TI TECH DAYS

Be confident around automotive functional safety

Tomas Urban

Systems Engineering - Automotive Powertrain Systems

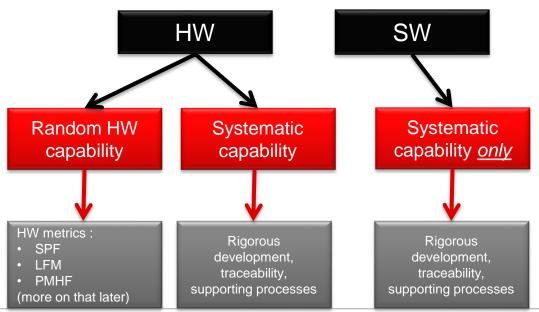
Presentation summary

Session summary:

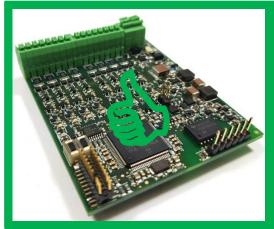
Many automotive systems are related to functional safety. Offering a functional safety expertise becomes an important door-opener and ultimately a selling point. This is an introductory presentation to those who want to get a starting point for functional safety communication with customers.

What you'll learn:

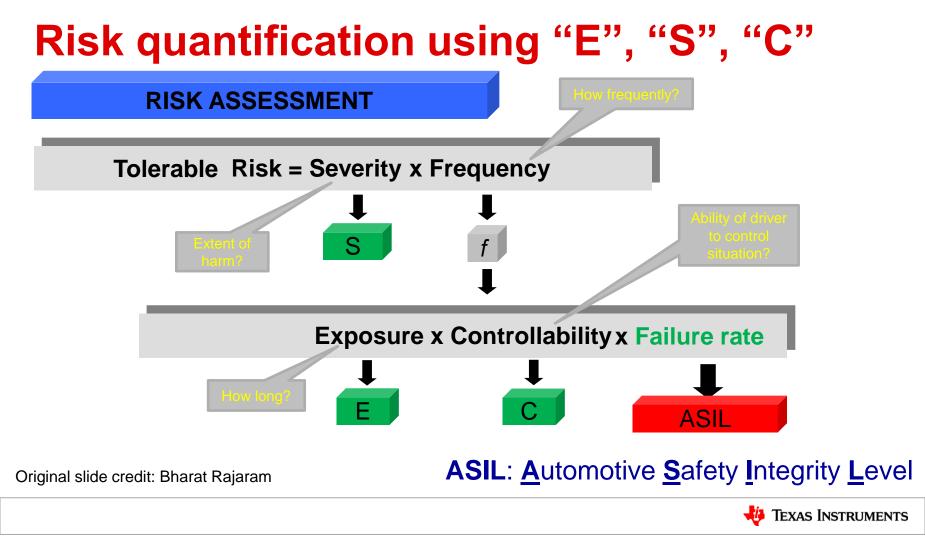
- What most important terms, acronyms and concepts are worth to know?
- What actually is an ASIL rating? Who and how are safety goals classified with ASIL rating?
- Update on how are the HW components classified and how does it match with TI's portfolio.


Agenda

- Functional safety (FS)
- Risk quantification
- ASIL (SIL)
- Safety goal
- FIT/MTBF/λ
- FIT rates
- Safety mechanism, diagnostic coverage, FMEDA
- HW metrics & HW development
- FS development iterative example
- HW components



Functional safety


- Functional safety is the absence of *unreasonable risk* due to hazards caused by *malfunctioning behavior* of E/E systems
- Managing (reducing) the risks associated with function of a system (transportation, machinery, medical...)
- Both FS and FuSa acronyms are used

ASIL (SIL)

- Outcome from classification of a <u>hazardous event</u> e.g. <u>"Fire"</u>
 - Specified for vehicle situation or operation mode of the vehicle e.g. <u>"The</u> vehicle is stationary"
 - Classification: <u>ASIL A, B, C, D</u>
 - Result of evaluation of of <u>**S**,**E**,**C**</u> (from previous slide)
- ASIL classification then translates down to the system architecture into <u>Safety goals</u>
- Specifies
 - Methods for system development
 - HW metrics (more on that later)
 - Verification and validation techiques

Safety goal

Assessment of hazards and risks result in definition of Safety goals and their ASIL classification.

- Safety goal is top level safety requirement
- Typically includes some time interval
- Formulation like:
- " Unintended activation of the airbag is prevented (ASIL D)"

FIT / MTBF / λ

- Sometimes confusing and all used in the same context.
- All are values derived from statistics and probability
- FIT = number of <u>**F**</u>ailures <u>**I**</u>n <u>**T**</u>ime interval of 10^9 hours of operation
- MTBF =in hours stands for <u>M</u>ean <u>Time</u> <u>B</u>etween <u>F</u>ailures.
 For non-repairable systems (e.g. electronic components) the meaning is MTTF (<u>M</u>ean <u>Time</u> <u>To</u> <u>F</u>ailure)
- λ in hours⁻¹ = a failure rate (number of failures in one hour)

Example of FS FIT rates acc. to SN29500

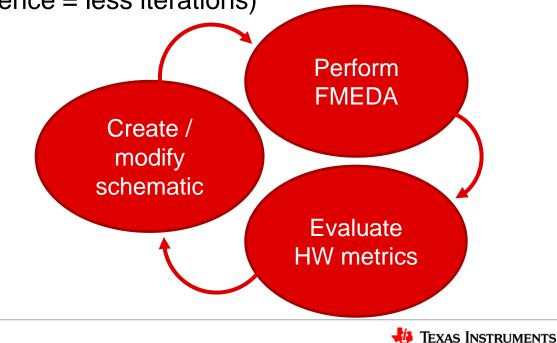
Component type	FIT
Resistors, Capacitors, Diodes	1-2FIT
Low power BJTs, FETs	3-5FIT
Low complex analog ICs	5-10FIT
Switching regulators	10-20FIT
Power BJTs, FETs	60FIT
Mixed signal CMOS ASICs (50-500E6 transistors)	20-120FIT
MCUs	150FIT

Important note: These are "Base Failure Rates". E.g. static RAMs are affected by "Soft Errors" which add significant failure rate to these figures when not covered by ECC or parity.

Safety mechanism, diagnostic coverage, FMEDA

- SM: safety mechanism
 - A technical solution which typically prevent faults to become a single point failure
 - Controls AND/OR mitigates faults
- **DC**: diagnostic coverage (effectiveness of SM)
 - A coefficient ranging from interval 0-100%
 - Techniques and according DC values are listed in ISO26262-5
- FMEDA: failure modes, effects and diagnostic analysis
 - Typically a table listing components of the design
 - Failure modes of each and FM distribution
 - How are FMs covered by SMs
 - Output: calculated HW metrics

Hardware metrics


- Quantifies the effectiveness of the safety architecture
- Summary of <u>all</u> components relevant for a <u>safety goal</u>
- Calculations in the FMEDA table
- Three key metrics
 - Probability metric for random hardware failures (PMHF) absolute value
 - Single point fault metric (SPFM) ratio
 - Latent fault metric (LFM) ratio

ratio	ASIL B	ASIL C	ASIL D
PMHF	<10 ⁻⁷ h ⁻¹ (100 FIT)	<10 ⁻⁷ h ⁻¹ (100 FIT)	<10 ⁻⁸ h ⁻¹ (10 FIT)
SPFM	>= 90%	>= 97%	>= 99%
LFM	>= 60%	>= 80%	>= 90%

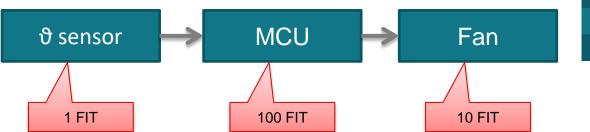
FS hardware development simplified

- HW development philosophy according to ISO26262 is not different from good engineering practice
- Iterative process (experience = less iterations)

Example n=0

Zeroth iteration: Definition of Safety goal and setting the FS requirement

<u>Safety goal:</u> Prevent overheating of the system (ASIL C)


Derived FS requirement:

Activate a cooling fan when the temperature rises above threshold

Example n=1

ASIL=N.A.

Single-Point Fault Metric=1-(56/111)=49.5%
Latent Fault Metric=irrelevant
PMHF=56FIT

Acronyms:

FIT = Failure In Time

SM = Safety Mechanism

FMD = Failure Mode Distribution

SG = Safety Goal

RF = Residual Faults (in FIT)

MPF? = Can cause Multiple Point Failures?

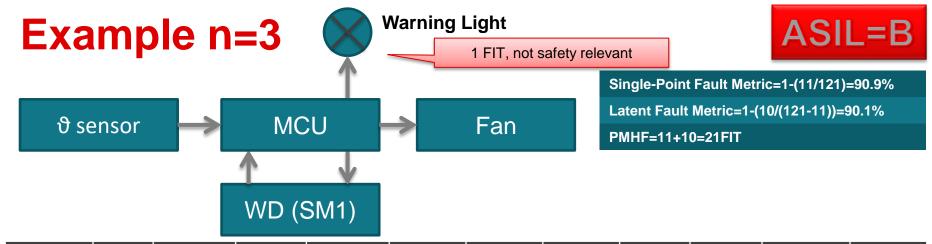
SM?(MPF) = Safety Mechanism with regard to MPF

DC-MPF-L = Diagnostic Coverage related to Latent MPF

MPF-L = Latent MPF

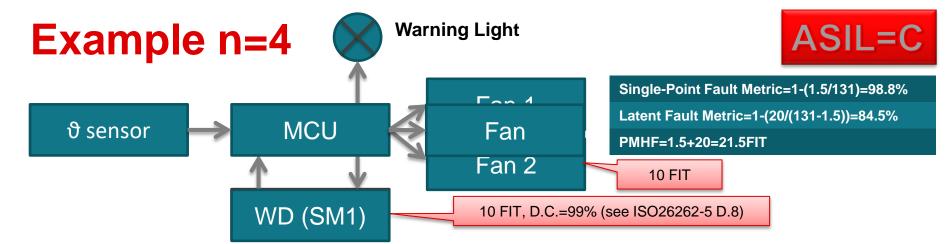
	FIT	FMD	violates SG?	RF	MPF?	SM? (MPF)	DC-MPF-L	MPF-L
စ sensor	1	100%	Y	1				
MCU	100	50%	Y	50				
		50%	Ν					
Fan	10	50%	Y	5				
		50%	Ν					
Total	111			56				

Example n=2


ASIL=N.A.

			Single-Point Fault Metric=1-(11/121)=90.9%
ο θ ο ο 19 ο σ. τ		Гор	Latent Fault Metric=1-(55/(121-11))=50%
ឋ sensor	MCU	→ Fan	PMHF=11+55=66FIT
Acronyms:	\wedge		
SM = Safety Mechanism WD = WatchDog	WD (SM1)	10 FIT, D.C.=90%	% (see ISO26262-5 D.8)

	FIT	FMD	violates SG?	SM? (SPF)	DC-SPF	RF	MPF?	SM? (MPF)	DC-MPF-L	MPF-L
9 sensor	1	100%	Y	Ν		1				
MCU	100	50%	Υ	SM1	90%	5		Ν	0%	45
		50%	Ν							
Fan	10	50%	Υ	Ν		5				
		50%	Ν							
WD	10	100%	Ν				Y	Ν	0%	10
Total	121					11				55


Acronyms: SPF = Single Point Failures, SM?(SPF) = Safety Mechanism with regard to SPF, DC-SPF = Diagnostic coverage with regard to SPF

	FIT	Safety related?	FMD	violates SG?	SM? (SPF)	DC-SPF	RF	MPF?	SM? (MPF)	DC-MPF-L	MPF-L
9 sensor	1	Y	100%	Y	Ν		1				
MCU	100	Y	50%	Υ	SM1	90%	5		Ν	100%	0
			50%	Ν							
Fan	10	Υ	50%	Υ	Ν		5				
			50%	Ν							
WD	10	Y	100%	Ν				Y	Ν	0%	10
Warn. Light	1	Ν	100%	Ν				Ν			
Total	121						11				10

			SG?	(SPF)		RF	MPF?	SM? (MPF)	DC-MPF- L	MPF-L
ູ 9 sensor 1	Y	100%	Y	Ν		1				
MCU 100	Y	50%	Y	SM1	99%	0.5		Ν	100%	0
		50%	Ν							
Fan 1 10	Y	50%	Ν	Ν			Υ	Ν	0%	5
		50%	Ν							
Fan 2 10	Y	50%	Ν	Ν			Υ	Ν	0%	5
		50%	N							
WD 10	Y	100%	N				Y	Ν	0%	10
Warn. Light 1	Ν	100%	N				Ν			
Total 131						1.5				20

Hardware element classes

Class I: Basic

- Few, if any sub-parts
- Failure modes easily identified
- No internal safety mechanism

Evaluation:

 no evaluation necessary

Class I: Basic

- Resistor, diode, relay, FET
- Op Amp, level shifter, logic gate, SVS
- single channel DCDC or LDOs
- Simple CAN or LIN
 TRX

How to address

 Typically no additional information besides the FIT rate necessary

Hardware element classes

Class II: Intermediate

- Few operating modes
- Composed of sub parts
- Might have diagnostic function
- Operation and failure modes can be observed and tested for hardware qualification.
- Failure modes can be identified e.g. from datasheets or manuals

Evaluation:

evaluation by analysis and testing

Class II: Intermediate

- ADCs, DACs, (digital) temp sensors (e.g. LM71), current sensors (e.g. DRV425, INA231)
- DCDC converter with power good
- TRX, general purpose SBC & higher function transceivers e.g. integrated CAN + LDO
- Multichannel and /or multifunction SVS

How to address

- Typically FIT rate and failure mode distribution
- pin FMEA

Hardware element classes

ISO 26262-8:2018

Class III: Complex

- Many sub parts
- High complexity, many operating modes
- Failure modes identified with detailed knowledge only
- Internal safety mechanism
 relevant for safety concept

Evaluation:

- Should be developed in compliance with ISO26262
- Evaluation by analysis and testing
- Additional measures and arguments are required

Class III: Complex

Microprocessor, video accelerators, SOC (system on a chip), ECU, ECM

Multichannel PMICs (e.g. TPS65381, TPS65310, ...)

- Motor driver (e.g. DRV3245)
- Higher function SBC (e.g. TCAN4550)

How to address

- FIT rate and failure mode distribution + pin FMEA
- Usually requires the part developed according to ISO26262

Original slide credit: Ulrich Bertl

FS components in TI's portfolio (SafeTI™ replacement)

	EXAS NSTRUMENTS	Functional safety-capable The simplest product category of analog products that can be evaluated for use in a functionally safe system	Functional safety quality-managed Moderately complex products such as an MCU	Functional safety-compliant The most complex products such as MCUs, microprocessors and complex analog signal- chain products	<image/> <image/> <image/> <image/> <image/> <section-header></section-header>
Development	TI quality-managed process	\checkmark	\checkmark	\checkmark	Ban, 1998 14 (Materiana)
process	TI functional safety process			\checkmark	1 1
	Functional safety FIT rate calculation	\checkmark	\checkmark	\checkmark	
Analysis report	Failure mode distribution (FMD) and/or pin FMA*	1	Included in FMEDA	Included in FMEDA	CERTIFICATE No. Control Contro
	FMEDA		\checkmark	\checkmark	Centication Mark
	Fault-tree analysis (FTA)*			\checkmark	the second of the second
Diagnostics description	Functional safety manual		1	\checkmark	
Certification	Functional safety product certificate**			\checkmark	 Provide the second secon

* May only be available for analog power and signal chain products. ** Available for select products.

What system ASIL level can be achieved with

A. <u>Automotive rated logic gate e.g. SN74LV86A-Q1?</u>

-> **ASIL D**. Logic gate is a low complex component and all failure modes are known and documented.

B. <u>Functional safety quality-managed CAN-FD transceiver TCAN4550-Q1?</u>

-> **ASIL D**. The documentation available from TI includes FMEDA and failure mode distribution analysis. The system integrator can easily evaluate the HW metrics as well as develop eventually safety mechanisms to mitigate the failures.

C. <u>Functional safety compliant automotive gate driver unit DRV3245Q-Q1?</u>

-> **ASIL D**. On top the documentation listed in previous case TI provides with a third-party certification report. Development process tailored for FS ICs and as well certified by a third-party.

Why & how do automotive and industrial systems differ?

	Automotive systems	Industrial systems
System characteristic	 Customizable Configurable Modular Low cost 	One-purposeHighly specificHigher cost
Test for latent fault	~8h max drive cycle	24/7 continuous
Supply chain	HierarchicalOEMmultiple Tier 1's, 2's	Flat One general supplier
Complete systems delivered	Very high volume	Lower volume

Why & how do automotive and industrial systems differ?

	Automotive systems	Industrial systems
Development process	Cost driven, Time-to- market	Reliability, availability –driven
Safety assessment	Hierarchical – per element (even down to IC level)	Flat – one large safety assessment after commissioning the complete system
Components used	State of the art	Well proven in use
Architecture	Typically single-channel with emphasise on diagnostics (1001D)	Typically redundant symmetric architecture (1002D)

©2020 Texas Instruments Incorporated. All rights reserved.

The material is provided strictly "as-is" for informational purposes only and without any warranty. Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated