 0.25	± 3			
	vs supply voltage, $V+$	$V+ = 7.5\text{V}$ to 36V		± 0.1	± 3	$\mu\text{V}/\text{V}$		
CMRR	vs common-mode voltage, RTI	$V_{CM} = 1.1\text{V}$ to 3.5V ⁽⁵⁾	XTR106P, XTR106U	± 10	± 50	$\mu\text{V}/\text{V}$		
			XTR106PA, XTR106UA	± 10	± 100			
V_{CM}	Common-mode range ⁽⁵⁾			1.1	3.5	V		
I_B	Input bias current	XTR106P, XTR106U		5	25	nA		
		XTR106PA, XTR106UA		5	50			
	vs temperature	$T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$		20	$\text{pA}/^\circ\text{C}$			
I_{OS}	Input offset current	XTR106P, XTR106U		± 0.2	± 3	nA		
		XTR106PA, XTR106UA		± 0.2	± 10			
	vs temperature	$T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$		5	$\text{pA}/^\circ\text{C}$			
Z_{IN}	Impedance	Differential		$0.1 \parallel 1$		$\text{G}\Omega \parallel \text{pF}$		
		Common-mode	CSO: SHE	$5 \parallel 10$				
			CSO: TID	$5 \parallel 10$				
V_n	Noise	0.1Hz to 10Hz		0.6	$\mu\text{V}/\text{pp}$			

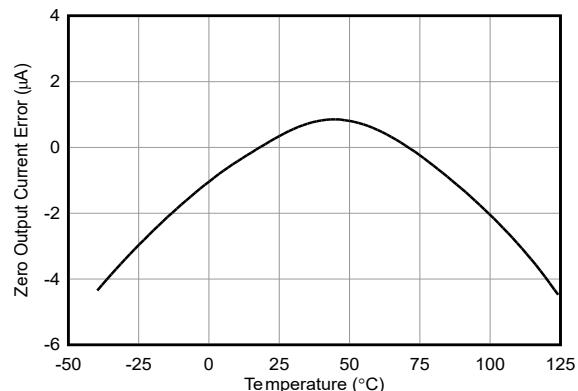

at $T_A = +25^\circ\text{C}$, $V+ = 24\text{V}$, TIP29C external transistor, and all chip site origins (CSO), unless otherwise noted.

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT		
VOLTAGE REFERENCES									
V _{REF2.5}	Initial 2.5V Reference Voltage	Lin Polarity connected to V _{REF} , R _{LIN} = 0 ⁽⁵⁾		2.5		V			
	Initial 5V Reference Voltage			5					
	Accuracy	V _{REF} = 2.5V or 5V	XTR106P, XTR106U	±0.05		±0.25	%		
			XTR106PA, XTR106UA	±0.05		±0.5			
	vs temperature ⁽⁶⁾	T _A = -40°C to +85°C	XTR106P, XTR106U	±20		±35	ppm/°C		
			XTR106PA, XTR106UA	±20		±75			
vs supply voltage, V+		V+ = 7.5V to 36V		±5		±20	ppm/V		
vs load		I _{REF} = 0mA to 2.5mA		60		ppm/mA			
Noise		0.1Hz to 10Hz		10		μVpp			
V_{REG}									
V _{REG}	Regulator Voltage ⁽⁵⁾			5.1		V			
	Accuracy	I _{REG} = 0		±0.02		±0.1	V		
	vs temperature	T _A = -40°C to +85°C	CSO: SHE	±0.3		mV/°C			
				±0.5					
vs supply voltage, V+		V+ = 7.5V to 36V		1		mV/V			
I _{REG}	Output current			See typical curves		mA			
	Output impedance	I _{REG} = 0mA to 2.5mA		80		Ω			
LINEARIZATION									
R _{LIN}	R _{LIN} (external) equation ⁽⁷⁾	KLIN in Ω, B is nonlinearity relative to V _{FS}		R _{LIN} = K _{LIN} * 4B / (1 - 2B)		Ω			
K _{LIN}	K _{LIN} linearization factor	V _{REF} = 5V	6.645		kΩ				
			V _{REF} = 2.5V						
R _{LIN} Accuracy				±1		±5	%		
vs Temperature		T _A = -40 °C to +85 °C		±50		±100	ppm/°C		
B	Maximum correctable sensor nonlinearity	V _{REF} = 5V	±5		% of FS				
			-2.5, +5						

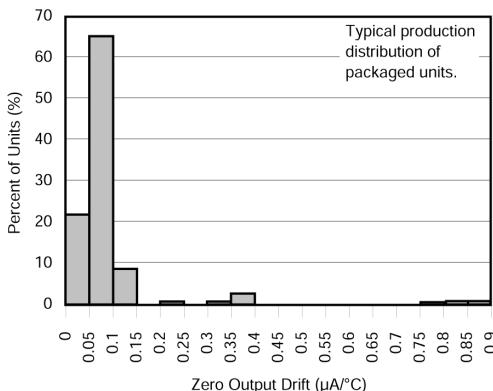
- (1) Describes accuracy of the 4mA low-scale offset current. Does not include input amplifier effects. Can be trimmed to zero.
- (2) Does not include initial error or TCR of gain-setting resistor R_G.
- (3) Increasing the full-scale input range improves nonlinearity.
- (4) Does not include zero output initial error.
- (5) Voltage measured with respect to I_{RET} pin.
- (6) Calculated using the box method: (MAX_(-40 °C to 85 °C) - MIN_(-40 °C to 85 °C)) / (85 °C - (-40 °C)).
- (7) See Linearization (Section 6.3.1) for detailed explanation. V_{FS} = full-scale V_{IN}


5.5 Typical Characteristics

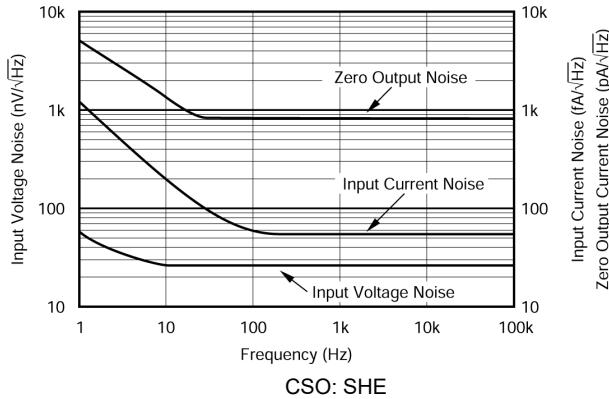
at $T_A = +25^\circ\text{C}$, $V+ = 24\text{V}$, and all chip site origins (CSO), unless otherwise noted.

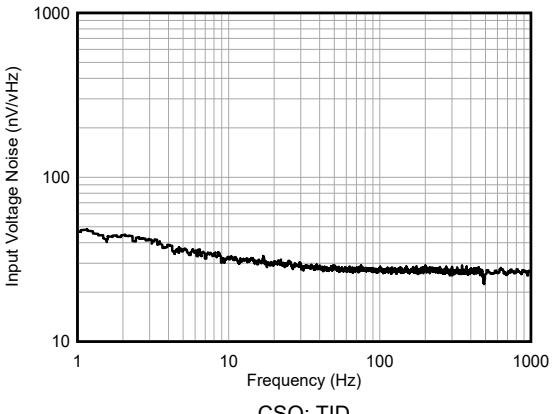

5.5 Typical Characteristics (continued)

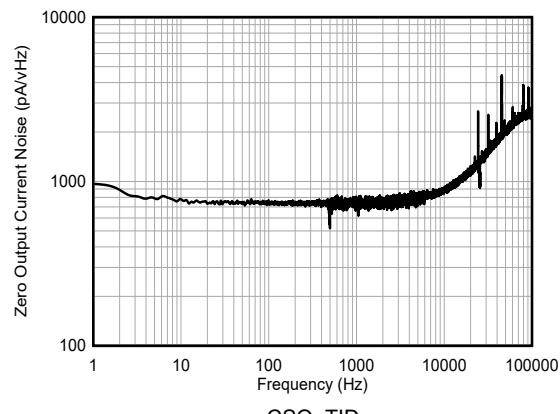
at $T_A = +25^\circ\text{C}$, $V+ = 24\text{V}$, and all chip site origins (CSO), unless otherwise noted.



5.5 Typical Characteristics (continued)


at $T_A = +25^\circ\text{C}$, $V+ = 24\text{V}$, and all chip site origins (CSO), unless otherwise noted.


Figure 5-13. Zero Output Current Error vs Temperature


Figure 5-14. Zero Output Drift Production Distribution

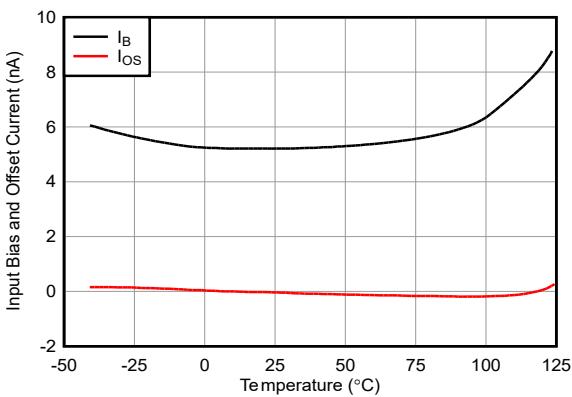

Figure 5-15. Input Voltage, Input Current, and Zero Output Current Noise Density vs Frequency

Figure 5-16. Input Voltage Noise Density vs Frequency

Figure 5-17. Zero Output Current Noise Density vs Frequency

Figure 5-18. Input Bias and Offset Current vs Temperature

5.5 Typical Characteristics (continued)

at $T_A = +25^\circ\text{C}$, $V+ = 24\text{V}$, and all chip site origins (CSO), unless otherwise noted.

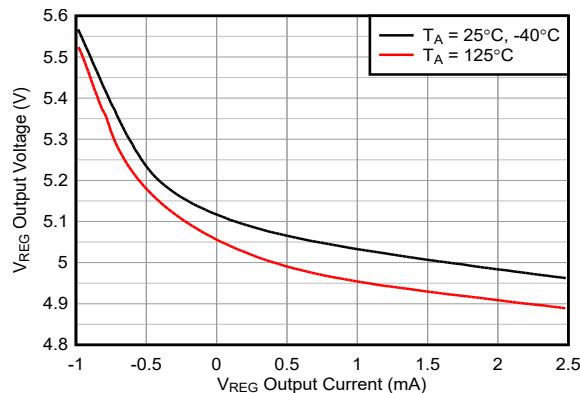


Figure 5-19. V_{REG} Output Voltage vs V_{REG} Output Current

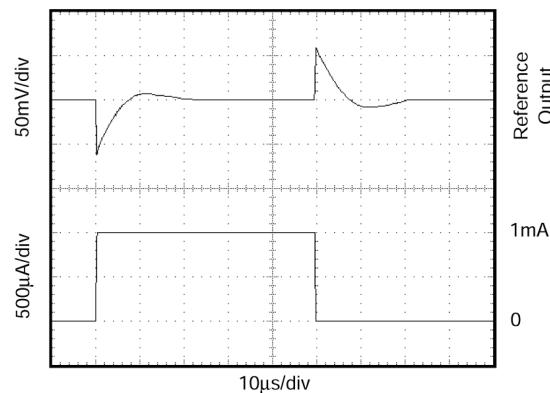


Figure 5-20. $V_{\text{REF}5}$ Reference Transient Response

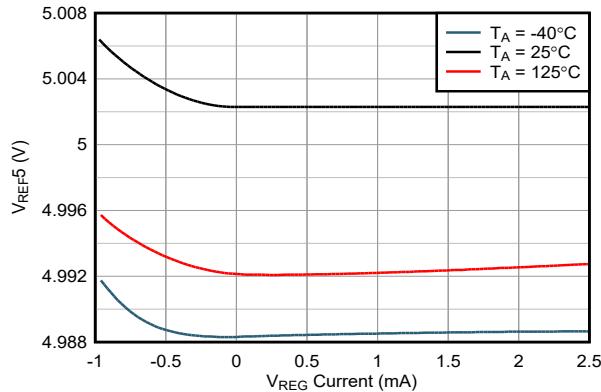


Figure 5-21. $V_{\text{REF}5}$ vs V_{REG} Output Current

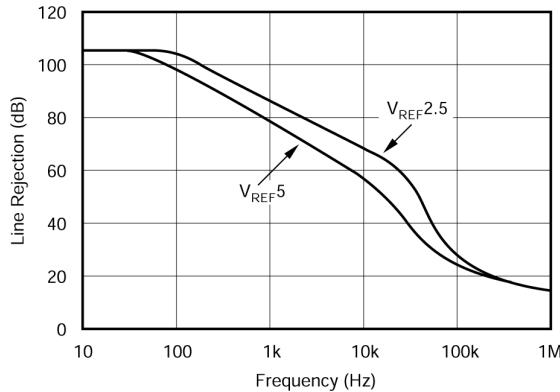


Figure 5-22. Reference AC Line Rejection vs Frequency

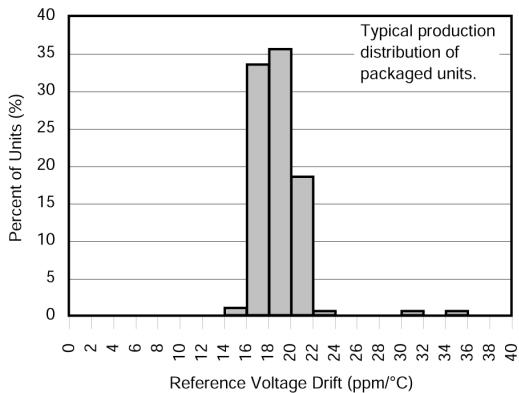
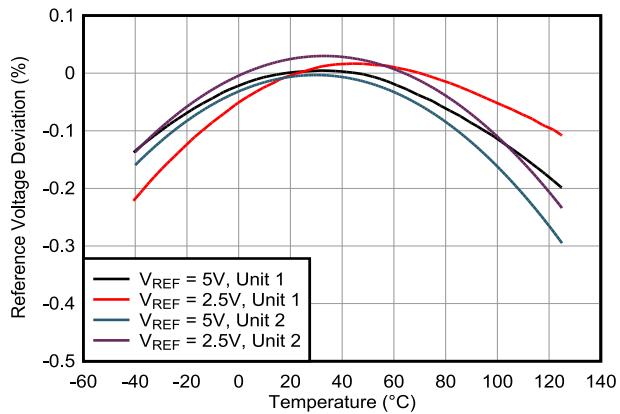
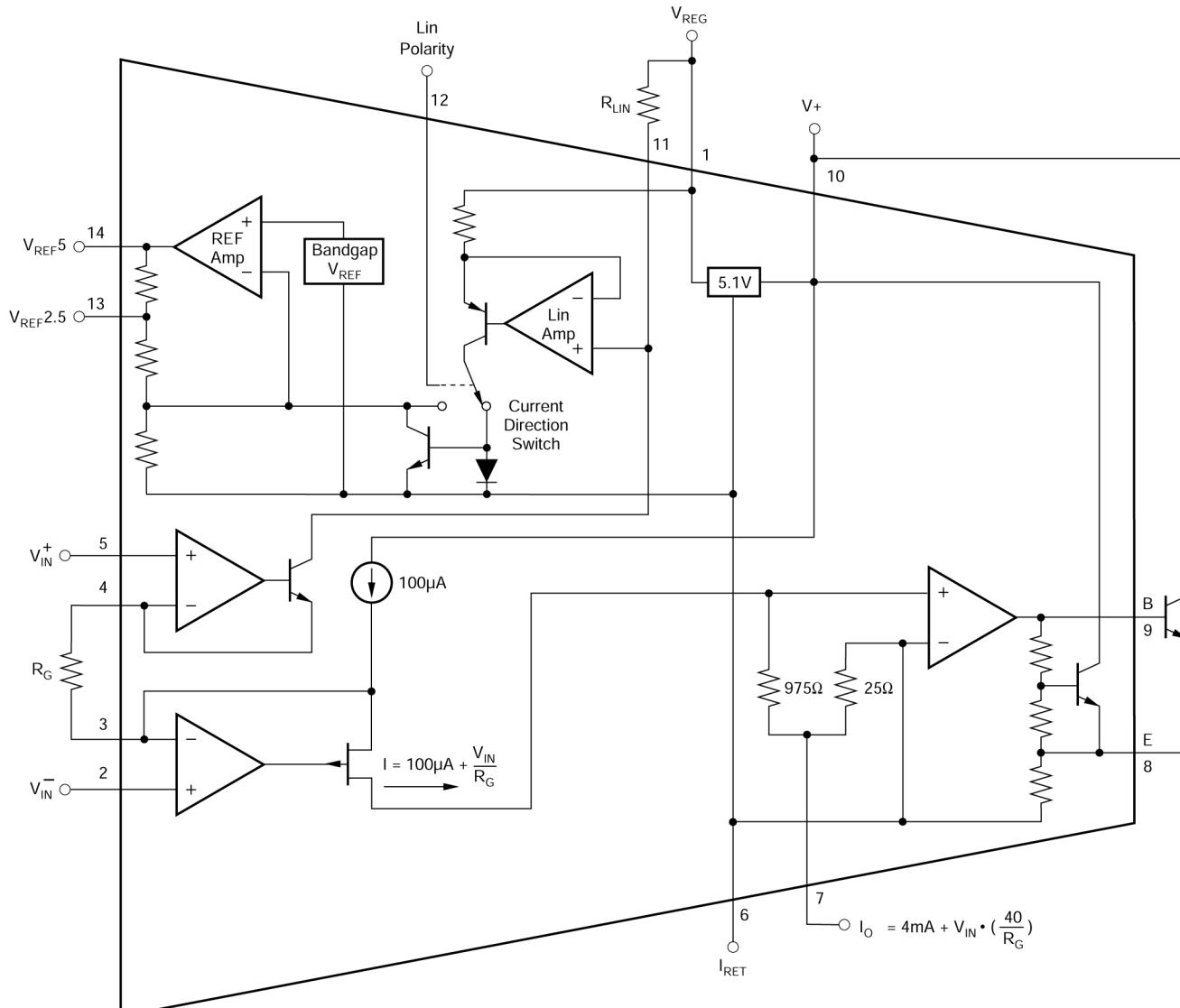


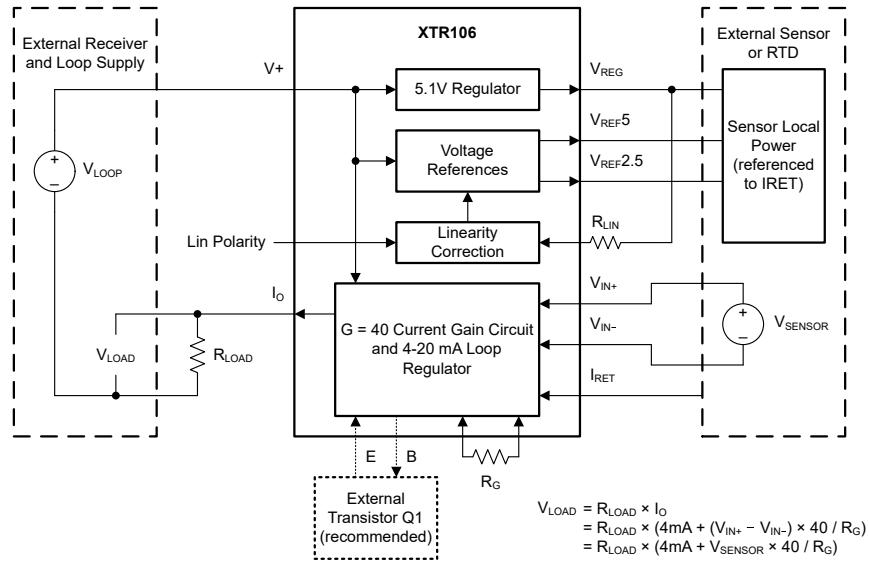
Figure 5-23. Reference Voltage Drift Production Distribution




Figure 5-24. Reference Voltage Deviation vs Temperature

6 Detailed Description

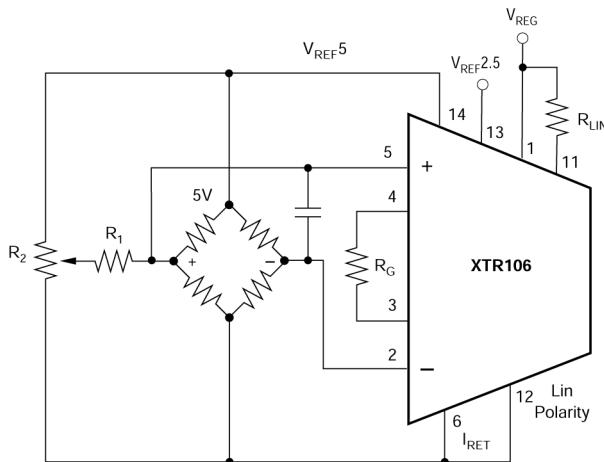
6.1 Overview


The XTR106 is a monolithic 4mA-to-20mA, 2-wire current transmitter with a differential voltage input. Figure 6-1 shows the simplified schematic of the XTR106. The loop power supply, V_+ , provides power for all circuitry. The output loop current is modulated by the XTR106 and is typically measured as a voltage across a series load resistor (R_L).

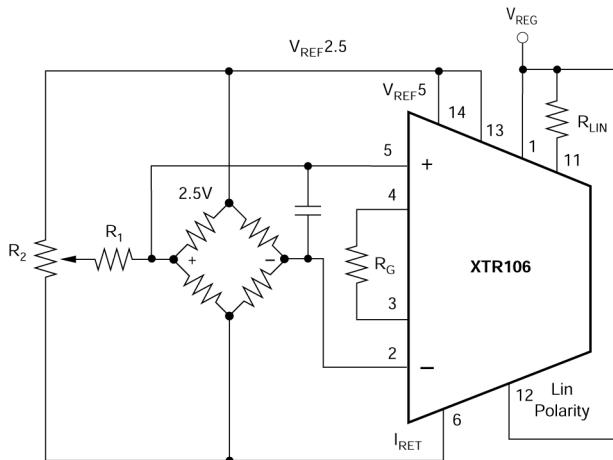
The instrumentation amplifier input of the XTR106 measures the voltage difference between the noninverting and inverting inputs. This difference is then gained up according to the value of R_G , and expressed as a regulated current output.

Figure 6-1. Simplified Schematic

6.2 Functional Block Diagram


6.3 Feature Description

6.3.1 Linearization


Many bridge sensors are inherently nonlinear. With the addition of one external resistor, compensating for parabolic nonlinearity with up to a 20:1 improvement over an uncompensated bridge output is possible.

Linearity correction is accomplished by varying the bridge excitation voltage. Signal-dependent variation of the bridge excitation voltage adds a second-order term to the overall transfer function (including the bridge). This configuration can be tailored to correct for bridge sensor nonlinearity.

Either positive or negative bridge nonlinearity errors can be compensated by proper connection of the Lin Polarity pin. To correct for positive bridge nonlinearity (upward bowing), connect Lin Polarity (pin 12) to IRET (pin 6); see also [Figure 6-2](#). This correction causes V_{REF} to increase with bridge output, which compensates for a positive bow in the bridge response. To correct negative nonlinearity (downward bowing), connect Lin Polarity to V_{REG} (pin 1); see also [Figure 6-3](#). This correction causes V_{REF} to decrease with bridge output. The Lin Polarity pin is a high-impedance node.

Figure 6-2. Connection for Positive Bridge Nonlinearity, V_{REF} = 5V

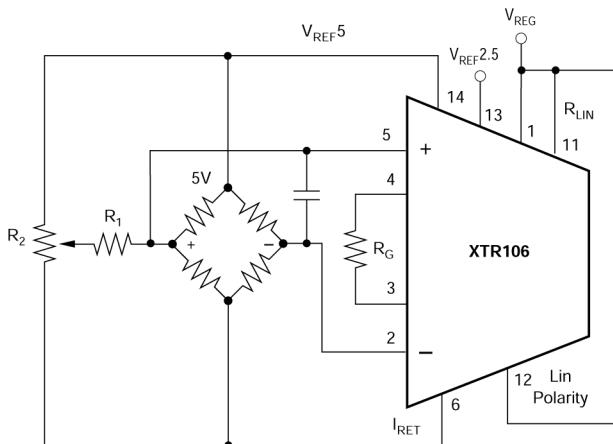


Figure 6-3. Connection for Negative Bridge Nonlinearity, $V_{REF} = 2.5V$

If no nonlinearity correction is desired, connect both the R_{LIN} and Lin Polarity pins to V_{REG} (see also [Figure 6-4](#)). This connection results in a constant reference voltage independent of input signal.

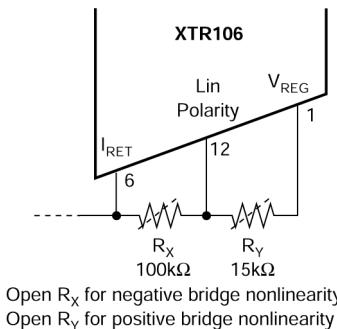
Note

Do not leave the R_{LIN} or Lin Polarity pins open or connected to another potential.

Figure 6-4. Connection if No Linearity Correction is Desired, $V_{REF} = 5V$

R_{LIN} is the external linearization resistor and is connected between pin 11 and pin 1 (V_{REG}); see also [Figure 6-2](#) and [Figure 6-3](#). To determine the value of R_{LIN} , the nonlinearity of the bridge sensor with constant excitation voltage must be known. The XTR106 linearity circuitry can only compensate for the parabolic-shaped portions of a sensor nonlinearity. Optimized correction occurs when maximum deviation from linear output occurs at midscale (see [Figure 7-3](#) and [Figure 7-4](#)). Sensors with nonlinearity curves similar to that shown in [Figure 7-3](#) and [Figure 7-4](#), but not peaking exactly at midscale can be substantially improved.

A sensor with an S-shaped nonlinearity curve (equal positive and negative nonlinearity) cannot be improved with the XTR106 correction circuitry. The value of R_{LIN} is chosen according to [Equation 1](#). R_{LIN} depends on a linearization factor, K_{LIN} , which differs for the 2.5V reference and 5V reference. The sensor nonlinearity term, B (relative to full scale), is positive or negative depending on the direction of the bow.


Linearization resistor:

$$R_{LIN} = |K_{LIN} \times \frac{4B}{1-2B}| \quad (1)$$

where:

- K_{LIN} is the linearization factor (in Ω)
- K_{LIN} is 9905Ω for the 2.5V reference
- K_{LIN} is 6645Ω for the 5V reference
- B is the sensor nonlinearity relative to V_{FS} (for -2.5% nonlinearity, $B = -0.025$)
- V_{FS} is the full-scale bridge output without linearization (in V)

A maximum $\pm 5\%$ nonlinearity can be corrected when the 5V reference is used. Sensor nonlinearity of $+5\%/-2.5\%$ can be corrected with 2.5V excitation. The trim circuit shown in [Figure 6-5](#) can be used for bridges with unknown bridge nonlinearity polarity.

Figure 6-5. Onboard Resistor Circuit for Unknown Bridge Nonlinearity Polarity

Gain is affected by the varying excitation voltage used to correct bridge nonlinearity. The corrected value of the gain resistor is calculated from [Equation 2](#).

Gain-set resistor:

$$R_G = \frac{V_{FS}}{400\mu A} \times \frac{1+2B}{1-2B} \quad (2)$$

where:

- V_{FS} is the full-scale bridge output without linearization (in V)

When using linearity correction, keep the sensor output common-mode voltage within the XTR106 allowable input range of 1.1V to 3.5V. [Equation 3](#) can be used to calculate the XTR106 new excitation voltage. The common-mode voltage of the bridge output is simply half this value if no common-mode resistor is used (see also the examples in [Figure 6-2](#) and [Figure 6-3](#)). Exceeding the common-mode range can yield unpredictable results.

Adjusted excitation voltage at full-scale output:

$$V_{REF\ (Adj)} = V_{REF\ (Initial)} \times \frac{1+2B}{1-2B} \quad (3)$$

For high-precision applications (errors < 1%), a two-step calibration process can be employed. First, the nonlinearity of the sensor bridge is measured with the initial gain resistor and $R_{LIN} = 0$ (R_{LIN} pin connected directly to V_{REG}). Using the resulting sensor nonlinearity, B , values for R_G and R_{LIN} are calculated using [Equation 1](#) and [Equation 2](#). A second calibration measurement is then taken to adjust R_G to account for the offsets and mismatches in the linearization.

Example:

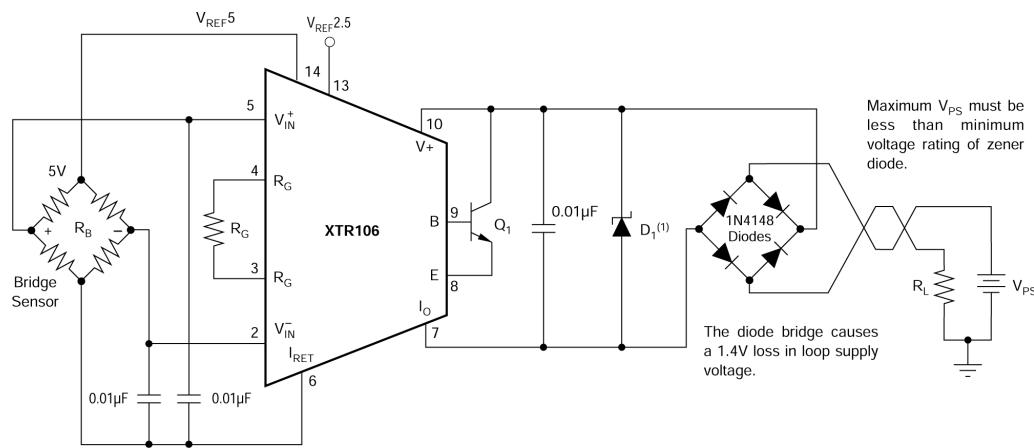
Calculate R_{LIN} and the resulting R_G for a bridge sensor with 2.5% downward bow nonlinearity relative to V_{FS} and determine if the input common-mode range is valid.

For $V_{REF} = 2.5V$ and $V_{FS} = 50mV$

For a 2.5% downward bow, $B = -0.025$ (Lin Polarity pin connected to V_{REG})

For $V_{REF} = 2.5V$, $K_{LIN} = 9905\Omega$

$$R_{LIN} = \left| \frac{(9905\Omega)(4)(-0.025)}{1 - (2)(-0.025)} \right| = 943\Omega \quad (4)$$


$$R_G = \frac{0.05V}{400\mu A} \times \frac{1 + (2)(-0.025)}{1 - (2)(-0.025)} = 113\Omega \quad (5)$$

$$V_{CM} = \frac{V_{REF}(\text{Adj})}{2} = \frac{1}{2} \times 2.5V \times \frac{1 + (2)(-0.025)}{1 - (2)(-0.025)} = 1.13V \quad (6)$$

which falls within the 1.1V to 3.5V input common-mode range.

6.3.2 Reverse-Voltage Protection

The XTR106 low compliance rating (7.5V) permits the use of various voltage protection methods without compromising operating range. [Figure 6-6](#) shows a diode bridge circuit which allows normal operation even when the voltage connection lines are reversed. The bridge causes a two diode drop (approximately 1.4V) loss in loop-supply voltage. This results in a compliance voltage of approximately 9V—satisfactory for most applications. If a 1.4V drop in loop supply is too much, a diode can be inserted in series with the loop supply voltage and the V_+ pin, as shown in [Figure 7-6](#). This protects against reverse output connection lines with only a 0.7V loss in loop-supply voltage.

(1) 36V Zener diode, such as 1N4753A or P6KE39A. Use lower-voltage Zener diodes with loop power-supply voltages < 30V for increased protection.

Figure 6-6. Reverse-Voltage Operation and Overvoltage Surge Protection

6.3.3 Overvoltage Surge Protection

Remote connections to current transmitters are sometimes subjected to voltage surges. Limit the maximum surge voltage applied to the XTR106 to the lowest practical value. Various Zener diode and surge clamping diodes are specially designed for this purpose. Select a clamp diode with as low a voltage rating as possible for best protection. For example, a 36V protection diode maintains proper transmitter operation at normal loop voltages, yet provides an appropriate level of protection against voltage surges. The XTR106 is specified to an absolute maximum loop voltage of 40V.

Most surge protection Zener diodes have a diode characteristic in the forward direction that conducts excessive current, possibly damaging receiving-side circuitry, if the loop connections are reversed. If a surge protection diode is used, use a series diode or diode bridge for protection against reversed connections.

6.4 Device Functional Modes

The device has one mode of operation that applies when operated within the *Recommended Operating Conditions*.

7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Application Information

Figure 7-1 shows the basic connection diagram for the XTR106. The loop power supply, V_{PS} , provides power for all circuitry. Output loop current is measured as a voltage across the series load resistor, R_L . A 0.01 μ F to 0.03 μ F supply bypass capacitor connected between V_+ and I_O is recommended. For applications where fault, overload conditions, or both can saturate the inputs, a 0.03 μ F capacitor is recommended.

A 2.5V or 5V reference is available to excite a bridge sensor. For 5V excitation, connect pin 14 (V_{REF5}) to the bridge; see also Figure 7-1. For 2.5V excitation, connect pin 13 ($V_{REF2.5}$) to pin 14; see also Figure 6-3. The output terminals of the bridge are connected to the instrumentation amplifier inputs, V_{IN+} and V_{IN-} . A 0.01 μ F capacitor is shown connected between the inputs and is recommended for high impedance bridges ($> 10k\Omega$). The resistor R_G sets the gain of the instrumentation amplifier as required by the full-scale bridge voltage, V_{FS} .

Lin Polarity and R_{LIN} provide second-order linearization correction to the bridge, achieving up to a 20:1 improvement in linearity. Connections to Lin Polarity (pin 12) determine the polarity of nonlinearity correction; connect either to I_{RET} or V_{REG} . Connect Lin Polarity to V_{REG} even if linearity correction is not desired. R_{LIN} is chosen according to Equation 7 and depends on K_{LIN} (linearization constant) and the bridge nonlinearity relative to V_{FS} (see Section 6.3.1).

$$R_{LIN} = |K_{LIN} \times \frac{4B}{1-2B}| \quad (7)$$

where:

- K_{LIN} is in Ω

$$R_G = \left(\frac{V_{FS}}{400\mu A} \right) \times \frac{1+2B}{1-2B} \quad (8)$$

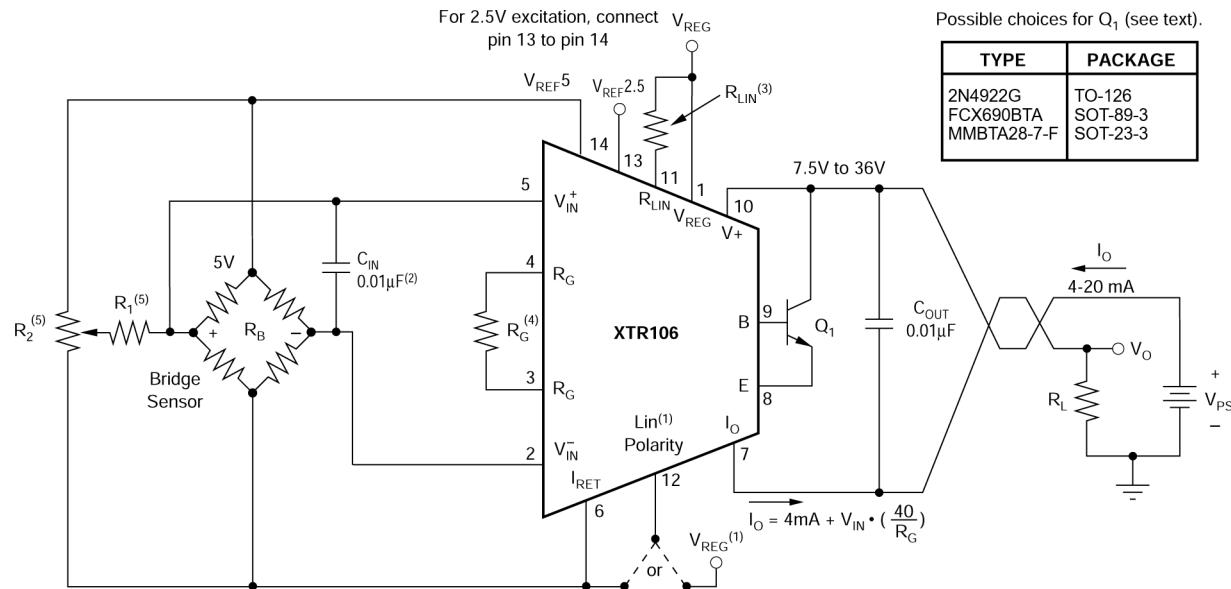
where:

- V_{FS} is in V
- $K_{LIN} = 9.905k\Omega$ for 2.5V reference
- $K_{LIN} = 6.645k\Omega$ for 5V reference
- B is the bridge nonlinearity relative to V_{FS}
- V_{FS} is the full-scale input voltage

The transfer function for the complete current transmitter is:

$$I_O = 4mA + V_{IN} \times \left(\frac{40}{R_G} \right) \quad (9)$$

Where:


- V_{IN} is the differential input voltage in Volts
- R_G is in Ohms

As evident from the transfer function, if no R_G is used ($R_G = \infty$), the gain is zero and the output is simply the XTR106 zero current.

A negative input voltage, V_{IN} , causes the output current to be less than 4mA. Increasingly negative V_{IN} causes the output current to limit at approximately 1.6mA. If current is being sourced from the reference and/or V_{REG} , the current limit value can increase. See also [Figure 5-9](#) and [Figure 5-10](#).

Increasingly positive input voltage (greater than the full-scale input, V_{FS}) produces increasing output current according to the transfer function, up to the output current limit of approximately 28mA. See also [Figure 5-11](#).

The I_{RET} pin is the return path for all current from the references and V_{REG} . I_{RET} also serves as a local ground and is the reference point for V_{REG} and the onboard voltage references. The I_{RET} pin allows any current used in external circuitry to be sensed by the XTR106 and to be included in the output current without causing error. The input voltage range of the XTR106 is referred to this pin.

(1) Connect Lin Polarity (pin 12) to I_{RET} (pin 6) to correct for positive bridge nonlinearity or connect to V_{REG} (pin 1) for negative bridge nonlinearity. The R_{LIN} pin and Lin Polarity pin must be connected to V_{REG} if linearity correction is not desired. Refer to the *Linerization* section.

(2) Recommended for bridge impedances $> 10\text{k}\Omega$.

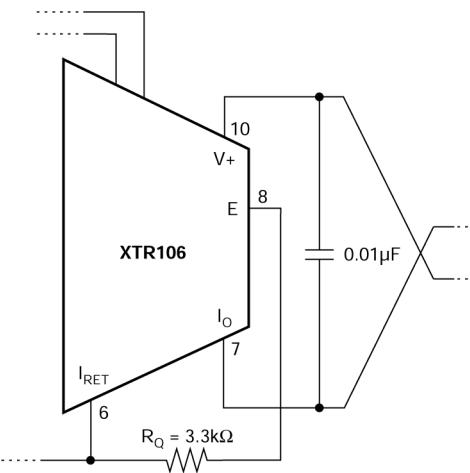

(3) R_1 and R_2 form bridge trim circuit to compensate for the initial accuracy of the bridge. See the *Bridge Balance* text.

Figure 7-1. Basic Bridge Measurement Circuit With Linearization

7.1.1 External Transistor

External pass transistor, Q_1 , conducts the majority of the signal-dependent 4mA-to-20mA loop current. Using an external transistor isolates the majority of the power dissipation from the precision input and reference circuitry of the XTR106, maintaining excellent accuracy.

The external transistor is inside a feedback loop; therefore, the characteristics are not critical. Requirements are: $V_{CEO} = 45V$ min, $\beta = 40$ min and $P_D = 800mW$. Power dissipation requirements can be lower if the loop power supply voltage is less than 36V. Some possible choices for Q_1 are listed in [Figure 7-1](#). The XTR106 can be operated without an external pass transistor. Accuracy, however, is somewhat degraded as a result of the internal power dissipation and subsequent self-heating. Operation without Q_1 is not recommended for extended temperature ranges. A resistor ($R = 3.3k\Omega$) connected between the I_{RET} pin and the E (emitter) pin is advised for operation less than 0°C without Q_1 to maintain the full 20mA full-scale output, especially with V_+ near 7.5V.

(1) For operation without external transistor, connect a $3.3k\Omega$ resistor between pin 6 and pin 8. See text for discussion of performance.

Figure 7-2. Operation Without an External Transistor

7.1.2 Loop Power Supply

The voltage applied to the XTR106, V_+ , is measured with respect to the I_O connection, pin 7. V_+ can range from 7.5V to 36V. The loop-supply voltage, V_{PS} , differs from the voltage applied to the XTR106 according to the voltage drop on the current sensing resistor, R_L (plus any other voltage drop in the line).

If a low loop-supply voltage is used, R_L (including the loop wiring resistance) must be made a relatively low value so that V_+ remains 7.5V or greater for the maximum loop current of 20mA:

$$R_{L MAX} = \left(\frac{(V_+) - 7.5V}{20mA} \right) - R_{WIRING} \quad (10)$$

For loop currents up to 30mA, design for V_+ equal or greater than 7.5V to allow for out-of-range input conditions. V_+ must be at least 8V if 5V sensor excitation is used and if correcting for bridge nonlinearity greater than +3%.

The low operating voltage (7.5V) of the XTR106 allows operation directly from personal computer power supplies (12V $\pm 5\%$). When used with the RCV420 Current Loop Receiver ([Figure 7-6](#)), load resistor voltage drop is limited to 3V.

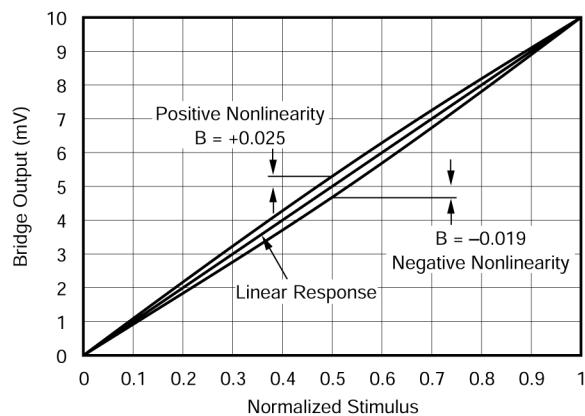
7.1.3 Bridge Balance

Figure 7-1 shows a bridge trim circuit (R_1 , R_2). This adjustment can be used to compensate for the initial accuracy of the bridge, to trim the offset voltage of the XTR106, or both. The values of R_1 and R_2 depend on the impedance of the bridge, and the trim range required. This trim circuit places an additional load on the V_{REF} output. Be sure the additional load on V_{REF} does not affect zero output. See Figure 5-10. The effective load of the trim circuit is nearly equal to R_2 . An approximate value for R_1 can be calculated:

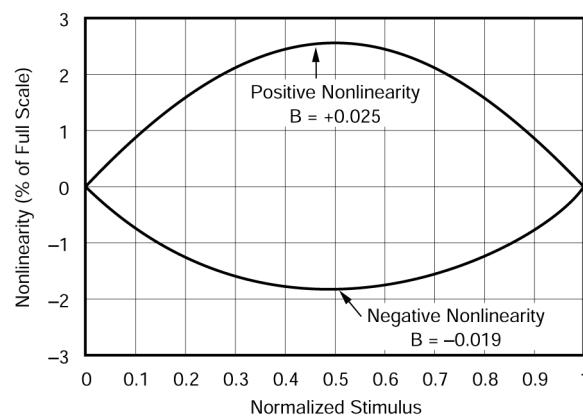
$$R_1 \approx \frac{5V \times R_B}{4 \times V_{TRIM}} \quad (11)$$

Where:

- R_B is the resistance of the bridge
- V_{TRIM} is the desired \pm voltage trim range (in V)


Make R_2 equal or lower in value to R_1 .

7.1.4 Underscale Current


The total current being drawn from the V_{REF} and V_{REG} voltage sources, as well as temperature, affect the XTR106 underscale current value (see Figure 5-10). Consider this when choosing the bridge resistance and excitation voltage, especially for transducers operating over a wide temperature range (see Figure 5-9).

7.1.5 Low-Impedance Bridges

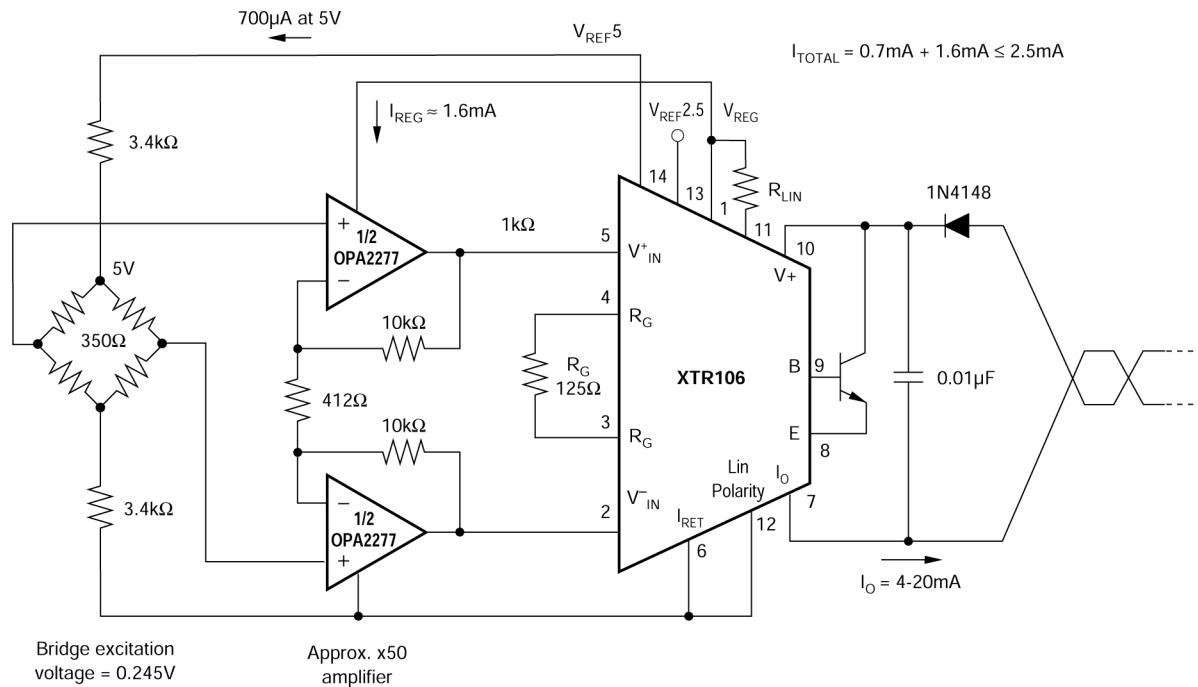

The XTR106 two available excitation voltages (2.5V and 5V) allow the use of a wide variety of bridge values. Bridge impedances as low as $1\text{k}\Omega$ can be used without any additional circuitry. Lower impedance bridges can be used with the XTR106 by adding a series resistance to limit excitation current to $\leq 2.5\text{mA}$ (Figure 7-5). Add resistance to the upper and lower sides of the bridge to keep the bridge output within the 1.1V to 3.5V common-mode input range. Bridge output is reduced so a preamplifier can be needed to reduce offset voltage and drift.

Figure 7-3. Bridge Transducer Transfer Function with Parabolic Nonlinearity

Figure 7-4. Nonlinearity vs Stimulus

(1) Shown connected to correct positive bridge nonlinearity. For negative bridge nonlinearity, see [Figure 6-3](#).

Figure 7-5. 350Ω Bridge With x50 Preamplifier

7.1.6 Other Sensor Types

The XTR106 can be used with a wide variety of inputs. The high input impedance instrumentation amplifier is versatile and can be configured for differential input voltages from millivolts to a maximum of 2.4V full scale. The linear range of the inputs is from 1.1V to 3.5V, referenced to I_{RET} . The linearization feature of the XTR106 can be used with any sensor whose output is ratiometric with an excitation voltage.

7.1.7 Radio Frequency Interference

The long wire lengths of current loops invite radio frequency (RF) interference. RF interference can be rectified by the sensitive input circuitry of the XTR106 causing errors. These errors generally appear as an unstable output current that varies with the position of loop supply or input wiring.

If the bridge sensor is remotely located, the interference can enter at the input terminals. For integrated transmitter assemblies with short connection to the sensor, the interference more likely comes from the current loop connections.

Bypass capacitors on the input reduce or eliminate this input interference. [Figure 6-6](#) shows to connect these bypass capacitors to the I_{RET} pin. Although the dc voltage at the I_{RET} pin is not equal to 0V (at the loop supply, V_{PS}) this circuit point can be considered the transmitter ground. The 0.01μF capacitor connected between V_+ and I_O can help minimize output interference.

7.1.8 Error Analysis

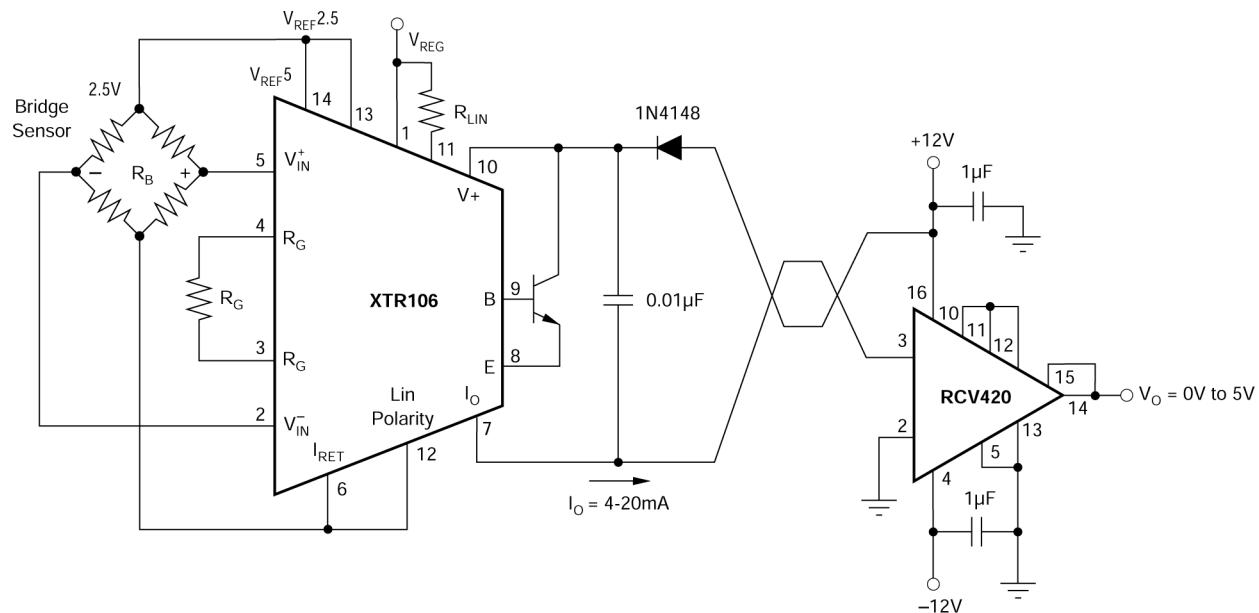
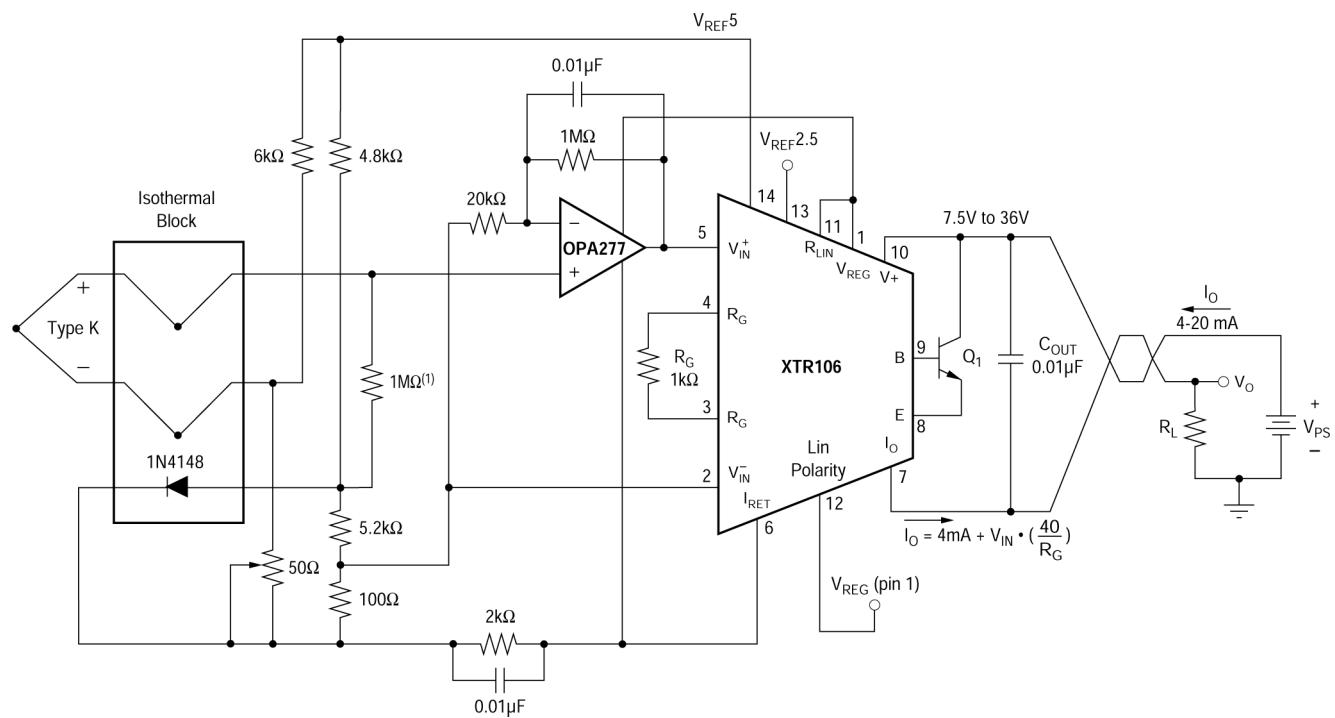

Table 7-1 shows how to calculate the effect various error sources have on circuit accuracy. A sample error calculation for a typical bridge sensor measurement circuit (5kΩ bridge, $V_{REF} = 5V$, $V_{FS} = 50mV$) is provided. The results reveal the XTR106 excellent accuracy, in this case 1.2% unadjusted. Adjusting gain and offset errors improves circuit accuracy to 0.33%. These are worst-case errors; maximum values were used in the calculations and all errors were assumed to be positive (additive). The XTR106 achieves performance that is difficult to obtain with discrete circuitry and requires less board space.

Table 7-1. Error Calculation

SAMPLE ERROR CALCULATION ⁽¹⁾				
ERROR SOURCE	SAMPLE ERROR EQUATION	ERROR CALCULATION	ERROR (ppm of Full Scale)	
			UNADJ	ADJUST
INPUT				
Input offset voltage	$V_{OS}/V_{FS} \cdot 10^6$	$200\mu V/50mV \cdot 10^6$	2000	0
vs common-mode	$CMRR \cdot \Delta CM/V_{FS} \cdot 10^6$	$50\mu V/V \cdot 0.025V/50mV \cdot 10^6$	25	25
vs power supply	$(V_{OS} \text{ vs } V+) \cdot (\Delta V+)/V_{FS} \cdot 10^6$	$3\mu V/V \cdot 5V/50mV \cdot 10^6$	300	300
Input bias current	$CMRR \cdot I_B \cdot (R_B/2)/V_{FS} \cdot 10^6$	$50\mu V/V \cdot 25nA \cdot 2.5k\Omega/50mV \cdot 10^6$	0.1	0
Input offset current	$I_{OS} \cdot R_B/V_{FS} \cdot 10^6$	$3nA \cdot 5k\Omega/50mV \cdot 10^6$	300	0
		Total Input Error	2625	325
EXCITATION				
Voltage reference accuracy	$V_{REF} \text{ Accuracy } (\%)/100\% \cdot 10^6$	$0.25\%/100\% \cdot 10^6$	2500	0
vs supply	$(V_{REF} \text{ vs } V+) \cdot (\Delta V+) \cdot (V_{FS}/V_{REF})$	$20\text{ppm}/V \cdot 5V (50mV/5V)$	1	1
		Total Excitation Error	2501	1
GAIN				
Span	Span Error $(\%)/100\% \cdot 10^6$	$0.2\%/100\% \cdot 10^6$	2000	0
Nonlinearity	Nonlinearity $(\%)/100\% \cdot 10^6$	$0.01\%/100\% \cdot 10^6$	100	100
		Total Gain Error	2100	100
OUTPUT				
Zero output	$ I_{ZERO} - 4mA /16000\mu A \cdot 10^6$	$25\mu A/16000\mu A \cdot 10^6$	1563	0
vs supply	$(I_{ZERO} \text{ vs } V+) \cdot (\Delta V+)/16000\mu A \cdot 10^6$	$0.2\mu A/V \cdot 5V/16000\mu A \cdot 10^6$	62.5	62.5
		Total Output Error	1626	63
DRIFT ($\Delta T_A = 20^\circ C$)				
Input offset voltage	$Drift \cdot \Delta T_A/(V_{FS}) \cdot 10^6$	$1.5\mu V/^\circ C \cdot 20^\circ C/(50mV) \cdot 10^6$	600	600
Input offset current (typical)	$Drift \cdot \Delta T_A \cdot R_B/(V_{FS}) \cdot 10^6$	$5pA/^\circ C \cdot 20^\circ C \cdot 5k\Omega/(50mV) \cdot 10^6$	10	10
Voltage reference accuracy		$35\text{ppm}/^\circ C \cdot 20^\circ C$	700	700
Span		$225\text{ppm}/^\circ C \cdot 20^\circ C$	500	500
Zero output	$Drift \cdot \Delta T_A/16000\mu A \cdot 10^6$	$0.9\mu A/^\circ C \cdot 20^\circ C/16000\mu A \cdot 10^6$	1125	1125
		Total Drift Error	2936	2936
NOISE (0.1Hz to 10Hz, typical)				
Input offset voltage	$V_n(\text{p-p})/V_{FS} \cdot 10^6$	$0.6\mu V/50mV \cdot 10^6$	12	12
Zero output	$I_{ZERO} \text{ Noise } / 16000\mu A \cdot 10^6$	$0.035\mu A/16000\mu A \cdot 10^6$	2.2	2.2
Thermal R_B noise	$[\sqrt{2} \cdot \sqrt{R_B/2}/1k\Omega \cdot 4nV/\sqrt{Hz} \cdot \sqrt{10Hz}]/V_{FS} \cdot 10^6$	$[\sqrt{2} \cdot \sqrt{2.5k\Omega/1k\Omega \cdot 4nV/\sqrt{Hz} \cdot \sqrt{10Hz}}]/50mV \cdot 10^6$	0.6	0.6
Input current noise	$(I_n \cdot 40.8 \cdot \sqrt{2} \cdot R_B/2)/V_{FS} \cdot 10^6$	$(200fA/\sqrt{Hz} \cdot 40.8 \cdot \sqrt{2} \cdot 2.5k\Omega)/50mV \cdot 10^6$	0.6	0.6
		Total Noise Error	15	15
		TOTAL ERROR:	11803	3340
			1.18%	0.33%

(1) All errors are minimum and maximum, and referred to input, unless otherwise stated.


7.2 Typical Applications

(1) Lin Polarity shown connected to correct positive bridge nonlinearity. See [Figure 6-3](#) to correct negative bridge nonlinearity.

(2) See ISO124 data sheet if isolation is needed.

Figure 7-6. ±12V-Powered Transmitter and Receiver Loop

(1) For burn-out indication.

(2) See ISO124 data sheet if isolation is needed.

Figure 7-7. Thermocouple Low-Offset, Low-Drift Loop Measurement With Diode Cold-Junction Compensation

7.3 Layout

7.4 Layout Guidelines

The XTR106 is typically used with an external transistor (Q_1) to regulate the power dissipation of the 4mA to 20mA loop. This allows the resulting localized self-heating to be distanced from the precision circuitry of the XTR106 and reduces overtemperature drift errors.

The XTR106 can be used without the Q_1 transistor if the application requirements do not lead to violation of the device *Absolute Maximum Requirements*, such as the maximum junction temperature. Calculate the peak power dissipation and multiply by thermal resistance to approximate the associated junction temperature rise. Minimize overheat conditions for reliable long-term operation.

Place supply bypass capacitors close to the package and make connections with low-impedance conductors. Reduce trace lengths for R_G to minimize coupled environmental noise. If the loop power supply is electrically noisy, implement filtering using decoupling capacitors and small resistors or dampening inductors in series with V_+ .

8 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

8.1 Device Nomenclature

Table 8-1. Device Nomenclature

Part Number	Definition
XTR106U/2K5	The die is manufactured in CSO: SHE or CSO: TID.
XTR106UA/2K5	
XTR106P	The die is manufactured in CSO: SHE.
XTR106PA	
XTR106UA	

8.2 Documentation Support

8.3 Related Documentation

For related documentation see the following:

- Texas Instruments, *Special Function Amplifiers Precision Labs* video series on Current Loop Transmitters
- Texas Instruments, *Analog Linearization of Resistance Temperature Detectors* technical article
- Texas Instruments, *A Basic Guide to RTD Measurements* application note

8.4 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.5 Support Resources

[TI E2E™ support forums](#) are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

8.6 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.7 Electrostatic Discharge Caution

 This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.8 Glossary

[TI Glossary](#) This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (January 2025) to Revision C (January 2026)	Page
• Changed "CMR" to "CMRR" in the <i>Features</i>	1
• Changed "PSR" to "PSRR" in the <i>Features</i>	1
• Added description of device flow information in <i>Specifications</i>	4
• Added different fabrication process specifications for zero output current noise in the <i>Electrical Characteristics</i>	5
• Added different fabrication process specifications for offset voltage in the <i>Electrical Characteristics</i>	5
• Added different fabrication process specifications for common-mode impedance in the <i>Electrical Characteristics</i>	5
• Added different fabrication process specifications for VREG vs temperature in the <i>Electrical Characteristics</i>	5
• Added all chip site origins (CSO) condition to the typical test conditions in the <i>Typical Characteristics</i>	7
• Updated Underscale Current vs Temperature, Underscale Current vs IREF + IREG, Overscale Current vs Temperature, Zero Output Current Error vs Temperature, Input Bias and Offset Current vs Temperature, VREG Output Voltage vs VREG Output Current, VREF5 vs VREG Output Current, and Reference Voltage Deviation vs Temperature curves to align with absolute maximum temperature range in the <i>Typical Characteristics</i>	7
• Added "CSO: SHE" to Step Response and Common-Mode Rejection vs Frequency curves in the <i>Typical Characteristics</i>	7
• Added "CSO: TID" to Input Voltage Noise Density vs Frequency and Zero Output Current Noise Density vs Frequency curves in the <i>Typical Characteristics</i>	7
• Added Step Response and Common-Mode Rejection vs Frequency curves for CSO: TID in the <i>Typical Characteristics</i>	7
• Added Input Voltage, Input Current, and Zero Output Current Noise Density vs Frequency curve for CSO: SHE in the <i>Typical Characteristics</i>	7
• Added Part Number flow information table to the <i>Device Nomenclature</i>	25

Changes from Revision A (November 2003) to Revision B (January 2025)	Page
• Updated the numbering format for tables, figures, and cross-references throughout the document.....	1
• Added the <i>Pin Configuration and Functions</i> , <i>Recommended Operating Conditions</i> , <i>Thermal Information</i> , <i>Electrical Characteristics</i> , <i>Detailed Description</i> , <i>Functional Block Diagram</i> , <i>Application and Implementation</i> , <i>Typical Applications</i> , <i>Device and Documentation Support</i> , and <i>Mechanical, Packaging, and Orderable Information</i> sections.....	1
• Modified end equipments in <i>Applications</i>	1
• Added <i>Pin Functions</i> table.....	3
• Deleted <i>Input Voltage</i> , <i>Input Current</i> , and <i>Zero Output Current Noise Density vs Frequency</i> plot and replaced with Figure 5-13, <i>Input Voltage Noise Density vs Frequency</i> , and Figure 5-14, <i>Zero Output Current Noise Density vs Frequency</i>	7
• Updated Figure 5-20, <i>Reference Voltage Deviation vs Temperature</i>	7
• Changed description of maximum loop-supply voltage to specified absolute maximum rating in <i>Oversupply Surge Protection</i>	16
• Updated suggested transistor part numbers in Figure 7-1, <i>Basic Bridge Measurement Circuit with Linearization</i>	17

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

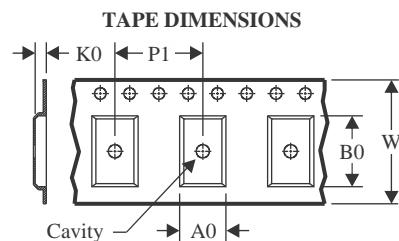
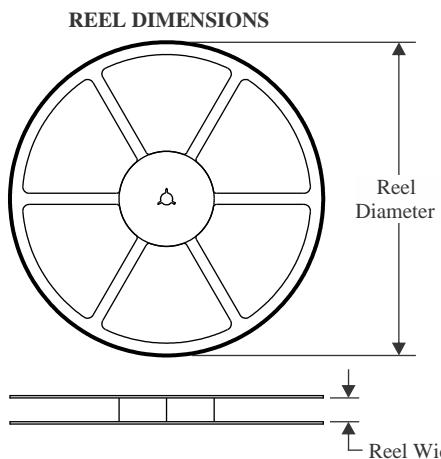
Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
XTR106P	Active	Production	PDIP (N) 14	25 TUBE	Yes	Call TI	N/A for Pkg Type	-40 to 85	XTR106P A
XTR106P.A	Active	Production	PDIP (N) 14	25 TUBE	Yes	Call TI	N/A for Pkg Type	-40 to 85	XTR106P A
XTR106PA	Active	Production	PDIP (N) 14	25 TUBE	Yes	Call TI	N/A for Pkg Type	-	XTR106P A
XTR106PA.A	Active	Production	PDIP (N) 14	25 TUBE	Yes	Call TI	N/A for Pkg Type	-40 to 85	XTR106P A
XTR106U/2K5	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	Call TI Nipdau	Level-3-260C-168 HR	-40 to 85	XTR106U
XTR106U/2K5.A	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	Call TI	Level-3-260C-168 HR	-40 to 85	XTR106U
XTR106U/2K5.B	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	Call TI	Level-3-260C-168 HR	-40 to 85	XTR106U
XTR106UA	Obsolete	Production	SOIC (D) 14	-	-	Call TI	Call TI	-40 to 85	XTR106U A
XTR106UA/2K5	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	Call TI Nipdau	Level-3-260C-168 HR	-40 to 85	(XTR106U, XTR106UA) A
XTR106UA/2K5.A	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	Call TI	Level-3-260C-168 HR	-40 to 85	(XTR106U, XTR106UA) A
XTR106UA/2K5.B	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	Call TI	Level-3-260C-168 HR	-40 to 85	(XTR106U, XTR106UA) A

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

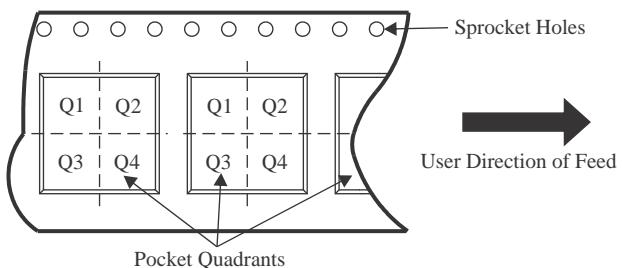
⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

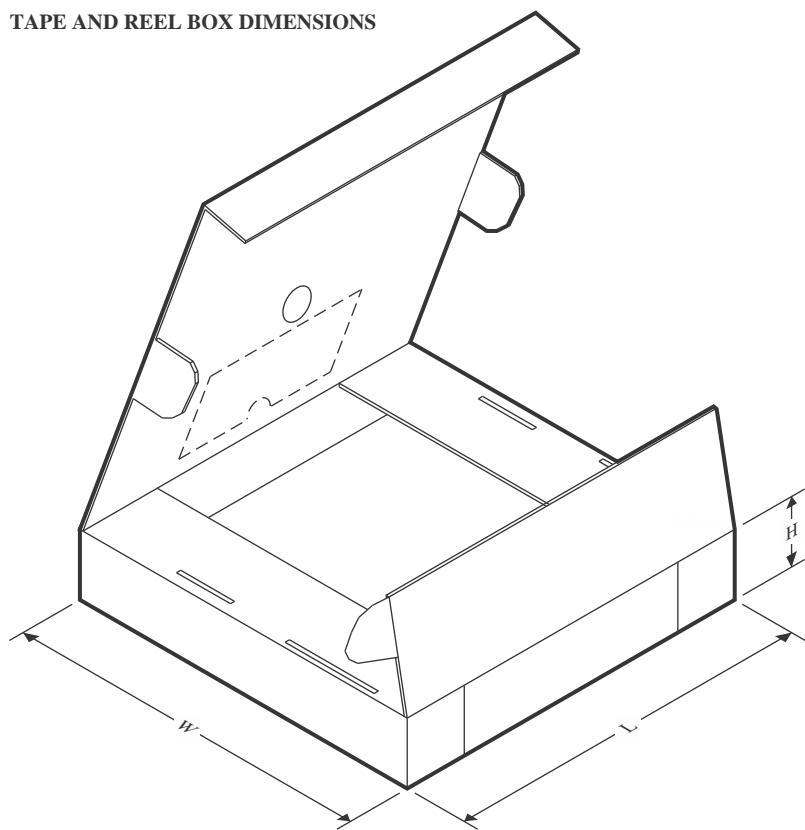


⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

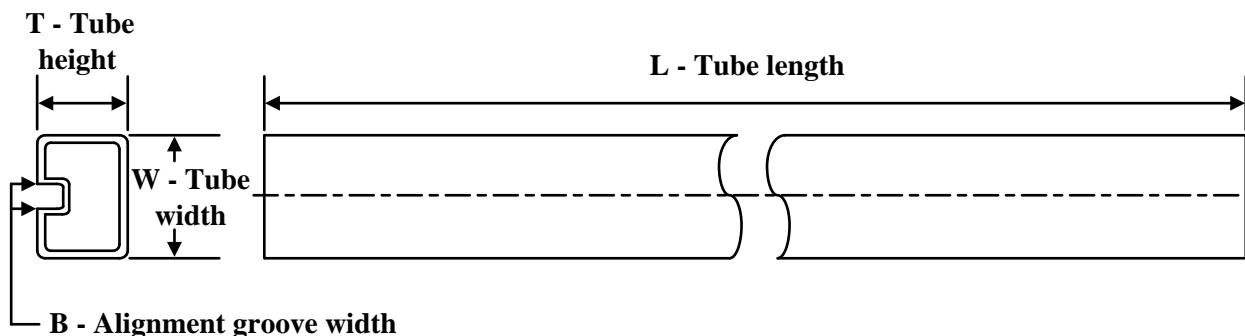
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

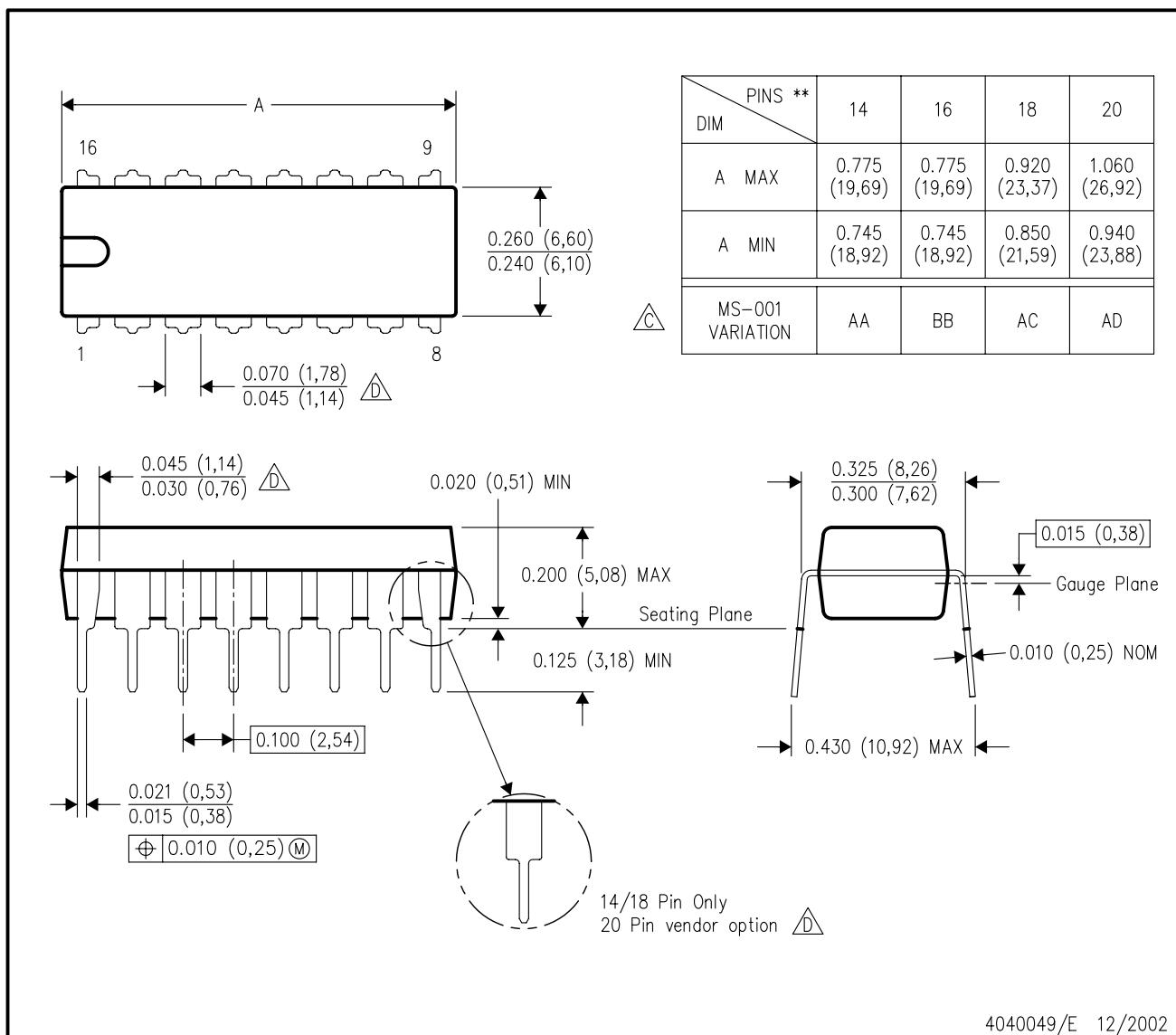
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
XTR106U/2K5	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
XTR106UA/2K5	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
XTR106U/2K5	SOIC	D	14	2500	353.0	353.0	32.0
XTR106UA/2K5	SOIC	D	14	2500	353.0	353.0	32.0

TUBE

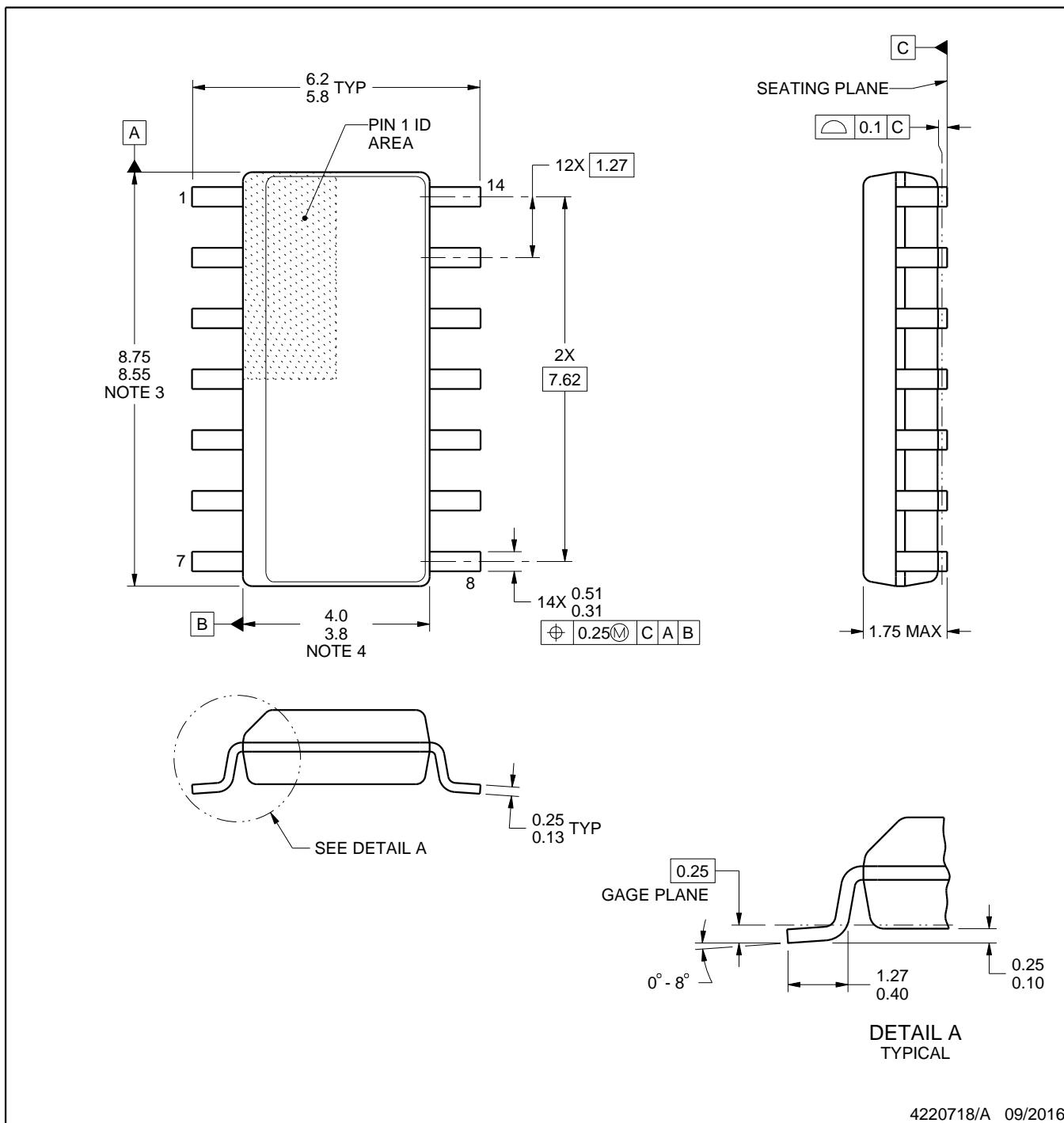

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (μ m)	B (mm)
XTR106P	N	PDIP	14	25	506	13.97	11230	4.32
XTR106P.A	N	PDIP	14	25	506	13.97	11230	4.32
XTR106PA	N	PDIP	14	25	506	13.97	11230	4.32
XTR106PA.A	N	PDIP	14	25	506	13.97	11230	4.32

N (R-PDIP-T**)

16 PINS SHOWN

PLASTIC DUAL-IN-LINE PACKAGE



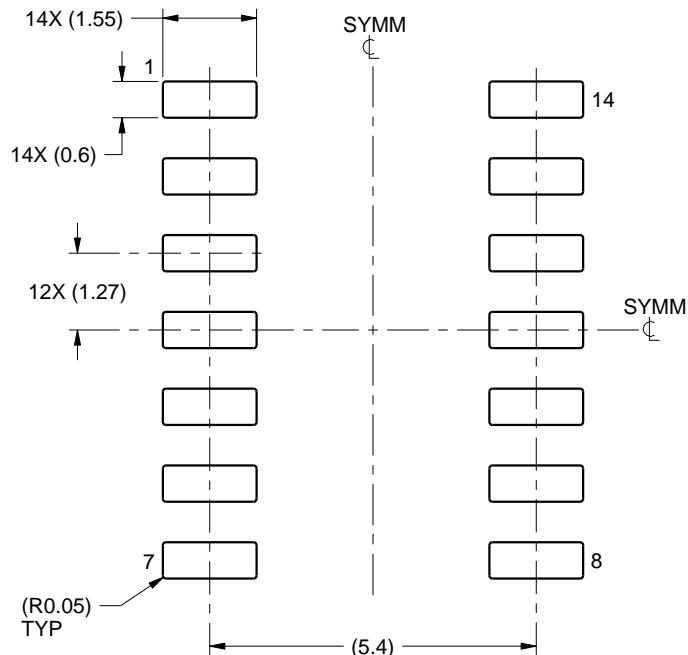
PACKAGE OUTLINE

D0014A

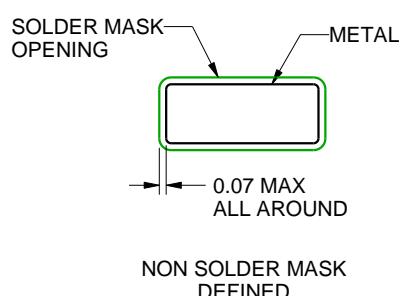
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

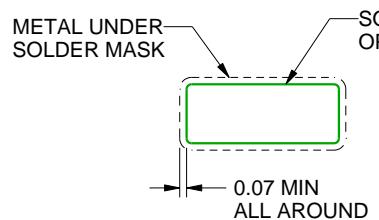
NOTES:


1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side.
5. Reference JEDEC registration MS-012, variation AB.

EXAMPLE BOARD LAYOUT


D0014A

SOIC - 1.75 mm max height


SMALL OUTLINE INTEGRATED CIRCUIT

LAND PATTERN EXAMPLE
SCALE:8X

NON SOLDER MASK
DEFINED

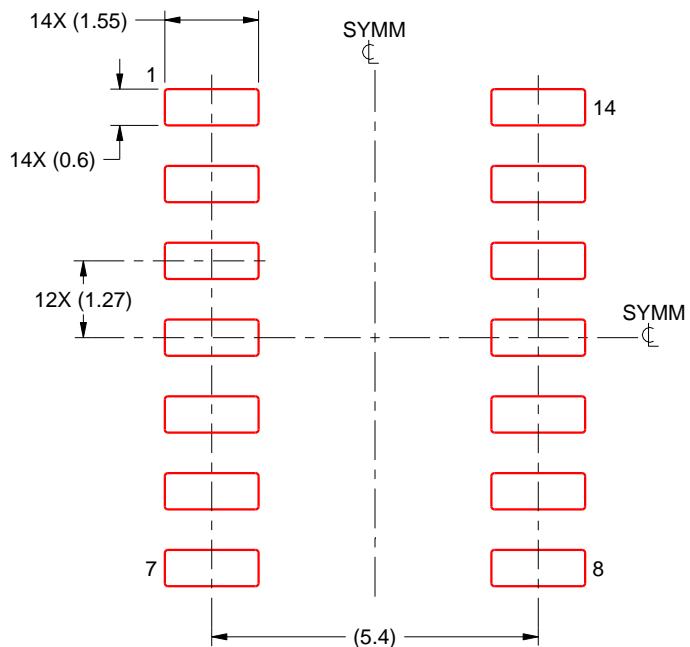
SOLDER MASK
DEFINED

SOLDER MASK DETAILS

4220718/A 09/2016

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.


7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

D0014A

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

**SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:8X**

4220718/A 09/2016

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025