Application Note
Cybersecurity Enablers in MSPMO0O MCUs

i3 TEXAS INSTRUMENTS

ABSTRACT

MSPMO microcontrollers provide a variety of security enabler technologies to help developers implement
security measures to protect assets such as code, data, and keys. And there is hardware and software
combined solution provided for secure boot and secure storage in MSPMO device. This document describes
the enablers provided in these devices, what their capabilities and limitations are, how they operate, and how to
configure them for basic use cases.

Table of Contents

LI L Lo Te [T T2 £ o TSP PP R PPPRRPI 2
R I £ GV o T3 Tt =T o USSP 2
1.2 GOAIS OFf CYDEISECUIILY.....eeeiieeeiii ettt ettt e et e e et e e et e e e st e e eaeeeeanteeeeaneeeeamseeeanseee e nseeeamseeeanseeesanseeeanneeeaseeennee 2
1.3 Platform SECUNtY EN@DIETS........coo ittt ettt e et e e e st e e s seeeeasteeeanteeeanneeeeanseeeanseeeenseeeanneeeeneeeennneas 3

2 DeVice SECUNIY IMOMEL........... ..ottt et e e et e e st e e et e e e e steeeamaeeeeseeeeanseeeanseeeensaeeeanseeesnseeeaneeeennnean 6
P2 B L= o= (o 1= o 1 Y2 PSSRSO 6
2.2 INitial CONAItIONS @ BOOL..........eiiitiiiiieiiee ettt ettt b bt a e e o bt e eh et e bt e sh et e bt e shb e e be e eab e e ke e ean e e be e enneenbeeanee 6
2.3 Boot Configuration ROULINE (BCR).......cciiuiiieiiiie ettt et e e st e e et e e e se e e e e te e e sneeeessteeeenseeeanseeeanteeeanneeeaanseeeansenenns 6
B = ToTo] (5] =T o J I T=To [=) USSR 7
BRI = o T o [ST R PRSPPSO 7
2.6 User-Specified SECUNLY POLICIES.cueieiiiieeeie ettt et e et e e sttt e e ettt e e sseeeasneeeeanteeeaseeeaanseeeanseeeeaneeeennnes 8

B SECUIE BOOL...... ..ottt bbb h b a bR e e e Rt b e e bt e R e oAb e e eR et e bt e ehe e e be e nhneeneenane s 17
3.1 Secure Processing ENVIronmMent ISOIAtION.............eiiiiiii it e et e e et e e s e e snee e e e eee e eneeeeanneeas 17
3.2 CUStOMET SECUIE COUE (CSC).. . uiiiiiiiie it ee et e et ettt e ettt e et e e sateeeeeeeesaneeeeamteeeaseeeeanseeeanseeeenseeeanseeesnseeesanseeennneas 17
LR I = o Tl Faa = o L= 1Y =T T= T oY (=1 SRS URS 33

B LYo =] e - Vo - USRSt 36
4.1 FIasSh WIIE PrOtECHON. ..ottt e et e st e e ek e e et e sne e e e se e e e enr e e s anneeenaneeenn 36
4.2 Flash Read-EXECULE PrOtECHION.cuviiiiiiie ettt e et s et e e sane e e e r e e s nne e e 36
R o Po T g I el o 0] (T ox 1o o PO TP PT RO PPRR PRI 36
4.4 Data BanK PrOtECHON.c.eiiiiiiie ettt ettt st e ek e e e e e e s Rt e ek et e e e e e ne e e s s e e e nnn e e nrnee s 36
IS T= o U=l (S (o] =T 1= T OSSR 36
L RS Sy Y o (] (= 1] FO OSSP PPPPRTPRTN 37
4.7 Hardware MONOLONIC COUNMTET........ccuuiitiiitie ittt ettt ettt sa et ae e bt e s e et bt e sh bt e ebe e eab e e s b et e abeenbe e et e e ean e e beeenneenee s 37

5 CryptographiC ACCEIEIAtION...............oii ittt st e e ettt e e et e e st e e e s teeesnteeeanneeeesaeeeanseeeanseeeenneeeennneas 38
5.1 Hardware AES ACCEIEIATION.ui ittt a et sh et b e s bt e bt e s h bt e bt e eab e e st et eaneesbe e abeenaeeanns 38
5.2 Hardware True Random Number Generator (TRNG)........cccuii i et see s ee e s eee e s seeee e st e e snneeeesneeeeanseeeenns 39

L3 o @ PO SUUPTSTOPPRPROPR 41

A=V T4 4T30S 42

B REFEIENCES...... ..okttt e h et eh ek e e a et b oa e R e e oAb e R et e bt R et e b e R et et e e nae e be e e teennee s 43

O REVISION HISTOIY ...ttt oo oottt e e e oot bttt e e e e e ae et e e e e e e nteeeeeeeamnbeeeeeeaannteeeeeeanteeeaaeeannneees 43

Trademarks

All trademarks are the property of their respective owners.

SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025 Cybersecurity Enablers in MSPMO MCUs 1
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

Introduction

13 TEXAS
INSTRUMENTS

www.ti.com

1 Introduction

As industrial, automotive, and personal electronics applications become more connected, and as the tools
available to attackers continues to grow, the importance of device security in embedded applications continues
to increase. MSPMO microcontrollers from Tl include a variety of hardware and software security enabling
technologies for engineers to leverage when developing an application with security in mind.

1.1 Key Concepts

Table 1-1. Key Concepts

Term

Meaning

NONMAIN

A dedicated flash memory region which configures device boot related parameters. See MSPM0O NONMAIN
FLASH Operation Guide for NONMAIN operation guide.

Secure Boot

The process of verifying and validating the integrity and authenticity of updateable firmware and software
components as a pre-requisite to the execution.

INITDONE

INITDONE is a register in some MSPMO devices that is used to isolate privileged state and unprivileged
state. INITDONE is triggered at the end of the privileged state by the CSC and all non-static security policies
configured in CSC will take effect during INITDONE.

Customer Secure Code
(CsC)

A secure boot solution provided in MSPMO SDK for the devices with INITDONE mechanism. It works as
part of root of trust and keeps immutable after production and achieves application image integrity and
authenticity verification as well as other security policy configuration. CSC could also represent a MSPMO
hardware feature which means a MSPMO device supports INITDONE mechanism.

Boot Image Manager (BIM)

A secure boot solution provided in MSPMO SDK for devices without INITDONE mechanism.

Root of Trust (RoT)

Especially refers to immutable Root of Trust, the most trusted security component on the device. It is
inherently trusted because it cannot be modified following manufacture. There is no software at a deeper
level that can verify that it as authentic and unmodified. Including ROM-boot code and CSC with static write
protection in CSC solution.

Keystore Secure storage for AES key. Only CSC can configure keys into Keystore and the main application can
configure the crypto engine (AES) to use one of the stored keys but can never access any stored keys.
Firewall A dynamic protection mechanism for some specific region of Flash memory, including write protection,
read-execute protection and IP protection.
Bank Swap A mechanism to configure flash bank address mapping on MSPMO dual-bank devices. It is configured in

CSC and takes effects after INITDONE.

Static Write Protection

The static write protection mechanism enabled by NONMAIN configuration. The protected region could
not be modified after ROM-boot code finished unless the NONMAIN configuration is changed for enabling
writing again.

SHA2-256 The hashing algorithm which takes an entire message and condenses it into a fixed-length (256bit) digest. It
is used for verifying message integrity. Only supported via software in MSPMO devices.
ECDSA P256 An asymmetric algorithm to verifymessage authenticity. Only supported via software in MSPMO devices.
AES Advanced Encryption Standard, some MSPMO devices offer hardware accelerators for AES.
TRNG True Random Number Generator, some MSPMO devices offer hardware accelerators for TRNG.

1.2 Goals of Cybersecurity

In general the key goals of cybersecurity in an embedded application are to protect critical assets as follows:

» Confidentiality (keeping secret data secret)

* Integrity (protecting data from modification)

» Authenticity (ensuring all parties are who they claim to be)

* Availability (ensuring that data and/or functionality is there when it is needed)
» Non-repudiation (origin and/or identity of data is provable to additional parties)

These key goals are often applicable for assets which can be in the following states:

2 Cybersecurity Enablers in MSPMO MCUs

SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com/lit/ug/slaaeo4/slaaeo4.pdf?ts=1764236612694&ref_url=https%253A%252F%252Fwww.bing.com%252F
https://www.ti.com/lit/ug/slaaeo4/slaaeo4.pdf?ts=1764236612694&ref_url=https%253A%252F%252Fwww.bing.com%252F
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS

INSTRUMENTS

www.ti.com

Introduction

» Atrest (code, data, or keys on a microcontroller which are not actively being used)

* Inuse (code, data, or keys on a microcontroller which are being actively used in an application)

* In transit (code, data, or keys on a microcontroller which are moving between an MCU and another entity)

1.3 Platform Security Enablers

The security enablers included in MSPMO devices are given inTable 1-2. The debug security features andmain
flash memory integrity verification feature could be found in NONMAIN Layout Types and NONMAIN Registers
sections in device series technical reference manual. And the secure boot, secure storage and cryptographic

accelerators features could be found in device specific datasheet.
Table 1-2. MSPMO0 MCU Platform Security Enablers

Security Device Feature MOC11 | MOC11 | MOL1x0x/ | MOG11 | MOG3x0x/ | MOH32 | MOL11 | MOLx2 | MOGx5
Enabler 03/4 05/6 MOL134x 0x MO0G150x 1x 1x 2x 1x
Debugging Password authenticated Yes Yes Hashed | Hashed | Hashed | Hashed
i Hashed Yes
security debug access
Password authenticated No No Yes Yes No Hashed | Hashed | Hashed
bootstrap loader access ROM ROM Yes ROM
BSL BSL BSL
Password authenticated main Yes Yes Hashed | Hashed | Hashed | Hashed
Hashed Yes
flash memory mass erase
Password authenticated Yes Yes Hashed | Hashed | Hashed | Hashed
Hashed Yes
complete factory reset
Tl failure analysis (FA) enable/ Yes Yes Yes Yes Yes Yes
) Yes Yes
disable
Complete hardware disable Yes Yes Yes Yes Yes Yes
of serial wire debug (SWD) Yes Yes Yes
interface
Permanently lockable device Yes Yes Yes Yes Yes Yes
) . Yes Yes Yes
configuration data
Error resistant device
)] Yes Yes Yes Yes Yes Yes Yes Yes
configuration data
Passwords are stored in Yes Yes Yes Yes Yes
hashed form only (SHA2-256)

SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025
Submit Document Feedback

Cybersecurity Enablers in MSPM0O MCUs

Copyright © 2026 Texas Instruments Incorporated

3

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS

INSTRUMENTS
Introduction www.ti.com
Table 1-2. MSPMO0 MCU Platform Security Enablers (continued)
Security i MOC11 | MOC11 | MOL1x0x/ | MOG11 | MOG3x0x/ | MOH32 | MOL11 | MOLx2 | MOGx5
Device Feature
Enabler 03/4 05/6 MOL134x 0x MO0G150x 1x 1x 2x 1x
Secure boot CSC Exists Yes Yes Yes Yes Yes
Permanently lockable main
Yes Yes Yes Yes Yes Yes Yes Yes Yes
flash memory
CRC-32 verified main flash Yes Yes Yes Yes Yes Yes
. Yes Yes
region
SHA2-256 verified main flash Yes Yes Yes Yes Yes
memory region
Singl int of entry t i
ing’e poin .o ?n ry o main Yes Yes Yes Yes Yes Yes Yes Yes Yes
flash application at boot
Asymmetric firmware image
authentication routines
(ECDSA with P-256, Yes Yes Yes Yes Yes Yes Yes Yes
SHA2-256 based on software)
Symmetric firmware image Yes Yes Yes
authentication routines (AES-
CMAC based on hardware)
Lockable flash for ECDSA Yes Yes Yes Yes
public key revocation and Yes
rollback protection
SRAM write-execute mutual Yes Yes Yes Yes Yes Yes
. Yes Yes
exclusion (W”X) boundary
Flash write protection firewall Yes Yes Yes Yes Yes
Flash read/execute (RX) Yes Yes Yes Yes Yes
protection firewall
Flash IP protection area Yes Yes Yes Yes Yes
(execute only, no read access)
Flash bank write-execute Yes Yes Yes
Secure .
mutual exclusion (W#X)
Storage
Data bank write read Yes
protection
Key store (up to four 128-bit Yes Yes Yes
keys or two 256-bit keys, plus
a session key)
Hardware monotonic counter Yes Yes
True random number Yes Yes Yes Yes
generator (TRNG) with self-
test
A Basic AES accelerator Yes Yes Yes Yes
Cryptographi)
. (without GCM/CMAC/GHASH
c acceleration
support)
Advanced AES accelerator Yes Yes Yes
(with GCM/CMAC/GHASH
support)
Device Unique device identifier (96- Yes Yes Yes Yes Yes Yes
. . . Yes Yes Yes
identity bit)
4 Cybersecurity Enablers in MSPMO MCUs SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025

Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Introduction
Table 1-2. MSPMO0 MCU Platform Security Enablers (continued)
Security . MO0C11 | MOC11 | MOL1x0x/ | MOG11 | MOG3x0x/ | MOH32 | MOL11 | MOLx2 | MOGx5
Device Feature

Enabler 03/4 05/6 MOL134x 0x MO0G150x 1x 1x 2x 1x

L1 L1 L1 L1
ARM PSA Level Planne | Planne Planne

d d d
Certifications EVITA-Light EVITA- | EVITA- | EVITA-

EVITA capability)))
Light Light Light

. Planne Planne
ISO 21434 process compliant d d
3P firmware vulnerability Yes Yes Yes Yes
Attack analysis
Resistance Boot configuration routine Yes Yes Yes Yes
Analysis fault injection attack
countermeasures
SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025 Cybersecurity Enablers in MSPMO MCUs 5

Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

Device Security Model www.ti.com

2 Device Security Model
The MSPMO family has two broad stages of security capability:

1. Static, Tl-written bootcode influenced by a user-defined Configuration enforced before entering a Flash
Application

2. User-written Customer Secure Code (CSC), living in MAIN flash, statically write protected, that runs after the
BCR and enforces additional policies and/or validate an applications authenticity and integrity before jumping
to the application

Not all devices support an additional CSC step. While only the CSC can enforce additional security policies
such as firewalls, it is possible for non-CSC capable devices to still validate applications. Application validation
is discussed further in the Secure Boot section, and thus we will limit the discussion in this chapter to enforcing
additional policies, and refer to this stage as the CSC.

This section provides an overview of the device boot process and the user-specified policies in both categories
which may be set to enable a wide variety of use cases.

2.1 Device ldentity

All MSPMO devices include a 96-bit unit-specific identification code (device ID), which can be read by application
software. See the technical reference manual and device data sheet for more information on the device ID.

The device ID is designed by TI to be unique for each unit which is shipped, and as such it can be

used to identify or distinguish a particular unit from any other unit. While the device ID is unique, it is not
cryptographically random, as some of the bits correspond to device characteristics such as the part number and
product revision.

2.2 Initial Conditions at Boot

During a cold power up (POR), the device is reset to a secure state. The digital 10 pins are in a high impedance
configuration with all peripheral functions disconnected, the NRST pin is in NRST mode, and the serial wire
debug (SWD) interface pins are in SWD mode. Following the release of the brown-out reset, the serial wire
debug port (SW-DP) is initially enabled to allow a debug probe to establish an initial connection to the debug
subsystem.

At this point in the boot process, the only debug access ports (DAPs) which are accessible by a debug probe
are the configuration access point (CFG-AP) and secure access point (SEC-AP). The CFG-AP may be used

by a connected debug probe to read generic device information (such as the device generic part number). The
SEC-AP may be used to attempt to pass a command message to the boot configuration routine. Application
debug access to device (through the AHB-AP, ET-AP, and PWR-AP DAPs) remains blocked by hardware
firewalls. As a result, the device hardware does not permit any debug access to the processor, the EnergyTrace
state, or the power configuration during device power-up.

Following a brown-out reset (BOR), a boot reset (BOOTRST) is always generated, which starts execution of the
boot configuration routine.

2.3 Boot Configuration Routine (BCR)

MSPMO devices contain an immutable root-of-trust boot configuration routine contained in read-only memory

(ROM). The boot configuration routine (BCR) is always the first code to run on the Cortex-M0+ processor

following a BOOTRST of the device. The BCR also runs upon software invocation of the bootstrap loader (BSL)

as it is needed for authorizing the BSL entry. The core responsibilities of the BCR are to:

1. Load Tl factory data needed for proper device operation from the FACTORY flash memory region into logic
verify the integrity of the factory data (including device trim data) through CRC-32

2. Load the user-specified device configuration (including the security policies) from the NONMAIN flash
memory region into logic, and verify the integrity of the user configuration data through CRC-32

3. Check for any boot commands sent over the serial wire debug (SWD) interface, authorize them (if
applicable), and process them (if authorized)

4. Check for bootstrap loader (BSL) invocation conditions if the BSL is enabled, and start the BSL if a valid
invocation occurred

6 Cybersecurity Enablers in MSPMO MCUs SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Device Security Model

5. Check the integrity of a user-defined portion of the MAIN flash memory region containing the user application
code before starting the user application using CRC-32 or SHA-256

6. Determine whether to release the AHP-AP, ET-AP, and PWR-AP DAPs at the end of the BCR, after the CSC

issues INITDONE (discussed in detail in Section FIX), or never.

Log any boot errors to the CFG-AP

Trigger hardware to start executing from a single entry-point in MAIN flash by fetching the stack pointer from

0x0000.0000 and the reset vector from address 0x0000.0004 in MAIN flash

®© N

2.4 Bootstrap Loader (BSL)

MSPMO devices may also contain an immutable bootstrap loader (BSL) in read-only memory (ROM). The BSL
provides a means to program and verify the contents of the device memory through a standard serial interface
(UART or 12C), as opposed to the serial wire debug (SWD) interface.

The BSL can only be started by the BCR. The BCR checks for a valid BSL invoke condition (software invoke, 10
pin invoke, blank device invoke) and validates that the BSL is enabled for use before starting the BSL. When the
BSL exits, the BCR runs again to load the current device security policies and start the user application.

The BSL is always protected by a 256-bit user-specified password that must be passed to the BSL through the
UART or 12C interface when starting a BSL session. The BSL can be disabled if it is not used (see the BSL
enable/disable policy).

2.5 Boot Flow
The high level boot flow for MSPMO devices is given in below figure.

At BOOTRST, Tl bootcode execution commences. After successful boot, bootcode issues BOOTDONE. At this
point, SYSCTL issues a SYSRST to the device to trigger execution from flash memory. Depending on the

boot configuration record, this leads either to the start of the main application (if CSC does not exist in this
configuration) or to the start of the CSC (if CSC is configured).

CSC is responsible for determining execution bank, memory region protections, secure key initialization into the
keystore, etc. When the customer secure code issues INITDONE (by writing to SYSCTL.SECCFG.INITDONE
MMR), then SYSCTL issues a second SYSRST. The device again starts execution from 0x0 mapped to flash,
and the CSC executes a second time. This time, the CSC will find that INITDONE has already been issued

SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025 Cybersecurity Enablers in MSPMO MCUs 7
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

Device Security Model www.ti.com

previously (this is determined by reading the SYSCTL.SECCFG.SECSTATUS.INITDONE bit) and it directly calls
the main application.

High Level Bootflow from a BOOTRST until the Main Application :

BOOTRST

Legend:
Firmware i

Hardware

Hardware L
BOOTRST Triggered
BOOTDONE
Software
BOOTDONE Tiggered i
SYSRST

|
l\f YES
Main Application CSC

[INITDONE? ‘
l\lo YES
Setup Security Main Application
INITDONE

Figure 2-1. High Level Boot Flow

Note
To keep the boot flow compatible with nonsecurity enabled devices, the default settings of boot
configuration are set to "CSC does not exist" state.

The secure execution flow is the path where CSC_EXISTS = YES. In this case, it may be observed that

after BOOTRST, two SYSRSTs will be issued before the main application is launched. After first SYSRST,

the customer startup code gets to execute. It configures security and issues INITDONE. At this point, the
security configuration is locked and enforced. A second SYSRST is issued at this point, restarting startup code
execution. At the second SYSRST, since INITDONE is YES, the main application is launched.

Note that the BCR and BSL both contain user-specified configuration data structures in the lockable NONMAIN
flash memory region. These security policies which are specified through these data structures are described in
Section 2.6.

2.6 User-Specified Security Policies

MSPMO devices contain a dedicated region of flash memory for storing user-specified security and device
configuration policies. This region is referred to as the NONMAIN flash region. The boot configuration routine
(BCR) and bootstrap loader (BSL) reference the user-specified data stored in the NONMAIN flash region to
configure the device for operation.

8 Cybersecurity Enablers in MSPMO MCUs SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Device Security Model

The user must provision the NONMAIN flash memory region of the device with the desired policies during
production. This section will introduce the security policies which are user configurable through the NONMAIN
configuration memory.

The NONMAIN flash region is partitioned into two distinct data structures:

» The BCR configuration, described in Section 2.3, which sets the boot configuration security policies
» The BSL configuration, described in Section 2.6.1.4, which sets the boot loader security policies

Both data structures are backed by their own 32-bit CRC digests, which are used as a part of the configuration
data error resistance scheme.

Note
Additional parameters beyond those shown in this document are included in the BCR and BSL
configuration structures; this document focuses on the parameters which are relevant for security. For
a complete description of the BCR and BSL configuration structures in the NONMAIN flash memory
region, see the boot configuration section of the architecture chapter in the corresponding technical
reference manual.

2.6.1 Boot Configuration Routine (BCR) Policies

The following section describes policies that are statically defined in the NONMAIN region of flash and are
enforced by the Boot Configuration Routine (BCR). All MSPMO devices are capable of enforcing these policies,
unless indicated otherwise.

2.6.1.1 Serial Wire Debug Related Policies

The serial wire debug related policies configure the functionality which is available through the device's
physical debug interface (SWD). By default, MSPMO devices come from Tl in an unrestricted state. This state
allows for easy production programming, evaluation, and development. However, this unrestricted state is not
recommended for mass production, as it leaves a large attack surface present. To accommodate a variety of
needs while keeping the configuration process simple, MSPMO devices support three generic security levels:
no restrictions (Level 0), custom restrictions (Level 1), and fully restricted (Level 2). Table 2-1 shows the three
generic security levels, from least restrictive to most restrictive.

There are 4 main uses of the SWD interface for which protection needs to be considered:

» Application debug access, which includes:
— Full access to the processor, memory map, and peripherals through the AHB-AP
— Access to the device EnergyTrace+ state information through the ET-AP
— Access to the device power state controls for debug through the PWR-AP
* Mass erase access, which includes:
— Ability to send a command through SWD to erase the MAIN memory region while leaving the NONMAIN
device configuration memory intact
* Factory reset access, which includes:
— Ability to send a command through SWD to erase the MAIN memory region and reset the NONMAIN
device configuration memory to Tl factory defaults (Level 0)
» Tl failure analysis access, which includes:
— Ability for Tl to initiate a failure analysis return flow through SWD (note that the T1 FA flow always forces
a factory reset before FA access is given to TI; this ensures that Tl does not have any mechanism to
read proprietary customer information stored in the device flash memory when a failure analysis flow is

initiated)
Table 2-1. Generic Security Levels
Level Scenario SW-DP Policy | APPDebug | Mass Erase | Factory Reset | gy pjicy
Policy Policy Policy
0 No restrictions EN EN EN EN EN
1 Custom restrictions EN EN, DIS DIS EN, DIS EN, DIS

SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025

Submit Document Feedback

Cybersecurity Enablers in MSPM0O MCUs

Copyright © 2026 Texas Instruments Incorporated

9

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

Device Security Model

13 TEXAS
INSTRUMENTS

www.ti.com

Table 2-1. Generic Security Levels (continued)

Level Scenario SW-DP Policy | APPDebug | Mass Erase | Factory Reset |) pjicy
Policy Policy Policy
2 Fully restricted DIS Don't care (access not possible with SW-DP disabled)(")

(1) When the SW-DP policy is SW-DP disabled, the mass erase and factory reset policies are a don't care from the point of view of
the SWD interface. However, if the bootstrap loader (BSL) is enabled, the mass erase and factory reset policies do impact what
functionality is available through the BSL. See the BSL security section for details on securing the BSL.

2.6.1.1.1 SWD Security Level 0

SWD security level 0 is the least restrictive SWD security state. This is the default state of a new device from TI,
and it is also the state of a device following a successful factory reset. There are no restrictions on application
debug access, mass erase, factory reset, for failure analysis in this state.

When to Use This State

Level 0 is well suited for prototyping and development, as it allows programming of the device memory and
debug of the processor and peripherals.

When to Not Use this State

Level 0 should not be used in mass production. An attacker would have full freedom to read the contents of
the device memory, manipulate the execution of the device, and possibly change the flash memory contents
(depending on the flash memory write protection scheme).

2.6.1.1.2 SWD Security Level 1

SWD security level 1 allows for a customized security configuration. The physical debug port (SW-DP) is left
enabled, and each function (application debug, mass erase command, factory reset command, and Tl failure
analysis) may be individually enabled, disabled, or (in some cases) enabled through password authentication,
providing considerable flexibility to tailor the device behavior to specific use-cases.

When to Use This State

Level 1 is well suited for restricted prototyping/development scenarios and for mass production scenarios where
the desire is to retain certain SWD functions (such as factory reset and Tl failure analysis) while disabling other
functions (such as application debug). Common examples of Level 1 customized configurations are given in
Table 2-2.

Table 2-2. Examples of Level 1 Configurations

Configuration

Level 1 Scenario Factory

Reset R

App Debug | Mass Erase

This scenario restricts debug access with a user-specified password, but it
leaves the factory reset and Tl failure analysis available. This configuration
allows field debug (with password), and it also allows the device to be
brought back to the default "Level 0" state through factory reset.

EN with PW DIS EN EN

This scenario does not allow debug. It does allow factory reset, but only with
a user-specified password. This provides a way to open up a device in the
field by clearing the MAIN memory contents and bringing the device back to
a "Level 0" state if the password is known. Importantly, even if the factory
reset password were compromised, it would not be possible for an attacker
to read proprietary information in the MAIN flash memory.

DIS DIS EN with PW EN

This scenario does not allow debug and it does not allow Tl failure analysis.
This prevents Tl from performing a factory reset and further FA activities on
the device, unless the user executes a factory reset with their user-specified
password before returning the devices to Tl for FA.

DIS DIS EN with PW DIS

10 Cybersecurity Enablers in MSPM0O MCUs SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025
Submit Document Feedback

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Device Security Model

Note
Level 1 is the recommended configuration for most standard production use-cases. For applications
which do not require secure boot, TI recommends using Level 1 in production with factory reset left
enabled (with password) and Tl failure analysis left enabled. In such a configuration, the device may
be recovered to a less restrictive state after provisioning either by the user (with password) or by Tl
(through the failure analysis return flow). In use-cases requiring maximum secure boot assurance, a
more restrictive Level 1 or Level 2 may be used for production, with the trade-off that devices may not
be recoverable to a less restrictive state once provisioned.

When to Not Use this State

Level 1 should not be used during prototyping if complete access to the device is desired; in such a case, Level
0 should be used instead.

Level 1 should also not be used in a mass production scenario where a maximally restrictive state is desired and
no SWD functions are to be enabled; in such a case, Level 2 should be used instead as it directly disables the
complete SWD physical interface and minimizes the possibility of misconfiguration.

Note
If a device is configured with application debug and factory reset disabled, the only way for a user to
restore debug access to the device is if the user application code provides a mechanism to change
the NONMAIN configuration to a less restrictive state. If the NONMAIN is locked through static write
protection then the state is not reversible and there is no way for a user to re-gain debug access.

2.6.1.1.3 SWD Security Level 2

SWD security level 2 configures the device in a maximally restrictive state. The physical debug port (SW-DP) is
completely disabled, and all of the SWD-accessible functions (application debug, mass erase, factory reset, and
Tl failure analysis) are not accessible through SWD, regardless of their individual configuration.

When level 2 is selected (SW-DP disabled), the application debug configuration and Tl failure analysis
configuration fields are don't care fields which do not impact the device configuration.

If the BSL is disabled, then the mass erase and factory reset configuration fields are also don't care fields.
However, if the BSL is enabled, then the mass erase and factory reset configuration fields are still used by the
BSL to authorize mass erase or factory reset commands originating from the BSL interface.

When to Use This State

Use Level 2 only for mass production when no further access to any SWD functions is required and a maximally
secure state is desired for the device.

When to Not Use this State
Do not use Level 2 in the following cases:

» Future application debug or reprogramming through SWD is required

» So that Tl can perform failure analysis on the device

» To remove proprietary information from the flash memory by sending a mass erase or factory reset command
through SWD

Note
After a device is configured for level 2 (SW-DP disabled), further access to the device through SWD
is not possible. The only way to bring a device back to a level 0 or level 1 state with SWD access
restored is if the BSL and factory reset are both enabled (allowing a BSL factory reset command to
be sent), or a mechanism in the user application code is included which can change the NONMAIN
configuration to a less restrictive state. In either scenario, if the NONMAIN is locked through static
write protection then the level 2 state is not reversible and there is no way to re-gain SWD access.

SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025 Cybersecurity Enablers in MSPMO MCUs 1
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

Device Security Model www.ti.com

2.6.1.2 Bootstrap Loader (BSL) Enable/Disable Policy

The bootstrap loader (BSL) provides a means to program and verify the device memory through a standard
serial interface (UART or 12C), as opposed to the serial wire debug interface. The BSL has its own configuration
policy, but the BCR determines if the BSL is enabled to be invoked, or if it is to be disabled (noninvokable).

Since the BSL presents an additional attack surface, if it is not used in an application it may be disabled in
the user-specified boot security policies. If the BSL is used in an application, then the BSL security settings
(including the BSL access password) are managed in the BSL configuration policy.

2.6.1.3 Flash Memory Protection and Integrity Related Policies

The flash memory protection and integrity policies specify which sectors of flash memory are locked from
modification, as well as which sectors are to be checked for integrity during the boot process before the user
application is started.

2.6.1.3.1 Locking the Application (MAIN) Flash Memory

MSPMO0 MCUs implement a static write protection scheme to lock out user defined sectors in the MAIN flash
region from any program or erase operations at runtime. The desired static write protection scheme is configured
as a part of the boot security policies in the NONMAIN flash region.

Purpose

Static write protection enables placement of a fixed, user-defined, application in the flash memory that has the
following characteristics:

» Once programmed and locked, the application is not modifiable by the application code or ROM bootloader
» If placed at the beginning of the flash memory, the application is the first code that executes when the ROM
boot configuration routine transfers execution to the user application

MSPMO static write protection supports both characteristics, which must be satisfied to implement a secure boot
image manager.

Capabilities

Any sector that is configured in the NONMAIN to be write-locked is functionally immutable when the boot
configuration routine transfers execution to either the bootstrap loader or the user application code in MAIN
flash. Any attempt to program or erase a statically protected sector by the application code or the bootstrap
loader results in a hardware flash operation error, and the sector is not modified.

While static write protection prevents any modification by application code or the bootloader, a mass erase or
factory reset command sent through the SWD interface is honored. If this behavior is not desired, the mass
erase or factory reset SWD commands can be protected with unique passwords or disabled(see the SWD
policies). To completely remove any means of modifying statically write protected MAIN flash sectors, the mass
erase and factory reset commands (or the SW-DP) must be disabled, and the NONMAIN boot configuration
memory must also be statically write protected to prevent application code from changing the underling write
protection scheme by modifying the contents NONMAIN region. This is discussed in the following section.

2.6.1.3.2 Locking the Configuration (NONMAIN) Flash Memory

MSPMO MCUs implement a static write protection scheme to lock out the NONMAIN flash region from any
program/erase operations at runtime. The write protection scheme is configured as a part of the boot security
policies in the NONMAIN flash region.

Purpose

By default, the NONMAIN configuration memory (which contains the user-specified boot security policies and
bootstrap loader policies) is not write protected. This enables the NONMAIN to be erased by the user during
provisioning and re-programmed with the user-specified policies to use in mass production.

In many cases, it is desirable for the configuration memory to be locked after it has been provisioned. Locking
the configuration memory has the benefit of preventing any unauthorized modification of the security policies,
bootstrap loader policies, and static write protection policies by either the bootstrap loader or the application

12 Cybersecurity Enablers in MSPMO MCUs SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Device Security Model

code. In most applications, devices in mass production do not require modification of the configuration memory,
even when the device firmware is updated.

Capabilities

When configured to be protected, the entire NONMAIN region will be write-locked and will be functionally
immutable when the boot configuration routine transfers execution to either the bootstrap loader or the user
application code in MAIN flash. Any attempt to program or erase the NONMAIN by the application code or the
bootstrap loader will result in a hardware flash operation error, and the sector will not be modified.

While static write protection prevents any modification by application code or the boot loader, a factory reset
command sent through the SWD interface would still be honored. If this behavior is not desired, the factory reset
SWD command may be protected with a unique password or disabled altogether (see the SWD policies). To
completely remove any means of modifying the NONMAIN configuration memory, the factory reset command
and Tl FA (or the SW-DP) must be disabled.

Note
When the NONMAIN is statically write protected, and the factory reset command and Tl FA (or the
SW-DP) are disabled, the NONMAIN is equivalent to immutable read-only memory, and it is no longer
possible to change the device configuration by any means. Further, if any MAIN memory region
sectors are configured with static protection, these sectors also cannot be modified by any means and
may be considered as immutable.

2.6.1.3.3 Verifying Integrity of Application (MAIN) Flash Memory

The BCR supports checking the data integrity of a user-specified address range in the MAIN flash memory
before transferring execution from the BCR (in ROM) to the user application (in MAIN flash memory).

Purpose

The integrity check may be used as an additional step to ensure the code which runs first after the boot ROM
(usually the secure boot image manager) has a CRC/SHA256 digest that matches the expected value. This
integrity check reduces the likelihood that any unexpected corruption of critical code in the flash memory (which
may be responsible for authenticating the remaining user application software image) can create a security
vulnerability.

Capabilities

A start address, length, and 1ISO-3309 CRC-32 or SHA2-256 digest may be provisioned into the NONMAIN
configuration memory. During the boot process, the BCR will compute the CRC-32 digest of the specified range
in the MAIN flash memory, and verify the computed digest against the provisioned (expected) digest. If the
values match, the user application is started. If the values do not match, the user application is not started and
the result is a catastrophic boot error.

2.6.1.4 Bootstrap Loader (BSL) Security Policies

The BSL security policies are interpreted by the boot loader when it is invoked, and include the following
parameters:

» BSL access password, described in Section 2.6.1.4.1
» BSL read-out policy, described in Section 2.6.1.4.2
» BSL security alert policy (tamper detection), described in Section 2.6.1.4.3

2.6.1.4.1 BSL Access Password

Access to the BSL is always protected by a 256-bit user-specified password. There is no option to disable the
password. The password must be provided to the BSL after invocation for access to most BSL functions to
be granted. When the password is not provided, the only BSL commands allowed are Get Identity and Start
Application.

If a wrong password is provided to the BSL, the BSL halts for 2 seconds, after which an additional attempt
can be made to send the correct password. After three failed password attempts, the security alert function is
activated (see Section 2.6.1.4.3).

SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025 Cybersecurity Enablers in MSPMO MCUs 13
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

Device Security Model www.ti.com

2.6.1.4.2 BSL Read-out Policy

The BSL optionally supports read-out of the device memory for debug and/or diagnostic purposes (after access
to the BSL has been granted with a correct password match). By default, this capability is disabled for security
to prevent extraction of sensitive code and/or data from the device. When the BSL read-out policy is disabled,
the only information which may be provided to a host through the BSL interface is a CRC32 digest of a memory
segment with a minimum segment length of 1 kilobyte. If direct read-out of the device memory is desired, it may
be enabled in the BSL configuration.

2.6.1.4.3 BSL Security Alert Policy

The BSL provides an alert mechanism for taking action when tampering is suspected. Specifically, if an incorrect
password is passed to the BSL 3 times during one BSL session, the security alert is activated and the BSL may
respond in one of three different ways based on the specified security alert policy:

1. Issue a factory reset (erasing the MAIN flash and resetting the NONMAIN flash regions)

2. Disable the BSL (leaves the MAIN flash intact but re-configures the NONMAIN to block BSL access)

3. Ignore (do not modify the configuration and allow password attempts to continue)

Note

Options 1 and 2 require that the NONMAIN flash region not be statically write protected (see Section
2.6.1.3.2).

When option 1 is selected, any MAIN memory region which is configured to be statically write
protected (see Section 2.6.1.3.1) will not be erased during the factory reset.

2.6.2 Customer Secure Code (CSC) Security Policies

The following section describes policies that are enforced by the Customer Secure Code (CSC) on capable
devices. All policies are configured during the execution of CSC coming out of BOOTRST and can only be
modified before the INITDONE signal is issued on a device. After INITDONE is issued and a SYSRST occurs,
the policies remain in effect and cannot be modified until a BOOTRST or POR.

2.6.2.1 CSC Enforced Bankswap

On devices that have multiple MAIN flash banks, it is possible to support two versions of the application in
the system, one per bank. In this context, the CSC may choose to run one or the other based on version and
veracity of the image. The decision process is discussed further in the Section 3 section.

A guidance of bank-swap feature in multi-bank MSPMO devices can be found in Flash Multi Bank Feature in
MSPMO Family.

2.6.2.2 CSC Enforced Firewalls
CSC Capable Devices contain several different Firewalls that can be activated on the device:

* MAIN Flash Write Protect Firewall - Specified sectors of flash that will no longer be writeable/eraseable post
INITDONE. This is on top of any bank write/execute exclusions.

* MAIN Flash Read-Execute Protect Firewall - A specified region of flash that will not be readable or
executable by the application. Reads to this region will return all 0's.

* MAIN Flash IP Protect Firewall - Specified region of flash that is not readable by the flash or data bus but
allows fetches from the CPU. Enables specific executable portions of code to be non-readable, protecting a
sensitive algorithm to readout. This is on top of any bank write/execute exclusions.

» DATA Flash Write Protect Firewall - If a DATA bank is present, specified sectors can be not written/erased by
the application

» DATA Flash Read Protect Firewall - If a DATA bank is present, specified sectors can be not read by the
application. Reads to this region will return all 0's

Read Protect firewalls can be used to hide secrets from the application, and Write Protect firewalls can be used
to pass information to the application that cannot be modified later on, and thus can be considered trusted.

14 Cybersecurity Enablers in MSPMO MCUs SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com/lit/an/spradn2/spradn2.pdf
https://www.ti.com/lit/an/spradn2/spradn2.pdf
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Device Security Model

On devices with multiple banks, the firewalls are also mirrored across banks. This means that for a two bank
device with flash size 0x4.0000 (banks starting at address 0x0000000 and 0x2.0000), the a read protect firewall
from 0x5000-0x6000 will return all 0's from both address ranges 0x5000 - 0x6000 and from address range
0x2.5000-2.6000.

2.6.2.3 CSC Key Write to KEYSTORE

AES key can be securely stored in KEYSTORE. KEYSTORE can only be access (read and write) during CSC
before INITDONE is issued. During application program execution (after INITDONE), application can control
KEYSTORE keys loaded to AES engine, but the key is not visible by application for the whole loading process.
Refer Section 4.5 for more details.

2.6.3 Configuration Data Error Resistance

MSPMO devices employ several mechanisms to reduce the possibility of data errors in the NONMAIN
configuration memory from leading to a loss of security.

2.6.3.1 CRC-Backed Configuration Data

The BCR configuration data and BSL configuration data structures in the NONMAIN memory each include a
CRC value corresponding to the CRC digest of the respective structure. During the device boot process, the
BCR will compute the CRC digest of the data structures and compare it with the stored CRC values before the
data contained within the structures is trusted for use.

BCR Configuration CRC Fail Handling

In the event that the BCR configuration data (which contains the SWD policies, BSL enable/disable policy, and
flash memory protection and integrity check policies) fails its CRC check during boot, a catastrophic boot error
results and the following limitations are imposed:
» The error cause will be logged in the CFG-AP as a boot diagnostic
» The BSL will not be invoked, even if it was configured to be enabled
* The user application is not started
* No application debug access is enabled
* A pending SWD factory reset command, if enabled or enabled with password, is honored
* A pending TI failure analysis flow entry, if enabled, is honored
* The boot process will re-attempt up to 3 times
— If the 2nd or 3rd attempt pass, the device boots normally
— If the 3rd attempt does not pass, no further boot attempts are made until the next BOR or POR

The benefit of the this CRC check is that any bit flips in configuration data, such as the static write protection
configuration (which is a pillar of secure boot), may be detected with high confidence during the boot process.
The fail handling procedure explicitly prevents the BSL and user application from running, and the only
supported options (SWD factory reset and Tl FA) are protected by 16-bit pattern-match fields.

BSL Configuration CRC Fail Handling

If the BSL configuration data (which contains the BSL password and BSL policies) fails the CRC check during
BSL invocation, a catastrophic boot error results and the following limitations are imposed:

» The error cause is logged in the CFG-AP as a boot diagnostic
» The BSL is not invoked, even if it was configured to be enabled
* The user application is not started
* No application debug access is enabled
* The boot process re-attempts up to 3 times
— If the 2nd or 3rd attempt pass, the device boots normally
— If the 3rd attempt does not pass, no further boot attempts are made until the next BOR or POR

The benefit of this CRC check s that any bit flips in the BSL configuration data may be detected with high
confidence during the invoke process. The failure handling procedure prevents the BSL from starting with invalid
data which could lead to a loss of security.

SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025 Cybersecurity Enablers in MSPMO MCUs 15
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

Device Security Model www.ti.com
Tl Factory Trim Data CRC Fail Handling

In addition to the user-specified configuration data, if the Tl factory trim fails its CRC check during boot, a
catastrophic boot error will also result with the following limitations:
» The error cause will be logged in the CFG-AP as a boot diagnostic
» The BSL will not be invoked, even if it was configured to be enabled
* The user application is not started
* No application debug access is enabled
* A pending TI failure analysis flow entry, if enabled, is honored
* The boot process will re-attempt up to 3 times
— If the 2nd or 3rd attempt pass, the device boots normally
— If the 3rd attempt does not pass, no further boot attempts are made until the next BOR or POR

2.6.3.2 16-bit Pattern Match for Critical Fields

Critical policies in the BCR configuration memory, such as the SWD security policies, are implemented as 16-bit

pattern-match fields in the NONMAIN memory, with the following characteristics:

* An exact pattern match is required to enable lower security states

« Any value in the 16-bit field not matching the exact defined patterns results in a maximally secure state for
the respective parameter

This behavior prevents single bit flips from causing the device to enter a lower security state than that which was
originally specified.

16 Cybersecurity Enablers in MSPMO MCUs SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Secure Boot

3 Secure Boot

The MSPMO devices support authentication of application software (secure boot) through a combination of
hardware and software features. Asymmetric and symmetric based authentication schemes are supported,
although not all MSPMO devices provide secure storage to protect symmetric keys from software exploits.

The MSPMO architecture includes several key hardware features needed to enable secure boot:

* Lockable flash memory for storing fixed authentication firmware and authentication keys

» Single point of entry during boot, ensuring that the secure boot image manager is always the first application
to run after the BCR

The MSPMO software development kit (SDK) includes a boot image manager (BIM) and a customer secure code
(CSC) reference application for implementing secure boot on MSPMO MCUs. This reference application may be
easily configured and provisioned into MSPMO devices.

3.1 Secure Processing Environment Isolation

Some secure boot processes require a hardware mechanism to isolate the Secure Processing Environment
(SPE) from the Non-Secure Processing Environment (NSPE), and any updates on application firmware shall be
validated by the Root of Trust (RoT) to check integrity and authenticity immediately prior to execution.

In the MSPMO family, some devices provide such an isolation mechanism in hardware, to make sure CPU is
executed in a trusted environment (Privileged State) before INITDONE and executed in untrusted environment
(Unprivileged State) after INITDONE. When program is executed in privileged state (before INITDONE), the
CPU has below permissions, and those configurations are not allowed to change after INITDONE.

+ Setting AES key in Section 4.5

» Setting bank swap policy

» Setting Section 4 for data write-protection, read-execute protection or IP protection.

» Application program Section 2.6.1.3.3.

Note

Application program integrity and authenticity verification is not hardware related with INITDONE, but
it is achieved at privileged state in CSC solution.

Other MSPMO devices do not provide such isolation mechanism so that all the MAIN flash program are
executed with the same authority. Please see Table 3-1 for the secure boot feature summary for MSPMO devices
according to whether a device has a hardware isolation mechanism (INITDONE).

Table 3-1. MSPMO Secure Boot Feature Comparison

Device MSPMO0Gx10x, MSPM0Gx50x, MSPMOL130x MSPMOL111x, MSPMOLx22x, MSPM0Gx51x
INITDONE No Yes
Secure Boot Solution Boot Image Manager (BIM) Customer Secure Code (CSC)

Keystore No Yes

Bank Swap No Yes
Firewall No Yes
CMAC No Yes

ECDSA+SHA256 Supported by software Supported by software

3.2 Customer Secure Code (CSC)

Customer Secure Code (CSC) is a secure boot solution for MSPMO devices with hardware isolation mechanism
(INITDONE). Figure 3-1illustrates the CSC boot and startup sequence. At BOOTRST, TI| ROM boot-code
execution commences. After successful boot, boot code issues BOOTDONE. At this point, SYSCTL issues

a SYSRST to the device to trigger execution from MAIN flash memory. A MAIN flash program always starts

from physical address 0x0004 vector (Reset Handler) after boot code is finished. Depending on the CSCEXISTS
configuration in NONMAIN flash BCR, there are two execution flow after BOOTDONE:

SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025 Cybersecurity Enablers in MSPMO MCUs 17
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

Secure Boot www.ti.com

* CSCEXISTS set: a CSC boot sequence is enabled and MAIN flash program starts with INITDONE in clear
state. Users need to place the CSC firmware(MSPMO0 SDK CSC example) into MAIN flash 0x0000 address in
this case. The CSC firmware need to be static write protected by NONMAIN BCR configuration.

* CSCEXISTS clear: CSC boot sequence is not allowed and MAIN flash program starts with INITDONE in set
state. Any security related policy is not configurable and users need to place the application firmware into
MAIN flash 0x0000 address in this case.

Note

A MAIN flash program always starts from physical address 0x0004 after BOOTDONE. As bank
swap policy is reset during BOOTRST, so the MAIN flash program always starts without bank

swap after BOOTDONE. Bank swap only takes effects after INITDONE when both CSCEXISTS and
FLASHBANKSWAPPOLICY enabled in NONMAIN configuration.

For the CSC existing case, CSC is responsible for determining execution bank, memory region protections,
secure key initialization into the KEYSTORE, take application program integrity and authenticity verification etc.
The device is working in a privileged state with permission configuring those security policies. The INITDONE

is issued (by writing to SYSCTL.SECCFG.INITDONE, see device specific technical reference manual for the
register definition) at the end of CSC, then SYSCTL issues a second SYSRST and all the security policies listed
below take effect during INITDONE and cannot be modified until next BOOTRST:

* Firewall protection policy

* Bank swap policy

* Keystore protection

After INITDONE, the device becomes in unprivileged state, and starts execution from address 0x0004 of MAIN
flash again, and the CSC executes a second time. This time, the CSC finds that INITDONE has already been
issued previously (this is determined by reading the SYSCTL.SECCFG.SECSTATUS.INITDONE bit) and directly
jumps to the main application. See Figure 3-2 for the CSC execution flow in privileged state (pre-INITDONE) and
unprivileged state (post-INITDONE).

For more details on boot and startup sequence, see SECURITY chapter of MSPMO G-Series 80-MHz
Microcontrollers Technical Reference Manual (Rev. C).

18 Cybersecurity Enablers in MSPM0O MCUs SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025
Submit Document Feedback

Copyright © 2026 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?node=A__ANa1IppVc2qPEHttlFx4zw__MSPM0-SDK__a3PaaoK__LATEST
https://www.ti.com/lit/ug/slau846c/slau846c.pdf?ts=1763894365784
https://www.ti.com/lit/ug/slau846c/slau846c.pdf?ts=1763894365784
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com

Secure Boot

ROM

NONMAIN Flash ...

configures

e ——
| INITDONE reset
l : Security features reset
Firmware SEEEEENEEINS |
BOOTRST
Hardware
l Hardware
Tri d
BOOTCODE EESLS
Software
Triggered
BOOTDONE
l \INTDONEset ’|
| Security features take effect: !

SYSRST«

4

NO YES
\ ¥
Main Akpplication CSC
(INITDONE is in set state) L
%ra tic write P
"-._protects NG
b r “INITDONE? > i
NO YES
MAIN Flash v '

{ * Firewalls Protection |
|® Bank Swap Policy |
e Keystore Protection :

|
i =<

Setup Security
(INITDONE iIin clear state)

INITDONE

Main Application

(INITDONCE is in set state)

Figure 3-1. CSC Boot and Startup Sequence

1541004

SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025

Submit Document Feedback

Copyright © 2026 Texas Instruments Incorporated

Cybersecurity Enablers in MSPM0O MCUs

19

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

Secure Boot www.ti.com

Figure 3-2. CSC Execution Overview

3.2.1 Secure Boot Flow

This section introduces the detailed boot flow in the CSC solution based on MSPM0 SDK CSC example
(MSPMO0 SDK 2.08.00.03), as shown in Figure 3-3. The whole execution flow is mostly compatible with the flow
chart shown in Figure 3-1 and Figure 3-2.

When ROM boot code execution is done, at the first time program goes to CSC firmware, the INITDONE
(SYSCTL.SECCFG.SECSTATUS.INITDONE) is in clear state. CSC firstly works in privileged state. It searches
for the highest version image from both flash banks, checks version rollback, and then verifies the application
image authority and integrity by a symmetric approach (AES-CMAC in hardware) or by an asymmetric approach
(SHA256+ECDSA in software). After the verification is passed, CSC updates rollback counter, CMAC tag,
SECRET keys and KEYSTORE. It then configures firewall in SECRET flash region and Lockable flash region,
and determine bank swap policy. CSC issues an INITDONE to trigger a SYSRST and device enters the

20 Cybersecurity Enablers in MSPMO MCUs SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?node=A__ANa1IppVc2qPEHttlFx4zw__MSPM0-SDK__a3PaaoK__LATEST
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Secure Boot

unprivileged state. Device runs from CSC firmware again with INITDONE checked in set state. After checking
previous boot status successful, CSC jumps to application image to starts application.

There are some key notes related to the CSC example execution flow:

The CSCEXISTS and FLASHBANKSWAPPOLICY filed in NONMAIN flash need to be enabled for enabling
the whole CSC sequence.

PBO represents Physical Bank0. As bank swap policy does not take effect in privileged state (pre-INITDONE),
the flash address used in privileged state CSC are always refer to physical address.

If two images in PB0O and PB1 are with the same version, the PB0 image is verified and executed in a higher
priority.

If the highest version image does not pass the SHA256+ECDSA verification, then the image in the other bank
(if exist) will be verified right after.

In the case of asymmetric authentication, the secure hash (SHA2-256) digest of the application code is

firstly computed in software, and then software ECDSA verifies the image signature based on public key in
firmware.

Symmetric AES-CMAC algorithm is a time-saving mechanism to verify application image in case that no
firmware updating is detected. Since AES-CMAC is hardware accelerated, it is significantly faster to simply
check the tag and make sure it has been unmodified since it was asymmetrically verified. The AES-CMAC
approach is only applied when a BOOTRST occurs, and there is no higher version image placed in the flash
since last time BOOTRST.

SECRET flash region is a user specified region which stores secret information and is read-execute protected
by firewall. Lockable flash region is a user specified region which stores unmodified information and is write
protected by firewall. Please see Flash Memory Mapping for more details.

SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025 Cybersecurity Enablers in MSPMO MCUs 21
Submit Document Feedback

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

Secure Boot

13 TEXAS
INSTRUMENTS

www.ti.com

NONMAIN Flash

CSCEXISTS OXFFFF (enabled)

FLASHBANKSWAPPOLICY | OXFFFF (enabled)

Image Exists?

Jump to
Application

Check Image version |

PB1.Image Higher?

Boot Status
Successful?

Jump to

Set Candidate
Image: x=0

Set Candidate

Application
Image: x=1 | I

eck PBx.Imagé
ersion Rollback

<

Image Version and

MAC Tag Matched?
/ ‘ Process Candidate Privileged

I Unprivileged
[State

A 4

Update Rollback
Protection Counter

v

Update CMAC Tag and
Image Version

v

SHA256 and ECDSA PBx.Image Verification
Verify PBx.Image State

Erase PBx.Image

Check SECRET Update and Write
Keys in SECRET to KEYSTORE

Another Bank
Image Present and

Set BankSwap Policy to

.

Mark Boot Status as
Successful

v

Execute from PBx. Unchecked?

Set Write Protect Firwall over
SECRET & Lockable Flash

v

Issue Set Read Protect
INITDONE Firewall over SECRET

3.2.2 Flash Memory Map

Verify Another Bank
Candidate Image

I
|
I
I
|
I
No .@ :
I
|
|
I
|

Figure 3-3. MSPMO0 SDK CSC Execution Flow

Figure 3-4 illustrates the detailed flash memory map in the CSC secure boot. The following are the explanation

of sections in CSC:

22 Cybersecurity Enablers in MSPMO MCUs

SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Secure Boot

SECRET: The SECRET is visible to the privileged execution flow but will be protected by a read protect
firewall, thus rendering it invisible to any aspect of the unprivileged flow (CSC and Application). The SECRET
region can be used to store non-volatile keys that should be loaded into KEYSTORE at runtime. Thus, the
unprivileged code will be able to use these keys but not have read access. It can also be customized by the
user to include additional information such as CMAC tag and key.

Lockable Flash: The lockable flash provides dynamic write protection to key information that needs to be
written by the privileged state and be read but unmodified by the unprivileged flow. Two typical things that will
go in this region are the security counter (rollback protection), the keystore hash table, and the image hash.
Notice that Lockable content will be programmed to CSC region in both flash bank0 and bank1, to make sure
both bank application programs could access this region in the same way.

CSC Interrupt Vectors: These are the interrupt vectors for the customer secure code. This interrupt vector
table will always be the first thing run from flash in the event of either a BOOTRST or a SYSRST. This is
enforced as the VTOR will get cleared in both resets, meaning that 0x0000 will be used (which will point to
Logical bank 0, where a copy of the immutable CSC exists).

CSC Code: The main code and security primitives is the bulk of the Customer Secure Code. This along with
the interrupt vectors is duplicated across both banks. The images on both the primary and secondary bank
should be identical, with references to code as if the code is running from 0x0000. During a bank swap,

after the SYSRST triggered by INITDONE, the program will always run from Logical Bank 0 (logic 0x0000
address). FLASHCTL will map the address 0x0000 to PBO start address 0x0000 or PB1 start address 0x0000
according to bank swap policy configuration.

Note
In bank-swappable configuration, the firewall protections are automatically mirrored to both banks.

The following are sections of the application image:

.

Image Header, Image TLV and Image Trailer: These parts are generated by the signing tool imgtool which
is provided by MCUBOOT (see python scripts in <mspm0_sdk_path>\source\third_party\mcuboot\scripts).
These contents are generated and merged to a compiled application image in the CCS post-build step. There
is a customer_secure_sample_image example in MSPMO SDK which shows how a signed image is built in
CCS. The following are the explanations of those image parts:

— Image Header: The header information of application image, including the header magic (0x96F3B83D),
image size and image version. It is located at the address 0x100 bytes (by default) before Application
Interrupt Vectors.

— Image TLV: MCUBOOT defines Type-length-value records (TLV) containing image metadata which are
placed after the end of the image. The TLVs defined in MSPMO CSC includes: TLV magic (0x6907),
image hash, ECDSA public key hash and ECDSA signature. Refer to mcuboot/docs/design.md at main -
mcu-tools/mcuboot - GitHub for more details.

— Image Trailer: A 16-bytes magic content which is located at the end of image flash areas.

Note
A SHA256 verification is only executed for the image content from the start address of Application
Interrupt Vectors and start address of Image TLV.
Application Interrupt Vectors: These are separate interrupt vectors which the application program uses.
During the CSC jumping to the application, the Vector Table Offset Register (VTOR) points to this position
in memory, and thus all future interrupts occur without a reset link to this set of interrupt vectors. The start
address needs to be 32-bytes aligned.

SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025 Cybersecurity Enablers in MSPMO MCUs 23
Submit Document Feedback

Copyright © 2026 Texas Instruments Incorporated

https://github.com/mcu-tools/mcuboot/blob/main/docs/imgtool.md
https://dev.ti.com/tirex/explore/node?node=A__AJtRfzMVS6RXCoY7EF6DCA__MSPM0-SDK__a3PaaoK__LATEST
https://github.com/mcu-tools/mcuboot/blob/main/docs/design.md
https://github.com/mcu-tools/mcuboot/blob/main/docs/design.md
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

Secure Boot www.ti.com

Figure 3-4. CSC Flash Map

3.2.3 Features
3.2.3.1 CMAC Acceleration

CMAC (Cipher-based Message Authentication Code) is a cryptographic algorithm designed to verify data
integrity and authenticity. It works by using a CMAC key to generate a CMAC tag, with the speed of computation
varying depending on the length of the image being processed.

It utilizes the AES (Advanced Encryption Standard) algorithm, and when implemented with hardware
acceleration, CMAC offers both high security and fast processing speed. This makes it especially suitable for
secure boot scenarios and environments requiring efficient message authentication.

Only a new image requires a complete and time-consuming verification process to verify its integrity and
authenticity. However, if the verified image remains unchanged, we can take advantage of the state information
saved during the previous authentication. By using CMAC in combination with AES hardware acceleration,

the verification process for unchanged images becomes extremely fast and efficient, greatly reducing the time
required for secure boot and enabling rapid system startup.

3.2.3.2 Asymmetric Verification

The integrity and authenticity of a new image are verified through cryptographic algorithms. Only images that
have been verified are considered secure and can be executed.

SHA-256

SHA-256 (Secure Hash Algorithm 256) is a widely used cryptographic hash function that generates a fixed-
length, 256-bit digest from any input message. The algorithm is designed so that even a minor change in the
input message will result in a dramatically different output hash, ensuring strong sensitivity to input variations.

One of its core features is collision resistance, meaning it is extremely unlikely that two different messages will
produce the same hash value. This property makes SHA-256 highly reliable for verifying the integrity of data, as
any modification can be easily detected.

In practice, SHA-256 is commonly used in digital signatures and data integrity checks. By condensing an entire
image into a unique digest, SHA-256 provides a robust foundation for the next of ECDSA algorithm.

ECDSA

24 Cybersecurity Enablers in MSPMO MCUs SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Secure Boot

ECDSA (Elliptic Curve Digital Signature Algorithm) is a cryptographic algorithm used for digital signatures, based
on elliptic curve mathematics. It offers high security with much shorter key lengths compared to traditional
algorithms like RSA, making it efficient and suitable for resource-constrained environments.

ECDSA is currently the only supported asymmetric authentication method for MSPMO secure boot. ECDSA is an
asymmetric algorithm, meaning there is a separate public and private key. The public key will be stored in the
device flash and the private will be maintained by the developer securely. CSC doesn’t provide secure private
key management.

ECDSA uses the hash of the image and the public key to verify a digital signature, ensuring the authenticity of
the data. While this process is much slower compared to symmetric cryptographic options, it does not present a
key vulnerability on the device.

Note
To keep the boot flow for final deployment, it is very important to keep the private key secure and
managed such that it is not easily accessible to sign images. Keeping the key on a local share drive is
not a secure location! MSPMO does not currently provide secure private key management.

Table 3-2gives the trade-offs between the two alternatives.
Table 3-2. Secure Boot Algorithm Comparison

Parameter Asymmetric (SHA2+ECDSA) Symmetric (CMAC)

o Longer, due to software hash computation and public | Shorter, due to simplicity of algorithm and ability to
Authentication time)) . .
key arithmetic leverage hardware AES acceleration when available

Code size Larger, due to SHA and ECDSA algorithms Smaller, especially if AES acceleration is available on
the target device

Kev intearit Public keys must be provisioned into the device and Shared keys must be provisioned into the device and
y anty must be immutable must be immutable

Public keys have no confidentiality requirement and Shared keys must be kept confidential, and should
there is no need for protecting the public key from be wrapped when not in use and secured with a
Key confidentiality vulnerabilities in application code static read firewall (if supported by the target device)
to protect the shared key from vulnerabilities in
application code

Tl recommends the asymmetric implementation in most situations. In cases where code size is limited and/or
authentication time must be kept to a minimum, the symmetric implementation may be used, with the trade-off
that the shared key must be managed carefully. Not all devices provide secure storage (KEYSTORE) to protect
shared symmetric keys from software vulnerabilities. Please see Platform Security Enablers for details.

3.2.3.3 KEYSTORE and Firewall
KEYSTORE is a protected SRAM memory which can securely store AES key, the key is configured in CSC

before INITDONE, and application can trigger the key transfer from KEYSTORE to AES engine but not directly
access (read or write) these keys after INITDONE.

Firewall are some flash protection mechanisms, including Flash Write Protection, Flash Read-Execute
Protection, and Flash IP Protection, which are configured in CSC and takes effects after INITDONE.

Please see Section 4 for more details.

Note
In bank-swappable configuration, the firewall protection is automatically mirrored to both banks.

3.2.3.4 CSC Performance

The MSPMO CSC code size is related to the compiler and optimization level. By default, the CSC code size
information is listed below:

SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025 Cybersecurity Enablers in MSPMO MCUs 25
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

Secure Boot www.ti.com

* CSC Region Size: 18KB

* CSC Main Code Size: 13KB
+ SECRET Size: 1KB

* Lock Storage Size: 1KB

The CSC example can be customized to modify the main code and SECRET or Lock Storage size. If there
is a requirement to change CSC region size, the start address of application firmware needs to be changed
accordingly. Refer Section 3.2.4.4 for details.

The CSC timing performance for different algorithms can be checked in Table 3-3. From the table, the
hardware based CMAC symmetric method is much faster than software based SHA256-+ECDSA algorithm,
which provides high efficient boot of MCU when there is no firmware updated in MAIN flash.
Table 3-3. CSC Timing Performance
ECDSA Verify (SW) SHA256 (SW) CMAC (accel)

~1.9 seconds @32MHz ~ 5 ms/kByte ~ 0.6 ms/kByte

3.2.4 Quick Start Guide

This section provides a brief step-by-step guidance based on this guide document and MSPMO

SDK customer_secure_sample_image example without image encryption feature. For the guidance on
customer_secure_image_with_bootloader example with image encryption feature, please refer to Loading the
Binary Images section of MSPMO Customer Secure Code and Bootloader (CSC) User’s Guide in Secure
Booting User's Guide.

3.2.4.1 Environment Setup

To run the initial setup, make sure Python 3.7 or newer is installed with the latest pip package and take below

steps to download the necessary requirements.

1. Open a command line window, and run below comment to check whether Python is installed in your
environment:

‘ python --version ‘

2. Go into MSPMO SDK install path (such as C:\f\mspm0_sdk 2 08 00 _03\), and run below command in
command line for necessary requirements:

‘python -m pip install --user -r source/third_party/mcuboot/scripts/requirements.txt ‘

3. These python libraries are applied by python scripts under <mspmQ_sdk_path>/source/third_party/mcuboot/
scripts folder during post-build step of customer_secure _sample_image projects, to signing the application
image.

3.2.4.2 Step by Step Guidance

If the python environment has been set well, follow below steps to practice on MSPMO SDK CSC example (take

MSPMO0G351x device as an example):

1. Import both customer_secure_code example and customer_secure_sample_image example from SDK path
<mspm0_sdk_path>\examples\nortos\<mspmO0_device>\boot_manager\ into your CCS workspace.

2. Build both customer_secure_code example and customer_secure_sample_image example. For the sample
image example, build for both EITHER_SLOT_BLUE and EITHER_SLOT_GREEN configuration, you can
see corresponding debug folder generated in the project.

26 Cybersecurity Enablers in MSPMO MCUs SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?node=A__APjkYg9RWxwM6nRUc3InzA__MSPM0-SDK__a3PaaoK__LATEST
https://dev.ti.com/tirex/explore/node?node=A__APjkYg9RWxwM6nRUc3InzA__MSPM0-SDK__a3PaaoK__LATEST
https://dev.ti.com/tirex/explore/node?isTheia=false&node=A__ANa1IppVc2qPEHttlFx4zw__MSPM0-SDK__a3PaaoK__LATEST
https://dev.ti.com/tirex/explore/node?isTheia=false&node=A__AJtRfzMVS6RXCoY7EF6DCA__MSPM0-SDK__a3PaaoK__LATEST
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Secure Boot

; New File...
5, EITHER_SLOT_BLUE New Folder...
FJ, EITHER_SLOT_GREEN
B3 prebuilt_images

Add Files/Folders...

Reveal in Fil¢ Explorer Ctrl+Alt+P
> B3 targetConfigs
> B3 ticlang

customer_secure_sample_inage.c Select for Conjpare

Open in Integrated Terminal

O customer_secure_sample_inige L .
o ealre_sampleiTge Find in Folder.. Alt+Shift+F
mspm0g3519.cmd

README. html Copy Ctri+C

README.md Paste Ctrl+Vv : origin

Copy Path Alt+Shift+C SRA NKE R)

Copy Relative Patl Cti+K, Ctrl+Shift+C g

Build Praject{s) Ctrl+B CK_STC : origin

Clean Project(s)

Rebuild Project(s) BCR_CONFIG (R) : origin

Build Configurations /' EITHER_SLOT_BLUE
System Configurations > EIMHER_SLOT_GREEN
Executable Act

Manage...

Figure 3-5. CSC Secure Sample Image Build Configurations
3. Open UNIFLASH Software programming tool | Tl.com tool, connect PC with the MSPMO launchpad, and
take a factory reset.

2 Uniflash - O X
UniFlash Session v About Help 1 Setings
Configured Device : Texas Instruments XDS110 USB Debug Probe > MSPMO0G3519 [download cexml] CORTEX_MOP
Program Find and Configure Settings and Utilities

‘I Settings & Utilities | I Q, Search: = More Info © Pin Option

- Y
Memory Reset Type:

O Soft reset

® Hard reset

Standalone Command Line

Mass erase nanual

» D3SM Factory Resd)

Factory reset manual Factory reset with password manual

Factory reset auto Factory reset with password auto

A

O Console verbose X Close

Figure 3-6. Factory Reset by Uniflash
4. Configure the Flash setting as Erase MAIN and NONMAIN necessary sectors only, this option only erases
the flash region that is used in image output file.

SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025 Cybersecurity Enablers in MSPMO MCUs 27
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com/tool/UNIFLASH
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

Secure Boot www.ti.com

UniFlash - u] *
UniFlash Session ~ About @ Help € Semings

Configured Device : Texas Instruments XDS110 USB Debug Probe > MSPM0G3519 [download cexmi] CORTEX_MOP

Find and Configure Settings and Utilities

Program
I Settings & Utilities I Q Search: i= More Info © rin option
Memory Erase method: -

O Erase MAIN memory anly
Standalone Command Line
O Erase DATA memory only
O Erase MAIN and DATA memory
O Erase MAIN and NONMAIN memory (see warning above)

O Erase MAIN, DATA, and NONMAIN memory (see warning above)

I ® Erase MAIN and NONMAIN necessary sectors only (see warning above) I
O Erase MAIN memory sectors by range (specify below)

Q Do not erase Flash memory

Note: Sector Erase: all 1kB sectors between Start and End address will be erased

Sector Erase Start Address: 0x 0

Sector Erase End Address: 0x 0

O Console + Verbose X Close

Figure 3-7. CSC Flash Setting in Uniflash
5. Load below files into MSPMO devices, and then power cycles the device (or press NRST button in
launchpad), you can see Red LED on for 2s (CSC execution for image verification), and then Blue LED
flashing (program executed in Physical Bank1).

SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025

28 Cybersecurity Enablers in MSPMO MCUs
Submit Document Feedback

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS

INSTRUMENTS
www.ti.com Secure Boot
UniFlash - u] X

UniFlash Session ~ About @ Help €8 Sewmings

Configured Device : Texas Instruments XDS110 USB Debug Probe »> MSPM0G3519 [download ccxmi] CORTEX_MOP
I Program Select and Load Images

Settings & Utilities Flash Image(s) = 1 Sortby: Added ~

Memory Image 1 | customer_secure_code_LP_MSPM0G3519_nortos_ticlang.outCRC32: 77DDE9E1 Size: 215.02 KB | Binary: (]| Load Addr: AUTO

Standalone Command Line Image 2 | customer_secure_code_LP_MSPMO0G3519_nortos_ticlang-bank1-0x40000.binCRC32: 2E75A5BB Size: 17.17 KB | Binary Load Addr: 0x40000

CRC32: 3492D727 Size: 30.64 KB | Binary: [J| Load Addr: AUTO

Image 3 sample_image_signed_0x4800_v1_0_0_blue.txt

AvaLe Action(s) - 3 Images Selected

Load Images Verify Images

Reset Actions

[Click here to query available reset options]

O Console + Verbose X Close

Figure 3-8. Loading CSC Images by Uniflash

* \customer_secure_code LP _MSPM0G3519 nortos_ticlang\Debug\customer_secure_code LP_MSPMO0
G3519_nortos_ticlang.out: It includes CSC firmware for Physical BankO and necessary NONMAIN
configuration.

* \customer_secure_code LP _MSPM0G3519 nortos_ticlang\Debug\customer_secure_code LP_MSPMO0
G3519 _nortos_ticlang-bank1-0x40000.bin: It is a copy of CSC firmware for Physical Bank1, and should
be located at the start address of Physical Bank1 (0x40000 for MSPM0G3519 device).

* \customer_secure_sample_image LP _MSPM0G3519 nortos_ticlang\EITHER_SLOT_BLUE\sample_ima
ge_signed_0x4800_v1_0_0 blue.txt: It is the application image which starts from Physical Bank1
0x44800 address.

6. Use Uniflash to update a higher version of GREED application image to the device and press NRST button.

You can see after Red LED on for 2s, then the Green LED flashing. CSC does not care how the image is

loaded to flash, and this step just shows a way to directly load firmware to MCU Logic Bank1 by Uniflash.

SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025 Cybersecurity Enablers in MSPMO MCUs 29

Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS

Secure Boot www.ti.com
UniFlash — O x
UniFlash Session ~ About Help €¥ Semings
Configured Device : Texas Instruments XDS110 USB Debug Probe > MSPM0G3519 [download cexml] CORTEX_MOP Disconnected: Running Free
I Program Select and Load Images
Settings & Utilities Flash Image(s)
Memory I sample_image_signed_0x4800_v2_0_0_green.txt CRC32: 3BDDD7BS Size: 30.64 KB | Binary:[] I
Standalone Command Line
Available YEtion(s) - 1 Image Selected
Reset Actions
[Click here to query available reset options]
Run Actions
Run Target After Program Load/Flash Operation
w Quick Settings
Create your personalize settings view. Click to add settings -
8 Console 4 Verbose = Clear = X Close

LLULD/ T 1746 FF3:39:07] INFUJ CURTEA_MIUF, GEL UULPUL MEITIONY MEp IIUEIZE0001 Compiele
[2025/11/24 T4F3:40:14] INFO] CORTEX_MOP: GEL Output: Memory Map Initialization Complete
[2025/11/24 T4F3:40:24] [SUCCESS] Program Load completed successfully
[2025/11/24 T4F3:46:08] INFO] CORTEX_MOP: GEL Output: Memory Map Initialization Complete
[2025/11/24 T4F3:46:12] [SUCCESS] Program Load completed successfully.

Figure 3-9. Update Firmware by Uniflash

3.2.4.3 CSC NONMAIN Configuration

Some NONMAIN configurations are necessary to enable CSC process. There are some recommended

NONMAIN configurations in CSC:

1. Debug Port Protection: MSPMO debug port (SWD) can be selected to be totally disabled or enabled by
password after production. A 256-bits hashed password is provided for password accessing debug port
in CSC devices such as MSPM0Gx51x, MSPMOLx22x and MSPMOL111x. Please see Platform Security
Enablers for details.

2. CSC Static Write Protection: The CSC firmware in both BankO and Bank1 need to be static write protected
after production to make sure CSC region immutable and One-Time-Programmable (OTP).

3. NONMAIN Static Write Protection: As NONMAIN includes all those critical configurations for static write
protection and debug access, NONMAIN content itself needs to be also be static write protected to prevent
erasing or writing operation by application program.

4. Factory Reset with Password: A factory reset can recover all the NONMAIN configurations to default
setting when SWD could be accessed, as well as erase all the content in MAIN flash. Users could enable
factory reset with password if they do not want MSPMO to be factory reset.

5. CSCEXISTS and FLASHBANKSWAPPOLICY: CSCEXISTS enables CSC boot sequence and
FLASHBANKSWAPPOLICY enables bank swap policy. They are enabled in the SDK CSC example.

Note

Configuration 5 needs to be enabled in development stage of CSC, and configuration 1-4 can be
enabled only when all the firmware development has been finished and the device is going to step into
production stage.

30 Cybersecurity Enablers in MSPMO MCUs SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS
www.ti.com Secure Boot

| # a * &« S figuration NVM

{g Project Configuration Files
& ~ Enable Physical Debug Port (SW-DP)

Debug Security Policy Configuration

Enable Application Debug Access Enabled
Board
Configuration NVM
DMA
GPIO
IWDT
MATHACL
RTC.
L

Debug Hold a

‘SWD Mass Erase and Factory Reset Configuration

Factory Reset Mode Policy Enabled

Ma; e Mode Policy Enabled

Flash Memory Static Write Protection (SWP) Configuration (Bank 0)

ER OXFFFFFFFF
CcomP

DAC12 MAIN SWP (Lower Sectors)

MAIN SWP (Remaining Sactors) Py o
d. Note that mas

policy as th

UART - LIN

CICICICICIC AN CICICICENCICIGICICICICIO)

NONMAIN Static Write Protection

TIMER

TIMER - CAPTURE
TIMER - COMPARE
TIMER - PWM
TIMER - QEI

Timer Fault

Flash Memory Static Write Protection (SWP) Configuration (Bank 1)

OXFFFFFFFF

52 erase and & BCR via the fi

MAIN SWP (Upper Banks)

CICICICICES)

Enable CSC Poli
Enable Flash

Figure 3-10. NONMAIN Security Configurations

3.2.4.4 Customize Changes on CSC Example
Change Application Start Address

This section introduces some flash address related parameters used in MSP0O SDK CSC example, to help users
better understand how to change application start address.

Refer to Figure 3-11, the parameters shown at left side of Figure 3-12 are defined in CSC example

Sysconfig, and all these parameters should be the same with the corresponding parameters definition in

customer_secure_code example and customer_secure_sample_image example linker file (.cmd).

* CSC Lock Storage Address: this address should be defined larger than the CSC code size.

* CSC Lock Storage Size: the size of lock storage region.

» CSC Secret Address: the secret region start address, just following the lock storage region.

* CSC Secret Size: secret region size.

» CSC Application Image Base Address: the address where Image Header starts from. The Application
Interrupt Vector will be placed 0x100 bytes (Image Header Size) after this address.

* CSC Application Image Size: it should be larger than original unsigned application code size + image header
size + image TLV size (around 160bytes in CSC example). It determines where the Image Trailer will be
placed at, and the unused region will be filled with OxFF.

Note

If “Security Configurator” is not enabled in CSC sysconfig, the CSC address and size parameters will
be defined in flash_mem_backend.c file for different device families. Users need to change this source
file to achieve application address modification. The same changes need to be made for the linker
files and signingArgs.json file.

The right side of Figure 3-12 are defined in signingArgs.json file in customer_secure_sample_image example:
» slotSize: it needs to be the same with CSC Application Image Size.
» offset: it needs to be the same with CSC Application Image Base Address.

SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025 Cybersecurity Enablers in MSPMO MCUs 31
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

Secure Boot www.ti.com

If users want to change application start address (or any other address such as secret or lock

storage address), they need to modify the customer_secure _code example sysconfig file and linker file,
customer_secure_sample_image example linker file and signingArgs.json file together to make the modification
is valid.

TIMER

TIMER - CAPTURE

TIMER - COMPARE

TIMER - PWM
-QE

Memory Maps

PRERE®

Figure 3-11. Sysconfig CSC Configurator

— S—

Image Trailer

Padding

Image TLV

csc
Application
Image Size

tSize

o

S

Application 1 Code

Original Unsigned
Application Code

Candidate Application Image 1

Application Interrupt Vectors

o Image Header
CSC Application Image Base Address offset

Secret Flash
Lockable Flash

CSC Secret Address
CSC Lock Storage Address

CSC Secret Size)
CSC Lock Storage Size -

CcsC

Main Code and Security Primitives

CSC Interrupt Vectors

Figure 3-12. CSC Flash Map Parameters

Generate New ECDSA Keys

Refer Developing using the Customer Secure Code section of MSPMO Customer Secure Code and Bootloader
(CSC) User’s Guide in Secure Booting User's Guide for creating new ECDSA key and signing application image
with new key by python script.

32 Cybersecurity Enablers in MSPMO MCUs SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?node=A__APjkYg9RWxwM6nRUc3InzA__MSPM0-SDK__a3PaaoK__LATEST
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Secure Boot

3.3 Boot Image Manager (BIM)

Boot Image Manager (BIM) is a subset of Customer Secure Code (CSC) from the process flow aspect. As there
is no hardware isolation mechanism to divide privileged state and unprivileged state in this solution, the whole
boot flow is simpler than CSC, without features of firewall, KEYSTORE, bank swap, CMAC. Please refer to Table
3-1 for comparison between BIM and CSC.

3.3.1 Secure Boot Flow

The secure boot flow of BIM could be seen in Figure 3-13. The software based asymmetric SHA256 and ECDSA

keep the same features and execution flow with CSC. And the following provisioning steps are achieved for

secure boot in BIM:

1. The boot image manager firmware must be configured and programmed into the MAIN flash memory, with
the reset vector at 0x0000.0004 pointing to the start of the boot image manager

2. Any authentication key material needed by the boot image manager must be programmed into the MAIN
flash memory, adjacent to the boot image manager

3. The device NONMAIN configuration memory must be programmed with the following characteristics:

a. The MAIN flash sectors containing the boot image manager firmware and key material must be
configured as static write protected to prevent modification.

b. The NONMAIN flash sector must be configured as static write protected to prevent modification.

c. The mass erase and factory reset commands are recommended to be password protected or disabled
(disabling factory reset with the above configuration settings will result in the NONMAIN configuration
becoming permanently locked, together with the sectors containing the boot image manager and
authentication keys.

d. The MAIN flash memory integrity check is recommended to be enabled, with the address range set to
include the boot image manager and authentication keys.

SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025 Cybersecurity Enablers in MSPMO MCUs 33
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

Secure Boot www.ti.com

Boot Code

SYSRST

Set Slot Indexx =0

v Process Candidate Slot x

SHA256 and ECDSA Image Verification
Verify Slot x Image

Erase Slot x
Image

erification
Successful?

Yes

) 4
Set Interrupt Vector
Table Offset Address

to Execute from Slot x

Verify Another Slot
Candidate Image

Jump to
Application

Figure 3-13. BIM Boot Sequence
3.3.2 Flash Memory Map

The flash memory map in BIM could be seen in Figure 3-14. As there is no bank swap feature in this solution,
two application images should be mapped to different flash addresses, this is pointed out in the project linker file.

If a modification on the application image address is needed, users need to modify the flash_mem_backend.c
file to redefine those address and size parameter shown in memory map figure for corresponding device
families.

Each application image slot includes Image Header, Image TLV, and Image Trailer, which are generated by the
signing tool imgtool of MCUBOOQOT. Please refer to Flash Memory Map for details.

34 Cybersecurity Enablers in MSPMO MCUs SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://github.com/mcu-tools/mcuboot/blob/main/docs/imgtool.md
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Secure Boot

Unused

Boot

Secondary Slot Secondary Size

Boot Secondary
Base Address Nl

Boot
Primary Size

Primary Slot

Boot Primary
Base Address

MCUBOOT Boot
(Boot Image Manager) Bootloader Size

Figure 3-14. BIM Flash Map
3.3.3 Quick Start Guide

Users can start evaluation of BIM solution by referring bim_sample_image example and boot_application
example from MSPMO SDK path <mspm0_sdk_path>\examples\nortos\<mspmO0_device>\boot_manager\, and
referring the guidance of MSPMO Boot Image Manager (BIM) User’s Guide in Secure Booting User's Guide.

The same python environment is required to sign the image, a similar operation steps on the BIM example can
be followed referring to CSC guidance. See Environment Setup and Step by Step Guidance for details.

SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025 Cybersecurity Enablers in MSPMO MCUs 35
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://dev.ti.com/tirex/explore/node?node=A__APjkYg9RWxwM6nRUc3InzA__MSPM0-SDK__a3PaaoK__LATEST
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

Secure Storage www.ti.com

4 Secure Storage

MSPMO provides various types of memory protection mechanisms on flash, AES secret key and SRAM, to meet
diverse security requirements. Please see SECURITY chapter in MSPMO G-Series 80-MHz Microcontrollers
Technical Reference Manual (Rev. C) for details on configuring these mechanism, and check Platform Security
Enablers for the MSPMO device series on these features.

4.1 Flash Write Protection

There are three levels of write-protection provided:

1. Static write protection that is enforced by Tl boot-code. It is configured in NONMAIN BCR region and takes
effect after boot code execution is finished. See Figure 3-1 for CSC boot sequence. This capability is useful
in cases where CSC needs to be treated ass an extension of root-of-trust and mode immutable.

2. Write-protection that is enforced by CSC to further protect data that it is allowed to update but that should not
be modified by the application. This protection is configured in CSC and takes effect after INITDONE. Note
that only the first 32KB of flash memory can be configured with additional write protections by the CSC. In
bank-swappable configuration, the protections are automatically mirrored to both banks.

3. Write-protection in the context of bank swap. It is also configured in CSC and takes effect after INITDONE.
With bank swap enabled, the logic lower bank gets read-execute privileges and loses write/erase privileges.
The other bank (logic higher bank) is readable, and writeable but not executable.

4.2 Flash Read-Execute Protection

A region of flash memory can be configured for read-execute protection - read and instruction fetch accesses to
this region will return an error. CPU, DMA and debugger accesses are all treated the same way.

This mechanism is useful in scenarios where it may be required to prevent re-execution of the CSC or prevent
secret information read from application programs.

In bank-swappable configuration, the protection isautomatically mirrored to both banks.
4.3 Flash IP Protection

A region of flash memory can be configured for read protection - read accesses to this region will return an error
while instruction fetch accesses is allowed. CPU, DMA and debugger accesses are all treated the same way.

This mechanism is useful in scenarios where it may be required to prevent code read-out of third-party vendor
supplied software IP. Note that code that is meant to be IP-protected must be compiled such that there are no
embedded data accesses (literal fetches) to this region.

In bank-swappable configuration, the protection is automatically mirrored to both banks.
4.4 Data Bank Protection

A region of flash DATA bank can be configured for read-write protection - either reads or writes or both types of
accesses can be blocked. CPU, DMA and debugger accesses are all treated the same way.

Only the first 4KB of the DATA bank can be protected at a sector (1KB) granularity. Each sector can be:

* Read protected
* Write protected
* Both

* Neither

This mechanism allows CSC to hold secret or sensitive data in the DATA bank that it alone can read/modify
during start-up.
4.5 Secure Key Storage

Keys (private keys in asymmetric schemes) need to be protected to ensure confidentiality. Only trusted code
should be provisioned with a mechanism to securely deposit keys from flash memory to a location that only
crypto engines can access (specifically refer to AES accelerator).

36 Cybersecurity Enablers in MSPMO MCUs SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com/lit/ug/slau846c/slau846c.pdf?ts=1764121569570
https://www.ti.com/lit/ug/slau846c/slau846c.pdf?ts=1764121569570
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS
www.ti.com Secure Storage

Metadata

Other

KEYSTORE Peripheral

Private Data Bus

Figure 4-1. KEYSTORE Works Process

Only CSC can configure keys into KEYSTORE before INITDONE. Subsequently, the main application can
configure the crypto engine to use one of the stored keys but can never access (read or write) any stored keys.
The key transfer from KEYSTORE to crypto engine is performed securely and is not visible to the application
code.

KEYSTORE contents will be wiped every BOOTRST and the store is unlocked for writing. KEYSTORE contents
are unaffected by SYSRST and lower order resets.

4.6 SRAM Protection

Buffer overflows are a common source of exploits wherein, for example, a corrupt return address can cause
execution to jump to malicious code. In order to mitigate such exploits, an SRAM code protection feature is
available, wherein the SRAM can be partitioned into two regions by an address A:

* Region 1 (Address < A): Read-Write (RW), not executable for instruction fetch.

* Region 2 (Address >= A): Read-Execute (RX), not writable.

A =0 is treated as entire SRAM being RWX. This is the reset state of the SRAM.
4.7 Hardware Monotonic Counter
Some devices provision a second NONMAIN sector (1KB) that is accessed with the following restrictions:

» It can never be erased (factory reset, mass erase operations included)
* It can be written only until CSC calls INITDONE, and subsequently it can only be read.

This protection serves to implement hardware-based monotone counter feature. Because the sector can only be
programmed, it effectively works as a nonvolatile up-counter (or down-counter depending on how the counter
value is interpreted by software). The CSC can maintain revision or roll-back protection information in this sector,
assuring that a version lower than the counter value cannot be activated. Refer to Platform Security Enablers to
see the devices which supporting hardware monotonic counter feature.

SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025 Cybersecurity Enablers in MSPMO MCUs 37
Submit Document Feedback

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

Cryptographic Acceleration www.ti.com

5 Cryptographic Acceleration

Certain MSPMO MCUs offer hardware acceleration for the advanced encryption standard (AES), as well as
hardware for generating true random numbers for cryptographic purposes (TRNG). See the device specific data
sheet to determine if a device has an AES accelerator or TRNG, or refer to Security Enablers by Subfamily.

5.1 Hardware AES Acceleration

Certain MSPMO devices include hardware acceleration for the advanced encryption standard (AES). There are
two types of AES accelerator, named Section 5.1.1 and Section 5.1.2, defined in MSPMO devices, with different
feature set supported. See Table 5-1for comparison of AES and AESADV.

See the device-specific data sheet to determine if a particular device includes hardware AES acceleration.
Table 5-1. Comparison Table of AES and AESADV

Features Basic AES (AES) Advanced AES (AESADV)
ECB ~ N
CBC

OFB

CTR

N
N
CFB V
\/
\/

CBC-MAC

CMAC

AES-CCM

< | 2| 2| 2| 2| 2| 2| &=

AES-GCM

5.1.1 AES

The AES accelerator module performs encryption and decryption of 128-bit data blocks with a 128-bit or 256-bit
key in hardware according to the advanced encryption standard (AES). AES is a symmetric-key block cipher
algorithm specified in FIPS PUB 197.

The AES accelerator features include:

» AES 128-bit block encryption and decryption

» DMA trigger support for automating ECB, CBC, OFB, and CFB block cipher modes as defined in NIST SP
800-38

» Support for accelerating CTR cipher mode by encrypting precalculated (nonce || counter) blocks and
accelerating XOR of plaintext with the generated key stream

» Support for accelerating CBC-MAC tag computation (CBC DMA mode with zero initialization vector)

* On-the-fly key expansion for encryption and decryption

» Offline key generation for decryption

» Shadow register storing the initial key for all key lengths

» 8-bit byte or 32-bit word access to provide key data, input data, and output data

* AES ready interrupt

» Supported in RUN and SLEEP (see the Operating Modes section of the device technical reference manual)

The AES accelerator hardware consists of the 128-bit state memory and associated input/output registers,
the AES encryption/decryption core and control logic, and the 256-bit AES key memory and associated input
register. The AES accelerator provides fast encryption and decryption of 128-bit blocks. AES accelerator
performance in both cycles and execution time for block encryption and block decryption (with pre-generated
decryption key) is given in Table 5-2.

Table 5-2. AES Hardware Accelerator Key Performance Metrics

AES Key Length Encryption Decryption
Cycles Time (32MHz) Time (80MHz) Cycles Time (32MHz) Time (80MHz)
128-bit 168 5.25us 2.10us 168 5.25us 2.10us
38 Cybersecurity Enablers in MSPMO MCUs SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025

Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com Cryptographic Acceleration

Table 5-2. AES Hardware Accelerator Key Performance Metrics (continued)

AES Key Length Encryption Decryption
Cycles Time (32MHz) Time (80MHz) Cycles Time (32MHz) Time (80MHz)
256-bit 234 7.31us 2.93us 234 7.31us 2.93us
5.1.2 AESADV

The AESADV accelerator module accelerates encryption and decryption operations in hardware based on the
FIPS PUB 197 advanced encryption standard (AES).

The AESADV accelerator module performs encryption and decryption of 128-bit data blocks with a 128-bit or
256-bit key in hardware according to the advanced encryption standard (AES). AES is a symmetric-key block
cipher algorithm specified in FIPS PUB 197. The AESADV accelerator features include:

» AES 128-bit block encryption and decryption

* Key scheduling in hardware

» Enc/decrypt only modes: CBC, CFB-1, CFB-8, CFB-128, OFB-128, CTR/ICM

» Authentication only modes: CBC-MAC, CMAC

*+ AES-CCM

+ AES-GCM

* AES-CCM and AES-GCM modes support continuation with hold/resume of payload data

» 32-bit word access to provide key data, input data, and output data

* AESADYV ready interrupt

» DMA triggers for input/output data

» Supported in RUN and SLEEP (see the Operating Modes section of the device technical reference manual)

The AESADV engine consists of a processing core that performs both encryption/decryption as well as Galois
field multiplication. The core is driven with configuration and data inputs that software will configure via memory
mapped registers.

The AESADV accelerator provides fast encryption and decryption of 128-bit blocks. AESADV accelerator
performance in both cycles and execution time for block encryption and block decryption (with pre-generated
decryption key) is given in Table 5-3. This table assumes that there are no system overheads (delays in
supplying next input or reading out available output) that stall the engine.

Table 5-3. AESADV Hardware Accelerator Key Performance Metrics

AES Key Length Encryption Decryption
Cycles Time (32MHz) Time (80MHz) Cycles Time (32MHz) Time (80MHz)
128-bit 76 2.38us 0.95us 1.01us 2.38us 0.95us
256-bit 81 2.53us 1.01us 81 2.53us 1.01us

5.2 Hardware True Random Number Generator (TRNG)

Certain MSPMO devices include a hardware true random number generator (TRNG) block. The TRNG may
be used to easily generate true random seed values which may be used to seed a deterministic random bit
generator (DRBG).

The TRNG module provides 32-bit true random outputs based on a delta-sigma modulation based analog
entropy source inside the device. A dedicated regulator is provided local to the TRNG to protect against power
manipulation attacks.

Integrated heath tests provide power-on self-test of the analog and digital components of the TRNG, and
continuous monitoring is provided through statistical self-tests.

The TRNG is suitable for use in creating a TRNG + DRBG system which can pass the NIST SP800-22 statistical
test suite for cryptographic random number generators. A block diagram of the TRNG is given in Figure 5-1.

SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025 Cybersecurity Enablers in MSPMO MCUs 39
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

Cryptographic Acceleration

13 TEXAS
INSTRUMENTS

www.ti.com

Analog Block
LW wo
v

Entropy
Source

|
|
|
|
|
|
: ZA
|
|
|
|
|

Digital Block |
|
|

—» Conditioning Decimation > Result :
. . . |
|
TRNG State Machine and Startup Logic :
|
|
¢ t y !
|
“» Health Test

Registers and Interrupt Logic <—:—> PD1 peripheral bus

CLKDIVIDE
/1,12,14,16, /8 MCLK

Figure 5-1. TRNG Block Diagram

For more information on the operation of the TRNG, refer to the device family technical reference manual.

40

Cybersecurity Enablers in MSPMO MCUs

SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025
Submit Document Feedback

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

I

TExXAS
INSTRUMENTS

www.ti.com FAQ

6 FAQ

1.

10.

11.

12.

What is the Root-of-Trust in MSPMO CSC solution?

A: The Root-of-Trust includes immutable TI ROM boot-code and static write protected CSC region. They are
immutable after correctly NONMAIN configuration. See CSC NONMAIN Configuration for details.
Does CSC handle firmware update process?

A: No. CSC only verifies the application firmware that has been placed in a certain flash address in advance
but does not handle firmware update process (bootloader) and not care how the firmware is loaded to the
flash.

What is the timing feature of different algorithms in CSC solution?

A: See CSC Performance for details.
When I try to download new firmware to a device that is running application with CSC or bank swap,
why CCS/Uniflash reports erase error?

A: When bank swap is enabled, the logic low bank gets read-execute privileges and loses write/erase
privileges. The other bank (logic high bank) is readable and writeable but not executable. When CCS or
Uniflash try to download a firmware starts from address 0x0000, it will report erase error since logic low
bank address is not erasable. You could update your firmware starting from high bank address, or just take a
factory reset before load program.

Why a power cycle or NRST reset is needed after downloading CSC example?

A: The CSC example includes NONMAIN configurations to enable CSC. The NONMAIN configurations take
effect during boot-code, and only a BOOTRST (or higher level) reset could make MSPMO get back to ROM
boot-code.

How could | change application program start address in CSC?

A: See Customize Changes on CSC Example for details.
Which output format should | choose for CSC, application image and NONMAIN region output?

A: The .txt/.bin/.hex format could be used for firmware updated. NONMAIN configuration should be
programmed together with CSC and do not update NONMAIN region along with application firmware. See
Step by Step Guidance for guidance.

Why does CCS report post-build fail error when building customer_secure_sample_image?

A: Please check whether you have successfully set Python environment before building CSC sample image
example. And make sure the CSC example is in the same workspace with CSC sample image example.
Is there secret key storage region for asymmetric encryption/decryption in application program?

A: MSPMO devices only provide symmetric secret key storage (KEYSTORE) for the AES engine. The
asymmetric encryption/decryption algorithm key (such as ECDSA public key) is stored in a SECRET region.
This SECRET region could only be accessed in privileged state (pre-INITDONE) and is read protected &
write protected by firewall when running application.

How could | give the application address in linker file?

A: In bank swap enabled configuration, an application program should always be built with a given logic low
bank address. Take MSPM0G3519 as an example, the address range defined in linker file (.cmd in CCS)
should be 0x00000~0x40000. But when updating the application firmware, the firmware needs to be loaded
to the logic high bank address since the program is running in logic low bank and only the logic high bank
has read-write access.

What if | want to define my own application image format?

A: Currently SDK CSC example is using the signing tool imgtool provided by MCUBOOT to generate
application image with e.g. header and signature information. Users could define their own image format, but
they need to achieve the parsing program in CSC for their own defined image format.

What if | want to use symmetric approach only for secure boot?

A: Users could use AES-CMAC for symmetrical image verification in MSPMO devices with AESADV
supported, see Platform Security Enablers for details. Make sure the AES key stored in MCU has been
aligned with the image vendor in advance by a secure way.

SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025 Cybersecurity Enablers in MSPMO MCUs 41
Submit Document Feedback

Copyright © 2026 Texas Instruments Incorporated

https://github.com/mcu-tools/mcuboot/blob/main/docs/imgtool.md
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

Summary www.ti.com

7 Summary

The security enablers offered in MSPMO MCUs offer a unique blend of capability and value for MCU customers
looking to add more cybersecurity capabilities to new applications. Distinctive features at the price point (such as
password authenticated application debug, mass erase, and factory reset) enable a variety of development and
production use-cases while keeping configuration simple and straightforward.

42 Cybersecurity Enablers in MSPMO MCUs SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025
Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

13 TEXAS
INSTRUMENTS

www.ti.com References

8 References

* MSPMO G-Series 80-MHz Microcontrollers Technical Reference Manual

* MSPMO L-Series 32-MHz Microcontrollers Technical Reference Manual (Rev. E)
* MSPMO C-Series 24-MHz Microcontrollers Technical Reference Manual (Rev. C)
* MSPMO H-Series 32-MHz Microcontrollers Technical Reference Manual

* Flash Multi Bank Feature in MSPMO Family

* MSPMO Customer Secure Code and Bootloader (CSC) User’s Guide

* GitHub - mcu-tools/mcuboot: Secure boot for 32-bit Microcontrollers!

9 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from January 31, 2023 to December 31, 2025 (from Revision * (January 2023) to

Revision A (December 2025)) Page
* Updated MSPMO MCU Platform Security Enablers table..............cccoooiiiiiiiiiii e, 3
» Updated MSPMO secure boot flow and implementation................cceoviiiiiiiiiiiciee e 20
* Updated MSPMO secure storage fEAtUIES.............ooiiiiiiiiiiiicee e e e e e e eeeeas 36
SLAAE29A — JANUARY 2023 — REVISED DECEMBER 2025 Cybersecurity Enablers in MSPM0O MCUs 43

Submit Document Feedback
Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com/lit/ug/slau846b/slau846b.pdf?ts=1753176887591
https://www.ti.com/lit/ug/slau847e/slau847e.pdf?ts=1764241201171&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FMSPM0L1117
https://www.ti.com/lit/ug/slau893c/slau893c.pdf?ts=1764241208497&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FMSPM0C1106
https://www.ti.com/lit/ug/slau923/slau923.pdf?ts=1764237236169&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FMSPM0H3216
https://www.ti.com/lit/an/spradn2/spradn2.pdf?ts=1753176947455
https://dev.ti.com/tirex/explore/node?node=A__APjkYg9RWxwM6nRUc3InzA__MSPM0-SDK__a3PaaoK__LATEST
https://github.com/mcu-tools/mcuboot
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAE29
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAE29A&partnum=

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with Tl products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an
application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other Tl intellectual property right or to any third party intellectual property right. Tl disclaims responsibility for, and you fully
indemnify Tl and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on
ti.com or provided in conjunction with such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable
warranties or warranty disclaimers for Tl products. Unless Tl explicitly designates a product as custom or customer-specified, TI products
are standard, catalog, general purpose devices.

Tl objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated
Last updated 10/2025

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com/lit/pdf/SZZQ076
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	1.1 Key Concepts
	1.2 Goals of Cybersecurity
	1.3 Platform Security Enablers

	2 Device Security Model
	2.1 Device Identity
	2.2 Initial Conditions at Boot
	2.3 Boot Configuration Routine (BCR)
	2.4 Bootstrap Loader (BSL)
	2.5 Boot Flow
	2.6 User-Specified Security Policies
	2.6.1 Boot Configuration Routine (BCR) Policies
	2.6.1.1 Serial Wire Debug Related Policies
	2.6.1.1.1 SWD Security Level 0
	2.6.1.1.2 SWD Security Level 1
	2.6.1.1.3 SWD Security Level 2

	2.6.1.2 Bootstrap Loader (BSL) Enable/Disable Policy
	2.6.1.3 Flash Memory Protection and Integrity Related Policies
	2.6.1.3.1 Locking the Application (MAIN) Flash Memory
	2.6.1.3.2 Locking the Configuration (NONMAIN) Flash Memory
	2.6.1.3.3 Verifying Integrity of Application (MAIN) Flash Memory

	2.6.1.4 Bootstrap Loader (BSL) Security Policies
	2.6.1.4.1 BSL Access Password
	2.6.1.4.2 BSL Read-out Policy
	2.6.1.4.3 BSL Security Alert Policy

	2.6.2 Customer Secure Code (CSC) Security Policies
	2.6.2.1 CSC Enforced Bankswap
	2.6.2.2 CSC Enforced Firewalls
	2.6.2.3 CSC Key Write to KEYSTORE

	2.6.3 Configuration Data Error Resistance
	2.6.3.1 CRC-Backed Configuration Data
	2.6.3.2 16-bit Pattern Match for Critical Fields

	3 Secure Boot
	3.1 Secure Processing Environment Isolation
	3.2 Customer Secure Code (CSC)
	3.2.1 Secure Boot Flow
	3.2.2 Flash Memory Map
	3.2.3 Features
	3.2.3.1 CMAC Acceleration
	3.2.3.2 Asymmetric Verification
	3.2.3.3 KEYSTORE and Firewall
	3.2.3.4 CSC Performance

	3.2.4 Quick Start Guide
	3.2.4.1 Environment Setup
	3.2.4.2 Step by Step Guidance
	3.2.4.3 CSC NONMAIN Configuration
	3.2.4.4 Customize Changes on CSC Example

	3.3 Boot Image Manager (BIM)
	3.3.1 Secure Boot Flow
	3.3.2 Flash Memory Map
	3.3.3 Quick Start Guide

	4 Secure Storage
	4.1 Flash Write Protection
	4.2 Flash Read-Execute Protection
	4.3 Flash IP Protection
	4.4 Data Bank Protection
	4.5 Secure Key Storage
	4.6 SRAM Protection
	4.7 Hardware Monotonic Counter

	5 Cryptographic Acceleration
	5.1 Hardware AES Acceleration
	5.1.1 AES
	5.1.2 AESADV

	5.2 Hardware True Random Number Generator (TRNG)

	6 FAQ
	7 Summary
	8 References
	9 Revision History

