
User's Guide
MSPM0 Bootloader

ABSTRACT

The MSPM0 Bootloader (also known as BSL) provides a method to modify the device memory, both the
application memory (Flash) and data memory (RAM) through a standard serial interface.

To invoke the Bootloader a specific entry sequence needs to be followed, it does not get executed on every
power up. And the Bootloading session can be exited with a reset or a specific command to start the application.

Table of Contents
1 Introduction...2

1.1 Overview of BSL Features... 2
1.2 Terminology..2
1.3 Additional resources...2

2 BSL Options.. 3
3 BSL Architecture...5

3.1 Design.. 5
3.2 BSL Invocation... 6
3.3 Memory.. 7
3.4 BSL Configuration.. 8
3.5 BSL Status... 9

4 Bootloader Protocol... 10
4.1 Packet Format..10
4.2 UART and I2C BSL Protocol..10
4.3 Bootloader Core Commands..11
4.4 Bootloader Core Response..19
4.5 Bootloader Security..22

5 Sample Program Flow with Bootloader..23
6 Flash based BSL...25

6.1 Secondary BSL / ROM Invoked Flash BSL..25
6.2 Standalone Flash BSL... 26

7 Interface Plug-in..29
7.1 Implementation...29
7.2 Flash Plug-in Type... 31
7.3 Overriding an Existing Interface... 32

8 Revision History... 33

Trademarks
All trademarks are the property of their respective owners.

www.ti.com Table of Contents

SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

MSPM0 Bootloader 1

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

1 Introduction

1.1 Overview of BSL Features
The bootstrap loader (BSL) provides a method to program or verify the device memory through a standard serial
interfaces like UART, I2C.

Key features of the ROM BSL that are accessible through the serial interface include:

• Programming and erase of flash memory
• Ability to return a 32-bit CRC of a code or data region (1KB minimum region size) to verify programming
• Ability to enable code or data read-out (disabled by default)
• Ability to return a firmware version number via a pointer to the main flash
• Ability to specify a hardware invoke GPIO
• Access is always protected with a 256-bit password
• Configurable security alert handling for resisting brute force attacks
• Ability to add a new interface as flash plug-in
• Ability to use custom bootloader

1.2 Terminology
Bootloader (BSL) - Boot routine used to load data to the device memory

Bootcode (BCR) - Startup Routine that runs after BOOT Reset, to configure the device for executing application

BCR configuration - Configuration structure that contains all user configurable parameters for Bootcode, which
resides in Non-main flash memory

BSL configuration - Configuration structure that contains all user configurable parameters for Bootloader, which
resides in Non-main flash memory

1.3 Additional resources
1. Technical Reference Manual

a. MSPM0 G-Series Microcontrollers
b. MSPM0 L-Series Microcontrollers
c. MSPM0 H-Series Microcontrollers
d. MSPM0 C-Series Microcontrollers

2. Tools and examples

a. MSPM0 Sofware Development Kit

3. App note

a. MSPM0 Bootloader Implementation

Introduction www.ti.com

2 MSPM0 Bootloader SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLAU846
https://www.ti.com/lit/pdf/SLAU847
https://www.ti.com/lit/pdf/SLAU923
https://www.ti.com/lit/pdf/SLAU893
https://www.ti.com/tool/MSPM0-SDK
https://www.ti.com/lit/pdf/SLAAE88
https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

2 BSL Options
The MSPM0 Devices can be classified into three categories based on the BSL features supported by default.

Figure 2-1. BSL options in MSPM0 Devices

Type 1: ROM BSL Support

Devices with ROM BSL implementation have the Bootloader embedded in ROM. It would take care of the
invocation and core operations of updating the memory. The next few sections of this userguide contains the
details of the features, architecture and protocol of the ROM BSL.

• Supports UART and I2C interfaces
• Available for use immediately in the factory fresh device
• Custom implementations in flash memory, in the form of secondary BSL or Interface plugins are also

supported in these devices.

More details on the Secondary BSL or Interface plugin can be found at the later sections.

Type 2: Hybrid BSL Support

In these devices, the reponsibilities are shared between ROM and Flash. ROM Bootcode (BCR) checks for the
invocation conditions on every boot, when Bootloader is enabled in the BCR Configuration. This part is handled
similar to ROM BSL. When the condition is met the control is transfered to the BSL located in the Flash memory,
where the core BSL operations are implemented.

• Can be a custom BSL implementation that supports any interface available in the device
• In the fresh device, the Flash BSL (and optionally application image), need to be loaded through the

debugger interface for the first time.

The implementation and configuration process for Flash BSL in this category follows the same procedures as
Secondary BSL. Refer to the Section 6 for more details.

Type 3: Flash BSL Support

These devices does not have ROM support for BSL activities. Flash implementation should handle the BSL
invocation criteria and the functionalities completely.

• Can be a custom BSL implementation that supports any interface available in the device
• In the fresh device, the Flash BSL (and optionally application image), need to be loaded through the

debugger interface for the first time.

Table 2-1. BSL Support in devices
Device Family Devices ROM BSL Support Hybrid BSL Support Flash BSL Support

MSPM0Gx MSPM0Gx ✔

www.ti.com BSL Options

SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

MSPM0 Bootloader 3

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

Table 2-1. BSL Support in devices (continued)
Device Family Devices ROM BSL Support Hybrid BSL Support Flash BSL Support

MSPM0Lx MSPM0Lx ✔

MSPM0Cx MSPM0C1105/6 ✔

MSPM0C1104 ✔

MSPM0Hx MSPM0H321x ✔

BSL Options www.ti.com

4 MSPM0 Bootloader SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

3 BSL Architecture
3.1 Design
The bootloader will be invoked by bootcode when a valid bootloader invocation condition is detected. It will be
invoked only if the bootloader is enabled in the BSL mode field of the BCR configuration.

Once the bootloader is started, it first executes the "Init" phase where the initial checks of the BSL configuration
is done and the device is configured for bootloader operations.

Next the bootloader enters "Interface Autodetection" phase. In this phase the BSL configures all the available
BSL ROM interfaces and the flash plug-in interface , if registered . The BSL then polls for the data through all
the interfaces one by one. When a valid connection packet is received in one of the interfaces, that interface will
be considered as active interface for further communication and all other interfaces will be disabled. Interface
discovery is done for 10 seconds, if no interface has been detected, the device is put in STANDBY mode.

Next the bootloader enters "Command reception" phase. In this phase BSL will be waiting in an infinite loop for
commands from the host. When a valid command is received, the command is processed and the response from
the BSL core is sent back to the host. Then it goes back to the loop and waits for the next command and so on.
If the 'Start Application' command is received, the bootloader will trigger a system reset, after which the bootcode
is executed and the application is invoked. This phase also has a timeout of 10 seconds. If there is no valid
command received, bootloader is locked and it enters Sleep mode.

Figure 3-1. BSL Architecture

3.1.1 Timeout Feature

Bootloader will time out when no activity is detected and enters low-power mode to save power.

This has been implemented at the following two phases.

www.ti.com BSL Architecture

SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

MSPM0 Bootloader 5

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

1. Interface autodetection
2. Command reception

3.1.1.1 Interface Autodetection

In Interface detection phase, if there is no valid connection command received for 10 seconds over any interface,
the bootloader enters STANDBY mode.

POR is required to get out of this state and use Bootloader by creating the BSL invocation condition again.

3.1.1.2 Command Reception

In command reception phase, if no valid command is received for 10 seconds, the bootloader will enter SLEEP
mode. To wake up the device from SLEEP mode, a data transaction should happen on the active interface.

Bootloader will be locked before entering Sleep mode to reduce attack surface. Hence after waking up from the
low power mode, Bootloader needs to be unlocked again by sending the 256 bit BSL Password (See Unlock
Bootloader command).

Note
Bootloader uses LFCLK for the timeout check. If application configures the external clock as the
source for LFCLK, the same will be used by BSL, when invoked through Application BSL request

3.2 BSL Invocation
Bootloader shall be invoked only by the boot code, when any of the BSL invocation conditions is met and if
Bootloader is enabled in BCR configuration.

When Fast boot mode is enabled in BCR configuration, bootloader can be invoked only by Debug mailbox
command and Application request. Other checks are skipped to save execution time.

3.2.1 Blank Device

Bootcode detects the blank device by checking the erase state of the Stack pointer (0x00000000) and reset
vector (0x00000004) address. When both the flash memory addresses are found to be blank, then Bootloader
will be invoked.
3.2.2 Application Request

To invoke the bootloader from an application, set the RESETLEVEL as BOOTLOADERENTRY and trigger reset
through the RESETCMD register. This sequence causes a system reset, and the bootcode is executed and the
bootloader is invoked.

Because a system reset is issued, all the peripheral configurations are reset while exiting the application.

3.2.3 GPIO Based Invocation

GPIO used for BSL invocation can be configured in the BSL Configuration in Non-main memory.

Fresh devices will have the TI programmed default pin detail in BSL configuration.

GPIO pin based invocation can be disabled in the BCR configuration. It is enabled by default.

GPIO should be asserted before the POR, and the state should be maintained for at-least T_start ms after POR.
Then the GPIO pin state can be de-asserted.

BSL Architecture www.ti.com

6 MSPM0 Bootloader SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

Figure 3-2. Invocation From GPIO

* - GPIO pin to be used as 'BSL Invoke' and 'Expected Pin Level' can be configured in BSL configuration

** - T_start refers to the Cold boot startup time, specified in the device specific data sheet

Note
If pin based BSL invocation is enabled, the configured GPIO pin should be either pulled high or low. It
should not be left floating, which could cause unexpected BSL execution.

3.2.4 Debug Mailbox Command

When debug interface is available, Bootloader invocation command can be sent through the Debug Subsystem
Mailbox (DSSM).

For more details on the DSSM command usage, please refer to MSPM0x_Technical_Reference_Manual DSSM
commands section.

3.2.5 Pre-Boot Application Verification

When the application CRC/Hash verification is configured in the BCR configuration, application memory integrity
is verified on every boot. If the verification fails and bootloader is enabled, the bootloader will be invoked.
If Bootloader is disabled, then it will lead to boot failure. Refer to Boot Configuration Section in Technical
Reference Manual of the device for more details.

3.3 Memory
3.3.1 SRAM Memory Usage

The SRAM Memory layout explains the memory used for bootloader's operation.

• Data and Stack section - Used by BSL for it's operation. While exiting the bootloader, these sections of the
SRAM are cleared.

• Variable Buffer Space - Buffer space used for storing the data packets received /sent during the BSL
communication

The SRAM memory allowed for read and write access by the host is BSL Buffer Start Address to [SRAM end
address - 0x120], where SRAM end address is determined by the SRAM memory available in each device.
Since the same SRAM space is shared with variable buffer space, it has chances of getting overwritten during
an SRAM write/read operation.

www.ti.com BSL Architecture

SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

MSPM0 Bootloader 7

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

Figure 3-3. SRAM Usage

A - SRAM Start Address (0x20000000)

B- 'BSL Buffer Start Address' known from the 'Get Device Info' command response, when no Flash plug-in
interface is registered

C- 'BSL Buffer Start Address' known from the 'Get Device Info' command response. It will be same as 'B' when
no Flash plug-in interface is registered

D- BSL Buffer End Address ='BSL Buffer Start Address' + (2 * 'BSL Max Buffer size'), where BSL Buffer Start
Address and BSL Max Buffer Size can be known from 'Get Device Info' command response

E- Start address of the stack allocation (E - 0x120). It will be same as 'D' when the 'BSL Max Buffer size' is less
than 0xFFFF

F- End address of the SRAM memory available in the device. Refer to device specific data sheet to know this.

Section B- C :

• Data section that will be allocated for Flash Plug-in operation, when registered in BSL configuration

Section C- D:

• Buffer space used to store data packets
• Maximum size is (2 * 0xFFFF)

Section C-E:

• Available memory for SRAM read and write operation through BSL commands

3.4 BSL Configuration
BSL configuration in Non-main Flash memory allows certain parameters used by BSL to be customized by the
user.

To know more about the available configurations, refer MSPM0 Technical Reference Manual - Configuration
Memory section .

BSL Architecture www.ti.com

8 MSPM0 Bootloader SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

3.5 BSL Status
BSL status gives the details about any error occurred during the execution, that resulted in unresponsive BSL.
This 32-bit status information is stored in a specific SRAM address "0x200000C0", and can be read through the
debugger, if the debug-access is enabled in the BCR configuration.

Table 3-1. Interpretation of BSL Status
Byte 4 Byte 3 Byte 2 Byte 1

Reserved HW Error HW Error details SW Error

Error Description

0x01 BSL Configuration CRC Error

HW Error

Error Description HW Error Details
0x07 NMI exception NMIIDX - NMI Interrupt Index register data

www.ti.com BSL Architecture

SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

MSPM0 Bootloader 9

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

4 Bootloader Protocol
4.1 Packet Format
The BSL data packet has a layered structure. The BSL core command contains the actual command data to be
processed by the BSL. In addition to the standard BSL commands, there can be wrapper data before and after
each core command known as the peripheral interface code (PI Code). This wrapper data is information that is
specific to the peripheral and protocol being used, and it contains information that allows for correct transmission
of the BSL core command. Taken together, the wrapper and core command constitute a BSL data packet

PI Code BSL Core Data PI Code

4.2 UART and I2C BSL Protocol
The data packets of the UART and I2C BSL protocol have the following structure.

• Header byte indicates the protocol used and the packet type (command or response packet).
• Length field contains the size of the BSL Core Data in bytes.
• BSL core data, contains the Command / Response ID and Address, data as needed by the command
• CRC field contains the CRC calculated for the data in "BSL core data" to check the integrity. The CRC can

be either 32bit CRC or 16bit CRC depending on the device. In either case the field length will be constant. In
case of 16bit CRC, remaining bytes are appended with 0's.

PI Code BSL Core Data PI Code
Header (1 byte) Length (2 byte) BSL Core Command/Response CRC (4 byte)

Based on the Core data field, the data packet is classified as either Command packet or response packet.

Command packet is the first packet which is transmitted to the BSL. The second packet is the Response packet
which is received from the BSL. Response packet contains two components BSL acknowledgment and BSL
Core response. In these two, Acknowledgment is received from BSL for every command packet sent. But the
BSL core response is not received for every command.

Figure 4-1. BSL Protocol

4.2.1 BSL Acknowledgment

The peripheral interface section of the BSL software parses the wrapper section of the BSL data packet. If there
are errors with the data transmission, an error message is sent immediately. An ACK is sent after all data has
been successfully received and does not mean that the command has been correctly executed (or even that the
command was valid) but, rather, that the data packet was formatted correctly and passed on to the BSL core
software for interpretation.

The BSL protocol dictates that every BSL data packet sent is responded to with a single byte acknowledgment
in addition to any BSL data packets that are sent. Table lists the acknowledgment responses from the BSL.
If an acknowledgment byte other than ACK is sent, the BSL does not send any BSL data packets. The host
programmer must check the acknowledgment error and retry transmission.

Data Meaning
0x00 BSL_ACK (Packet received successfully)

0x51 BSL_ERROR_HEADER_INCORRECT

0x52 BSL_ERROR_CHECKSUM_INCORRECT

0x53 BSL_ERROR_PACKET_SIZE_ZERO

Bootloader Protocol www.ti.com

10 MSPM0 Bootloader SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

Data Meaning
0x54 BSL_ERROR_PACKET_SIZE_TOO_BIG

0x55 BSL_ERROR_UNKNOWN_ERROR

0x56 BSL_ERROR_UNKNOWN_BAUD_RATE

4.2.2 Peripheral Configuration
4.2.2.1 UART

UART is enabled with following configuration:

• UART0 is used
• Baud rate 9600 bps by default. It can be updated by Change Baud Rate command
• Data width: 8 bit
• Stop bits: 1
• No parity
• Pins used for RXD and TXD are taken from the BSL configuration

4.2.2.2 I2C

The I2C interface in the BSL can act as the I2C target. The host acts as a controller and drives the
communication.

• I2C0 is used
• The I2C target address is 0x48, by default. It can be configured in BSL Configuration
• External pullup is needed for SCL and SDA lines
• Pins used for SDA and SCL are taken from the BSL configuration

Note
• The BSL does not validate the details of the pins configured in the non-main for the UART and I2C

interfaces. The BSL expects the pin configuration to be correct.
• Do not use the same pins for both UART and I2C.

4.2.2.3 CRC

CRC is calculated using the hardware CRC module. In devices that support CRC32, 32 bit CRC value is used. In
devices that support only CRC16, 16 bit CRC is used and remaining bytes are appended with 0's to constitute 4
bytes. Refer to device specific datasheet to identify the supported CRC polynomial.

CRC for the data is calculated with:

• CRC32-ISO3309 (or) CRC16-CCITT polynomial
• Bit reversed configuration
• Initial seed - 0xFFFFFFFF

4.3 Bootloader Core Commands
BSL Command Protected CMD Start Address Data (Bytes) BSL Core response
CMD Connection No 0x12 - - No

CMD Unlock
Bootloader No 0x21 - D1…D32 (Password) Yes

CMD Flash Range
Erase Yes 0x23 A1...A4 A1...A4 (End address) Yes

CMD Mass Erase Yes 0x15 - - Yes

CMD Program Data Yes 0x20 A1...A4 D1…Dn, Yes

CMD Program Data
Fast Yes 0x24 A1...A4 D1…Dn, No

CMD Memory Read
back Yes 0x29 A1...A4 L1...L4 Yes

CMD Factory Reset Yes 0x30 - D1...D16 (Password) Yes

www.ti.com Bootloader Protocol

SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

MSPM0 Bootloader 11

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

BSL Command Protected CMD Start Address Data (Bytes) BSL Core response
CMD Get Device

Info No 0x19 - - Yes

CMD Standalone
Verification Yes 0x26 A1...A4 L1...L4 Yes

CMD Start application No 0x40 - - No

CMD Change Baud
rate No 0x52 - D1 (Baud rate ID) No

Abbreviations:

A1...A4

Address bytes, where A1 is the least significant byte

D1...Dn

Data bytes, where 'n' is limited by the BSL Max buffer size

L1...L4

Data Length bytes, where C1 is the least significant byte

4.3.1 Connection

Structure

Header Length CMD CRC32
0x80 0x01 0x00 0x12 C1 C2 C3 C4

Description

Connection command is the first command used to establish the connection between the Host and the Target
through a specific interface (UART or I2C).

Protected

No

Command Returns

Only BSL Acknowledgment

Example

Host: 80 01 00 12 3A 61 44 DE

BSL: 00

4.3.2 Get Device Info

Structure

Header Length CMD CRC32

0x80 0x01 0x00 0x19 C1 C2 C3 C4

Description

The command is used to get the version information and buffer size available for data transaction.

Protected

No

Command Returns

Bootloader Protocol www.ti.com

12 MSPM0 Bootloader SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

BSL Acknowledgment and BSL core response with device information. See Device info for more details.

Example

Host: 80 01 00 19 B2 B8 96 49

BSL:00 08 19 00 31 00 01 00 01 00 00 00 00 01 00 C0 06 60 01 00 20 01 00 00 00 01 00 00 00 49 61 57 8C

4.3.3 Unlock Bootloader

Structure

Header Length CMD Data CRC32
0x80 0x21 0x00 0x21 D1...D32 C1 C2 C3 C4

Description

The command is used to unlock the bootloader. Only after bootloader unlock, all the protected commands listed
in Section 4.3 are processed by the BSL.

If the host sends an incorrect password, the BSL sends the error response, then device enters sleep mode for
2 seconds. During this 2-second window, no command is received or processed. After 2 seconds, the host can
send the next password. If an incorrect password is sent 3 times, a security alert action is taken. The security
alert action is configurable in the BSL configuration. See Section 4.5.1.1 for more details.

Protected

No

Data

32 byte BSL password stored in the BSL configuration memory. Fresh device would have the default value all
0xFF.

Command Returns

BSL Acknowledgment and BSL core response with Message about the Status of operation. See section BSL
Core Message for more details.

Example

Host: 80 21 00 21 FF
FF FF FF FF FF 02 AA F0 3D

BSL: 00 08 02 00 3B 00 38 02 94 82

4.3.4 Program Data

Structure

Header Length CMD Address Data CRC32

0x80 L1 L2 0x20 A1...A4 D1...Dn C1 C2 C3 C4

Description

The program command is used to write the data D1 through Dn in the memory address starting from A1...A4.
This command performs the blocking write. Once the programming is done a Message response is sent to Host.

Programming is allowed to Main flash (application memory), Non-main Flash (configuration memory) and SRAM
memory. For details on the absolute address range please refer to the device specific data sheet.

Flash memory should be erased by the Host before programming. See Flash range erase, Mass erase for more
details on erasing the Main flash region. Non-main flash can only be erased by the Factory reset command.

Due to the Flash controller characteristic, the start address and Length of the data should be 8 byte aligned for
flash programming.

www.ti.com Bootloader Protocol

SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

MSPM0 Bootloader 13

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

Note

SRAM memory is not fully accessible by the Host. See Section 3.3.1 for more details.

Protected

Yes

Address

Start address of the memory region to be programmed. A1...A4, where A1 is the Least Significant Byte of the 32
bit address.

Data

Data bytes to be written in the specified address. Maximum size of the data that can be sent is limited by the
Buffer size of the device. Buffer size is known from Get Device Info command .

Command Returns

BSL Acknowledgment and BSL core response with Message about the Status of the operation. See section
Section 4.4.1 for more details.

Example

Host: 80 0D 00 20 00 00 00 00 00 00 00 04 00 00 00 08 7A DC AE B8

BSL: 00 08 02 00 3B 00 38 02 94 82

4.3.5 Program Data Fast

Structure

Header Length CMD Address Data CRC32
0x80 L1 L2 0x24 A1...A4 D1...Dn C1 C2 C3 C4

Description

The Program Data Fast command is identical to the Program Data command , except that this command
performs the non-blocking write, to speed up the programming process. To this command BSL will not send the
BSL core message response to indicate if the programming was successful.

Protected

Yes

Address

Start address of the memory region to be programmed. A1...A4, where A1 is the least significant byte of the 32
bit address.

Data

Data bytes to be written in the specified address. Maximum size of the data that can be sent is limited by the
Buffer size of the device. Buffer size is known from Get Device Info command .

Command Returns

BSL Acknowledgment.

Example

Host: 80 0D 00 24 00 01 00 00 01 02 03 04 05 06 07 08 72 10 2A 18

BSL: 00

4.3.6 Readback Data

Structure

Bootloader Protocol www.ti.com

14 MSPM0 Bootloader SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

Header Length CMD Address Data CRC32
0x80 0x09 0x00 0x29 A1...A4 L1...L4 C1 C2 C3 C4

Description

This command is used to readout the data starting from address A1...A4.

Readout should be enabled in the BSL configuration, to readout the data using this command. It is disabled by
default in the BSL configuration.

Data readout is allowed for Main flash (application memory), Non-main Flash (configuration memory) and SRAM
memory.

Note
SRAM memory is not fully accessible by the Host. See SRAM memory usage for more details.

Protected

Yes

Address

Start address of the memory region to be read back. A1...A4, where A1 is the least significant byte of the 32 bit
address.

Data

Size of the data to be read in bytes, L1...L4, where L1 is the least significant byte. Maximum size of the data that
can be read is limited by the Buffer size of the device. Buffer size is known from Get Device Info command.

Command Returns

BSL Acknowledgment and BSL core response with requested data, if the readback command is valid. See
Section 4.4.3 for more details.

If the readback command, had invalid address / length or if the readout was disabled, the corresponding error
will be sent as the Message Response following the BSL acknowledgment.

Example

Host: 80 09 00 29 00 0C 00 00 08 00 00 00 32 9D B0 35

BSL: 00 08 09 00 30 FF FF FF FF FF FF FF FF F6 2B A1 73

4.3.7 Flash Range Erase

Structure

Header Length CMD Address Data CRC32

0x80 0x09 0x00 0x23
A1...A4(Star
t Address)

A1...A4(End
Address)

C1 C2 C3 C4

Description

The Flash range erase command is used to erase the specified flash memory region. Flash is erased sector
wise (1 KB), erasing lesser size is not possible.

When the Start and End address reside in different flash sectors, the BSL erases all the flash sectors in between
the Start and End address, including sectors that contains these addresses.

This command can be used to erase only the Main Flash memory. Non-main erase is not possible.

End address should never be less than Start address.

Protected

www.ti.com Bootloader Protocol

SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

MSPM0 Bootloader 15

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

Yes

Address

Start address of the memory region to be erased. A1...A4, where A1 is the Least Significant Byte of the 32 bit
address.

Data

End address of the memory region to be erased. A1...A4, where A1 is the Least Significant Byte of the 32 bit
address.

Command Returns

BSL Acknowledgment and BSL core response with Message about the Status of the operation. See section
Section 4.4.1 for more details.

Example

Host: 80 09 00 23 00 01 00 00 FF 03 00 00 2B E6 BE D8

BSL: 00 08 02 00 3B 00 38 02 94 82

4.3.8 Mass Erase

Structure

Header Length CMD CRC32

0x80 0x01 0x00 0x15 C1 C2 C3 C4

Description

The mass erase command erases the complete Main Flash memory (application memory) available in the
device.

The Mass erase configuration in BCR configuration memory doesn't affect this BSL command.

When a flash region is static write protected in BCR configuration memory, the region can't be erased.

Protected

Yes

Command Returns

BSL Acknowledgment and BSL core response with Message about the Status of the operation. See Section
4.4.1 for more details.

Example

Host: 80 01 00 15 99 F4 20 40

BSL: 00 08 02 00 3B 00 38 02 94 82

4.3.9 Factory Reset

Structure

Header Length CMD Data CRC32

0x80 L1 L2 0x30 D1...D16 C1 C2 C3 C4

Description

The factory reset command erases the complete Main Flash (application) memory and Non-main flash
(configuration) memory.

Processing this command, is impacted by the factory reset configuration in the BCR configuration memory.

Bootloader Protocol www.ti.com

16 MSPM0 Bootloader SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

Factory reset is

• Allowed without password, if 'Enabled'
• Allowed with password, if 'Enabled with Password'
• Not allowed, if 'Disabled'

When a flash region is static write protected in BCR configuration memory, the region can't be erased .

Protected

Yes

Data

16 byte factory reset password stored in the BCR configuration memory. The default password is all 0xFF.
Password is required only when Factory reset is "Enabled with Password" in BCR configuration.

Command Returns

BSL Acknowledgment and BSL core response with Message about the Status of the operation. See Section
4.4.1 for more details.

CAUTION

After doing the factory reset, until the Non-main configuration has been restored, the system is
highly vulnerable to a potential lockout situation in which it is impossible to get access to the device
again.

Example

Scenario 1: Factory Reset without Password

Host: 80 01 00 30 DE 20 24 0B

BSL: 00 08 02 00 3B 00 38 02 94 82

Scenario 2: Factory Reset with Password

Host : 80 11 00 30 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 8A 28 EA DC

BSL : 00 08 02 00 3b 00 38 02 94 82

4.3.10 Standalone Verification

Structure

Header Length CMD Address Data CRC32

0x80 0x09 0x00 0x26 A1...A4 D1...D4 C1 C2 C3 C4

Description

This command is used to verify the CRC of the data stored at the given memory range. This enables faster
verification of the programmed data. It requires the data size to be minimum 1kB.

CRC verification is allowed for Main flash (application memory), Non-main Flash (configuration memory) and
SRAM memory.

Note

SRAM memory is not fully accessible by the Host. Refer Section 3.3.1 for more details.

Protected

Yes

www.ti.com Bootloader Protocol

SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

MSPM0 Bootloader 17

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

Address

Start address of the memory region to be verified. A1...A4, where A1 is the least significant byte of the 32 bit
address.

Data

Size of the data to be verified in bytes, L1...L4, where L1 is the least significant byte. 1kB <= size <= 64 KB.

Command Returns

BSL Acknowledgment and BSL core response with CRC value calculated for the requested memory region.
Refer Section 4.4.5for more details.

If the verification command, had invalid address / length, the corresponding error will be sent as the Message
Response following the BSL acknowledgment. Refer Section 4.4.1.

Example

Host: 80 09 00 26 00 00 00 00 00 0C 00 00 1C E9 07 E1

BSL: 00 08 05 00 32 A0 45 71 82 91 1F 94 EC

4.3.11 Start Application

Structure

Header Length CMD CRC32

0x80 0x01 0x00 0x40 C1 C2 C3 C4

Description

Start application command, issues a system reset, which causes Bootloader exit, rerun of Bootcode, which in
turn starts the application.

Protected

No

Command Returns

BSL Acknowledgment

Example

Host:80 01 00 40 E2 51 21 5B

BSL:00

4.3.12 Change Baud Rate

Structure

Header Length CMD Data CRC32

0x80 0x02 0x00 0x52 D1 C1 C2 C3 C4

Description

The command can be used to change the baud rate of the UART interface. The new baud rate will take effect
after sending out the BSL acknowledgment for this packet.

The default baud rate of the BSL UART is 9600 bps.

Bootloader Protocol www.ti.com

18 MSPM0 Bootloader SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

Note

After updating the baud rate, if a wrong BSL password is sent with the Unlock Bootloader command,
the baud rate settings will be reverted to default value. Further communication should happen in the
default baud rate.

Protected

No

Data

D1 Baud rate as specified in the table.

ID Baud Rate (bps)
1 4800

2 9600

3 19200

4 38400

5 57600

6 115200

7 1000000

8 2000000

9 3000000

Command Returns

BSL Acknowledgment

Example

Host: 80 02 00 52 03 6C 83 A2 AF

BSL: 00

4.4 Bootloader Core Response
BSL Response RSP Data

Memory read back 0x30 D1…Dn

Get Device Info 0x31 D1…D24

Standalone verification 0x32 D1…D4

Message 0x3B MSG

Detailed Error 0x3A D1..D3

Abbreviations:

MSG

A byte containing a response from the BSL core describing the result of the requested action. This can either be
an error code or an acknowledgment of a successful operation. In cases where the BSL is required to respond
with data (for example, memory, version, CRC, or buffer size), no successful operation reply occurs, and the
BSL core immediately sends the data.

D1..Dn

Data bytes, where 'n' is limited by the BSL maximum buffer size

4.4.1 Bootloader Core Message

Structure

www.ti.com Bootloader Protocol

SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

MSPM0 Bootloader 19

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

Header Length RSP Data CRC32
0x08 0x02 0x00 0x3B MSG C1 C2 C3 C4

Description

For some commands, BSL sends the message response to the host, which indicates the status of the processed
command. The table lists all the possible messages from the BSL.

MSG Meaning Possible Cause(1)

0x00 Operation Successful

0x01 BSL Locked error
The BSL is not yet unlocked with Bootloader unlock password
command or After BSL unlock, a timeout would have occurred in
the command reception phase

0x02 BSL password error Incorrect password has been sent to unlock bootloader.

0x03 Multiple BSL password error. Security Alert
action is taken. Incorrect password has been sent to unlock bootloader 3 times.

0x04 Unknown Command The command given to the BSL was not recognized as valid
command

0x05 Invalid memory range The given memory range is invalid.

0x06 Invalid command The command given to the BSL is a known command but it is invalid
at that time instant and cannot be processed.

0x07 Factory reset disabled Factory reset is disabled in the BCR configuration

0x08 Factory reset password error
Incorrect or no password has been sent with factory reset command,
when the BCR configuration has factory reset 'Enabled with
password'

0x09 Read out error Memory read out be disabled in BCR configuration

0x0A Invalid address or length alignment Start address or data length for the flash programming is not 8-byte
aligned

0x0B Invalid length for standalone verification Data size sent for standalone verification is less than 1KB

(1) Possible causes listed here, are not the only reason for the status or error. It only lists the probable software reasons for the error, that
can be corrected by the host.

4.4.2 Detailed Error

Structure

Header Length RSP Data CRC32

0x08 0x02 0x00 0x3A D1..D3 C1 C2 C3 C4

Description

D1 - Error Type

D3,D2 - Error Details

Possible Values

Error type Error Details

Value Description Value Description

0xF0 Flash Error 0xXX Contains FLASHCTL.STATCMD
register value

4.4.3 Memory Readback

Structure

Bootloader Protocol www.ti.com

20 MSPM0 Bootloader SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

Header Length RSP Data CRC32
0x08 L1 L2 0x30 D1...Dn C1 C2 C3 C4

Description

The command returns the requested data in response to the Readback command

Data

Data D1..Dn where 'n' is limited by the BSL maximum buffer size.

4.4.4 Device Info

Structure

Header Length RSP Data CRC32
0x08 0x19 0x00 0x31 D1...D24 C1 C2 C3 C4

Description

The command returns the version information and BSL buffer size in response to the Get Identity Command

Data

Identity Byte Data Byte
Command Interpreter version [D02-D01]

Build ID [D04- D03]

Application version [D08-D05]

Active Plug-in interface version [D10-D09]

BSL Max buffer size [D12-D11]

BSL Buffer Start address [D16-D13]

BCR Configuration ID [D20-D17]

BSL Configuration ID [D24- D21]

Application version:

32 bit application version is taken from the address specified in BSL configuration

BSL Buffer size:

RAM data buffer size available to store the BSL data packets that are sent/received.

Example

Host: 80 01 00 19 B2 B8 96 49

BSL: 00 08 19 00 31 00 01 00 01 00 00 00 00 01 00 C0 06 60 01 00 20 01 00 00 00 01 00 00 00 49 61 57 8C

In the above given response,

Command Interpreter version - 0x0100

Build ID - 0x0100

Application version - 0x00000000

Active Plug-in interface version - 0x0001

BSL Max buffer size - 0x06C0

BSL Buffer Start address - 0x20000160

BCR Config ID - 0x00000001

BSL Config ID - 0x00000001

www.ti.com Bootloader Protocol

SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

MSPM0 Bootloader 21

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

4.4.5 Standalone Verification

Structure

Header Length RSP Data CRC32

0x08 0x05 0x00 0x32 D1...D4 C1 C2 C3 C4

Description

The command returns the CRC value in response to the standalone verification command

Data

32 bit CRC value calculated for the requested memory region. D1...D4, where D1 is the least significant byte of
the CRC32.

4.5 Bootloader Security
4.5.1 Password Protected Commands

All the commands that can access the data in the memory directly or indirectly, are password protected. The
password is configurable in the BSL configuration in Non-main memory.

When an incorrect password is sent, device will sleep for next 2 seconds and does not accept any command
during this period to make brute force attacks harder. When incorrect password is sent for 3 times, Security alert
action is taken by the BSL.

4.5.1.1 Security Alert

A security alert can be configured to any of the following three modes, in the BSL configuration.

1. Factory Reset - Factory reset erases the complete main and non-main flash memories. The erase is done
irrespective of the factory reset mode in the BCR configuration. If certain parts of the flash are static write
protected, the BSL cannot erase the complete flash memory. In this case once non-main is erased, the
bootloader password returns to the default. BSL can then be unlocked and programmed with the new
password .

2. Disable Bootloader - Disables the bootloader in the BCR configuration and exits from BSL. No further entry
to BSL is possible, unless the BCR non-main configuration is updated to enable the bootloader. The BSL is
not disabled if static write protection is enabled for non-main.

Also this feature is supported in devices that have more than 2KB SRAM memory.
3. Do Nothing - Does not take any action.

Note

In case of 'Factory reset' security alert configuration, if non-main is left in the erased state, the device
is locked and is not possible to gain access to the device again.

4.5.2 BSL Entry

Entry to Bootloader is allowed only through the Bootcode.

Bootloader can be disabled in BCR configuration.

Bootloader Protocol www.ti.com

22 MSPM0 Bootloader SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

5 Sample Program Flow with Bootloader
This section explains the typical sequence followed by the BSL host for loading the image through the
Bootloader. This sample sequence erases the flash memory and programs new firmware in it.

• Bootloader shall be started through Blank device detection, Pin based invocation or Application request.
• Once it is invoked, send the connection command to establish connection with the BSL through the desired

interface.
• If UART interface is used, the baud rate can be changed to a higher value, to speed up the further

communication and is optional.
• To erase the flash memory completely use the Mass erase command. Only when there is a need to update

Non-Main flash use factory reset command. Because if the Non-main flash is erased and left unprogrammed
the device is locked.

• Program the firmware image
• Do the CRC verification of the programmed memory region to check the correctness of data programmed.

This is an optional step.
• Application can be started with 'Start application' command.

www.ti.com Sample Program Flow with Bootloader

SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

MSPM0 Bootloader 23

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

Figure 5-1. BSL Host Sequence

Sample Program Flow with Bootloader www.ti.com

24 MSPM0 Bootloader SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

6 Flash based BSL
Flash Bootloader is a user implemented bootloader routine placed in the flash memory. Thus allowing for
customisation and update. The implementation of Flash BSL varies based on the BSL Type of the device.

• Type 1 devices with ROM BSL support provide an option to implement a custom Bootloader in Flash memory,
referred to as a Secondary / Alternate Bootloader. In this type of devices, ROM BCR will take care of the
invocation, the Flash implementation is expected to handle BSL operations (such as program and memory
readback), through any of the serial interfaces available in the device.

• Type 2 devices lacking ROM BSL support, uses the same implementation as Secondary BSL.

Both Type 1 & Type 2 Flash BSL implementations follow identical invocation flows and configuration procedures.
Refer to Section 6.1 for Type 1 & 2 devices.

• Type 3 devices, would require BSL invocation handling in addition to BSL operations.

Refer to Section 6.2 for Type 3 devices.

Note

If Flash BSL memory is not write protected, the bootloading process could erase the Flash BSL code,
potentially causing device lockup. Recovery may or may not be possible depending on the debug
configurations.

6.1 Secondary BSL / ROM Invoked Flash BSL
When the ROM BCR detects the BSL invocation condition, it will invoke this Flash-based BSL, which is expected
to handle the BSL operations through the serial interfaces.

To achieve this, load the BSL in the Main flash memory in any address other than 0x0000. As application is
expected to be placed at the start of the Flash memory. And then register it in the BSL configuration in Non-main
Flash. When BSL is invoked next time through one of the invocation methods, device will check for the Flash
BSL configuration field and branches to it, and the control is not expected to return back to ROM.

BSL mode configuration in the BCR configuration is applicable for Flash BSL as well. When this setting is
disabled, BSL in flash will not be invoked.

The flash memory region where the BSL is loaded should be write protected in the BCR configuration, to avoid
unintended erase during the bootloading process. Nonmain write protection is optional. But care should be taken
to ensure the Flash BSL pointer is retained in the BSL configuration in Nonmain memory.

6.1.1 Secondary BSL Example

An example of secondary Bootloader for Type 1 devices is given as part of SDK examples for reference. This
section gives more details on that.

Description

This Sample Secondary Bootloader supports programming / verifying data in the memory, with same BSL
protocol format as Primary BSL (ROM BSL) in the device and can be invoked in the same way as the ROM BSL.

It supports the following major functions

• Program data
• Flash memory erase
• Readback data
• CRC verification
• Start Application

It uses UART interface to communicate with the Host.

This example takes care of secondary bootloader implementation as well as the registration of it. Hence once
this image is loaded to the device, the primary bootloader in the device can't be used. Only the secondary

www.ti.com Flash based BSL

SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

MSPM0 Bootloader 25

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

Bootloader will be active. To revert the device to use primary Bootloader, SWD_Factory_Reset command has to
be used (Factory reset through Debug Subsystem Mailbox). .

Example Usage

• Connect UART_RX and UART_TX with the BSL Host (any microcontroller with UART).
• Compile and load the example.
• Create BSL invocation condition using BSL Invoke pin or any other invocation methods.
• Send the GetDeviceInfo command from the host.
• Device should respond back with the version information and SRAM buffer space available.
• Similarly Send erase, program, verification commands to program data in the memory.

Software File Details

File Name Details

secondary_bsl.c
Initializes the peripherals needed for BSL operation. Receives command packets from Communication
interface and passes it to Command processing layer.
Also takes care of registering the secondary bootloader in the BSL configuration memory.

bsl_ci.c Interprets the command packets, process the command and sends back the response to Host

bsl_ci.h Contains the definitions of BSL commands and Responses. Also the function declarations of bsl_ci.c

bsl_uart.c Handles the communication between the Host and the BSL core

bsl_uart.h Contains definitions of BSL Acknowledgment and function declarations of bsl_uart.c

ti_msp_dl_config.h Contains device specific configurations like UART pins, base addresses of the peripherals used, etc.

boot_config.h Contains BCR and BSL configuration structure

factory_config.c Implements functions to fetch factory configured device specific data like SRAM memory size.

factory_config.h Contains Factory configuration structure and function declaration of factory_config.c

startup_mspm0x_ticlang Startup file that contains vector table, reset handler and other handlers

mspm0x.cmd
Linker command file that specifies memory region where the Secondary Bootloader image should reside
in the memory and the SRAM region where it should operate.

Customization

This example gives a reference implementation for secondary bootloader. It can be customized as needed. BSL
Core layer (secondary_bsl.c, bsl_ci.c) or interface layer (bsl_uart.c) are the major places where customization
will be done.

Steps to be followed

• Modify the code as needed
• Once the changes are done, compile the code
• Modify the flash write protection settings in BCR configuration as appropriate
• Calculate the CRC for BCR configuration and store the new CRC value
• Compile the code again
• Load the customized BSL image

6.2 Standalone Flash BSL
This Flash BSL implementation is expected to take care of the invocation mechanisms along with the BSL
operations. When device comes out of reset, it will always execute the code placed in the start of the flash
memory.

To add the Flash BSL support, Invocation and BSL implementation shall be loaded into the flash. And the flash
memory region where the BSL is loaded should be write protected in the BCR configuration, to avoid unintended
erase during the bootloading process.

Flash based BSL www.ti.com

26 MSPM0 Bootloader SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

6.2.1 Standalone Flash BSL Example

MSPM0 SDK contains an example for Flash BSL implementation for Type 3 devices. This section explains that
in detail.

Description

Flash BSL example supports programming / verifying data in the memory. One of UART/I2C interface can be
used to communicate with the Host.

It can be invoked in any of the three way as follows:

• No Application at APP START
• BSL PIN Inovation
• Application based invocation

It supports the following functions

• Program data
• Get Device info
• Flash memory erase
• Readback data
• CRC verification
• Start Application

Flash BSL region is static write protected using bootcode user configuration. Once this image is loaded to the
device, the Flash Bootloader will be active and will be looking for invocation condition on every Reset. When
no BSL request is found it branches to application. Later if the Flash BSL needs an update or it needs to be
removed, then SWD_Factory_Reset command has to be used to erase the Flash BSL from the flash memory.

Users can configure the interface pins and other settings. They can also selectively enable only required
features to optimize memory footprint.

Figure 6-1. Standalone Flash BSL Memory Layout

In the Flash memory, Invocation logic is placed at the start address, 0x0000. Then the BSL is placed. These 2
combined would occupy the first 6 KB of flash, by default. And the application is expected to start at 0x1800.
These addresses can vary based on the features added or removed in BSL.

Example Usage

• Connect UART_RX and UART_TX or I2C_SDA and I2C SCL with the BSL Host

www.ti.com Flash based BSL

SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

MSPM0 Bootloader 27

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

• Enable only the required BSL functionalities in flash_bsl_modules.h
• Compile, load the example.
• Create BSL invocation condition using BSL Invoke pin or any other invocation methods.
• Send GetDeviceInfo command from the host. Device should respond back with the version information and

SRAM buffer space available.
• Similarly Send erase, program, verification commands to program data in the memory.

Software File Details

File Name Details

flashBSL.c Initializes the peripherals needed for BSL operation. Receives
command packets from Communication interface and passes it to
Command processing layer.
This gets executed once BSL invocation is requested.

flashBSL_defines.h Contains configurations and other definitions for flashBSL.c

flashBSL_modules.h Contains the different features of Flash BSL that can be configured
as required

flashBSL_invocation .c Checks different invocation conditions and branches to application or
BSL based on the result

flashBSL_invocation .h Contains configurations and macro defintions related to invocation

flashBSL_uart .c Handles the communication between the Host and the BSL core

flashBSL_uart .h Contains definitions of BSL Acknowledgment

flashBSL_i2c .c Handles the communication between the Host and the BSL core

flashBSL_i2c .h Contains definitions of BSL Acknowledgment

flashBSL_ci.c Interprets the command packets, process the command and sends
back the response to Host

flashBSL_ci.h Contains the definitions of BSL commands and Responses. Also the
function declarations of flashBSL_ci.c

boot_config .c Contains the Boot configuration details. It also additionally contains
the BSL configuration section that can be customised based on the
Flash BSL implementation.
Note: It is not derived from SYSCFG tool.

boot_config .h Contains the definitions for boot_config .c

startup_mspm0c1104_ticlang.c Startup file for the BSL. It handles the BSL and Invocation as two
independent routines.

mspm0c1104.cmd Handles the memory layout mentioned above.

Flash based BSL www.ti.com

28 MSPM0 Bootloader SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

7 Interface Plug-in
ROM Bootloader provides an option to add custom interface implementation to the ROM BSL core as a Flash
Plug-in. This gives an advantage of customizing the interface, without reimplementing the complete BSL core.

With this feature either:

• A new interface, which is not available in ROM BSL can be added to the Interface list for Auto detection. Ex:
SPI, CAN, etc. (Or)

• ROM interface implementation (UART / I2C) can be overridden

To use this option, the Flash plug-in image should be loaded to Main flash and registered in BSL configuration
in Non-main Flash memory. Refer to MSPM0xx Technical reference manual - Configuration memory (Non-main)
section.

Also the flash memory region where plug-in is loaded and Non-main configuration memory should be write
protected in the BCR configuration, to prevent flash plug-in and it's registration in the non-main getting erased
during bootloading process.

Note

Erasing the Flash plug-in region in Main flash, could cause device lock up. Hence write protection is
needed.

7.1 Implementation
The Plug-in has to take care of data handling and communication with the BSL Host. This Interface Flash plug-in
is coupled with ROM BSL core through the following 4 APIs.

• Init
• Receive
• Transmit
• Deinit

Figure 7-1. Plug-in Implementation

Flash plug-in image shall be built like any other application and will be loaded to main flash. But unlike
application, the startup code or main function will not be executed. Only the above mentioned 4 APIs will be
called by the ROM BSL through the hooks registered in the BSL configuration in Non-main memory.

7.1.1 Init

Prototype

uint16_t init(uint8_t* buffer, uint16_t bufferSize);

buffer - Pointer to the SRAM data buffer sent from the BSL core.

www.ti.com Interface Plug-in

SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

MSPM0 Bootloader 29

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

bufferSize - 1/2 of the SRAM memory size available to use as data buffer. If two buffers are used 1 to transmit
and 1 to receive, the address of one buffer will be 'buffer' and the address of the other buffer will be 'buffer +
bufferSize'

return - Returns the 16 bit Plug-in version information

Description

Init function should take care of configuring the desired interface and initializing the parameters for data
handling. It should also take care of initializing any other global variables used, since no startup code will be ran
to initialize them.

7.1.2 Receive

Prototype

uint32_t receive(void);

return - Returns the 32 bit start address of the Received data packet. The data packet should have the same
format as described in the ROM BSL protocol Section 4.

Description

Receive function should take care of reading the data packets from the BSL host. It should share the packet with
BSL core only when the complete packet is received and correctness of the data is checked (CRC verification of
data). Also the address should be shared only once per data packet. If this function is called by BSL core, when
there is no data packet received or when it is in progress, it should return '0'.

If a data packet is received successfully without any issues, it shall acknowledge to the host, as ROM BSL
plug-in does (Refer ROM BSL acknowledgments). In case of any issues, it shall be reported to host through a
NACK and the packet should not be shared with ROM BSL core.

7.1.3 Transmit

Prototype

uint8_t send(uint8_t* data, uint16_t length);

data - Pointer to the BSL core response packet to be sent to the host. It will have the same format as described
in section Section 4

length - Length of the BSL core response packet excluding the length of the CRC 4 bytes.

return - Returns '1' if the transmission is successful. '0' if the transmission failed.

Description

Transmit has to send the BSL core response packet to the host. It should also take care of calculating and
adding CRC for the packet. Transmission API should return only after completely transmitting the data.

7.1.4 Deinit

Prototype

bool deinit(void);

Return

Returns 'True' if deinit is done.

Description

This function resets the interface configuration and unregisters interrupt handlers if registered.

7.1.5 Important Notes

Important points to keep in mind, while developing Flash Plug-in.

1. Main Flash memory region, where Flash plug-in is loaded should be static write protected
2. All the Global variables should be initialized by the 'Init' function

Interface Plug-in www.ti.com

30 MSPM0 Bootloader SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

3. Function prototypes for the 4 plug-in APIs should be as specified in the BSL userguide.
4. SRAM memory usage

a. VTOR - Start of SRAM (0x20000000). If interrupts are used, VTOR should be placed at the start of the
SRAM, as the ROM BSL uses that address space

b. Stack start address - End of SRAM memory available in the device
c. Stack size - Should not exceed the ROM BSL stack size
d. Data section (.data, .bss) - 'BSL Buffer Start address' returned by the Get Device Info command, when

no Flash plug-in is registered in the device, should be the start address of the Data section.
e. Data section size - Size consumed by the Data section (.data, .bss) should be configured in the BSL

Non-main configuration memory.

7.2 Flash Plug-in Type
The type of communication interface used in the Flash plug-in is configured in the
BSLPLUGINCFG.PLUGINTYPE field in BSL configuration memory (see the technical reference manual).

If the plug-in type has any of the ROM interface types (UART or I2C), the flash plug-in overrides the ROM
implementation. If the type has a new type that is not available in ROM (for example, SPI), the plug-in is added
as a new interface.

Table 7-1. Plug-in Type Values
No. Interface Plug-in Type

1 UART 0x1000

2 I2C 0x2000

3 Any other interface 0xXXXX

As shown in Figure 7-2, after checking the flash plug-in type, the updated interface list is used for auto detection.
Even after flash plug-in registration the ROM interfaces can be used if those interfaces are not overridden.

www.ti.com Interface Plug-in

SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

MSPM0 Bootloader 31

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

Figure 7-2. Flash Plug-in

7.3 Overriding an Existing Interface
This feature allows user to override existing ROM BSL interfaces, UART & I2C with the Flash version. In this
case once flash plug-in is loaded, ROM version will become inactive and can never be used. To revert the device
to use ROM interface use SWD_Factory_Reset (Factory reset through Debug Subsystem Mailbox).

7.3.1 UART Interface Flash Plug-in Example

A sample flash plug-in that uses UART communication, is given as part of SDK examples for reference. This
section gives more details on that.

Description

UART interface flash plug-in handles the data transaction between the BSL host and the ROM BSL through the
following 4 API Hooks.

• BSL_PI_UART_init
• BSL_PI_UART_receive
• BSL_PI_UART_send
• BSL_PI_UART_deinit

The UART flash plug-in is primarily used to override the ROM BSL UART interface with custom implementation
when there is a need.

Interface Plug-in www.ti.com

32 MSPM0 Bootloader SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

Example Usage

• Connect UART_RX and UART_TX with the BSL Host (any microcontroller with UART interface).
• Compile and load the example.
• Create BSL invocation condition using BSL Invoke pin or any other invocation methods.
• Send Connection command from the host. A BSL acknowledgment is received on success.
• Send GetDeviceInfo command from the host.
• BSL responds with the UART interface flash plug-in version information.
• Similarly send erase, program, verification commands to program data in the memory.

Software File Details

File Name Details
bsl_uart.c Handles the communication between the host and the BSL core. Defines the four interface APIs Init,

Receive, Send and Deinit.

bsl_uart.h Contains definitions of BSL acknowledgment and function declarations of bsl_uart.c

ti_msp_dl_config.h Contains device specific configurations like UART pins, clock configurations, and others.

boot_config.h Contains BCR and BSL configuration structure

startup_mspm0x_ticlang Startup file that contains only the default handler function definition. Unlike a typical startup file does not
have interrupt vector table or reset handler, because these features are never used in the flash plug-in
and are removed to reduce the memory consumption.

mspm0x.cmd Linker command file that specifies memory region where the flash plug-in image resides in the memory
and the SRAM region for operation.

Customization

This example gives a reference implementation for a flash plug-in. It can be customized as needed. The
interface flash plug-in APIs are the major places of change.

Steps to be followed:

• Modify the flash plug-in APIs as needed
• When the changes are done, compile the code
• Calculate the CRC for the BSL configuration if the API pointers are updated
• Modify the flash write protection settings in BCR configuration as appropriate
• Calculate the CRC for BCR configuration
• Store the new CRC in the BCR and BSL configuration.
• Compile the code again.
• Load the flash plug-in image

8 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from February 28, 2023 to January 31, 2026 (from Revision * (February 2023) to
Revision A (January 2026)) Page
• Added different BSL Types across MSPM0 devices.. 25

www.ti.com Revision History

SLAU887A – FEBRUARY 2023 – REVISED NOVEMBER 2025
Submit Document Feedback

MSPM0 Bootloader 33

Copyright © 2026 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAU887A&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully
indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale, TI’s General Quality Guidelines, or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products
are standard, catalog, general purpose devices.
TI objects to and rejects any additional or different terms you may propose.
IMPORTANT NOTICE

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com/lit/pdf/SZZQ076
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	1.1 Overview of BSL Features
	1.2 Terminology
	1.3 Additional resources

	2 BSL Options
	3 BSL Architecture
	3.1 Design
	3.1.1 Timeout Feature
	3.1.1.1 Interface Autodetection
	3.1.1.2 Command Reception

	3.2 BSL Invocation
	3.2.1 Blank Device
	3.2.2 Application Request
	3.2.3 GPIO Based Invocation
	3.2.4 Debug Mailbox Command
	3.2.5 Pre-Boot Application Verification

	3.3 Memory
	3.3.1 SRAM Memory Usage

	3.4 BSL Configuration
	3.5 BSL Status

	4 Bootloader Protocol
	4.1 Packet Format
	4.2 UART and I2C BSL Protocol
	4.2.1 BSL Acknowledgment
	4.2.2 Peripheral Configuration
	4.2.2.1 UART
	4.2.2.2 I2C
	4.2.2.3 CRC

	4.3 Bootloader Core Commands
	4.3.1 Connection
	4.3.2 Get Device Info
	4.3.3 Unlock Bootloader
	4.3.4 Program Data
	4.3.5 Program Data Fast
	4.3.6 Readback Data
	4.3.7 Flash Range Erase
	4.3.8 Mass Erase
	4.3.9 Factory Reset
	4.3.10 Standalone Verification
	4.3.11 Start Application
	4.3.12 Change Baud Rate

	4.4 Bootloader Core Response
	4.4.1 Bootloader Core Message
	4.4.2 Detailed Error
	4.4.3 Memory Readback
	4.4.4 Device Info
	4.4.5 Standalone Verification

	4.5 Bootloader Security
	4.5.1 Password Protected Commands
	4.5.1.1 Security Alert

	4.5.2 BSL Entry

	5 Sample Program Flow with Bootloader
	6 Flash based BSL
	6.1 Secondary BSL / ROM Invoked Flash BSL
	6.1.1 Secondary BSL Example

	6.2 Standalone Flash BSL
	6.2.1 Standalone Flash BSL Example

	7 Interface Plug-in
	7.1 Implementation
	7.1.1 Init
	7.1.2 Receive
	7.1.3 Transmit
	7.1.4 Deinit
	7.1.5 Important Notes

	7.2 Flash Plug-in Type
	7.3 Overriding an Existing Interface
	7.3.1 UART Interface Flash Plug-in Example

	8 Revision History

