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Breaking down accuracy errors in a 
precision high-speed ADC signal chain

Introduction
Data converters, amplifiers, professional athletes—they all 
have accuracy errors. As it relates to electronics, however, 
an accuracy error is the sum of numerous fluctuations that 
move the DC conditions within each part in a signal chain. 
These errors can eat up the useful signal dynamic range of 
the system in different ways.

This article examines error-producing conditions in the 
signal chain where the fully differential amplifier (FDA) 
meets the high-speed analog-to-digital (ADC) converter in 
a receiver system.

Signal-chain overview and resistor errors
Figure 1 gives an overview of the signal-chain subset. 
Here, the analog input signal connects to the primary of 
the balun, which converts the input signal to a differential 
signal. In this example, the FDA gains up the signal by 4 
or 12 dB; the signal then moves through a matching 
network to eventually interface to the high-speed ADC for 
sampling of the analog signal.

Table 1 separates the high-level signal-chain specifica-
tions in a spreadsheet, a good starting point for keeping all 
of the specifications in order.

For the following analysis, assume that there are no 
errors associated with the balun. See References 7 
through 9 for descriptions of balun and transformer 
nuances.

There are three significant contributors to resistor errors:

•	 Resistor tolerance (Rtol) is the value tolerance, usually 
specified in percent.

•	 Resistor temperature coefficient (Rtempco) is the value’s 
drift, usually specified in parts per million per degrees 
Celsius.

•	 Resistor life (Rlife) or qualification is the value’s drift 
over thousands of hours, usually specified in percent.
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Figure 1. Subset of a receiver signal chain
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Table 1. Signal-chain specifications

Overall Signal Chain Specifications Value Unit

Input Signal 0.3 V

Temp. Range (–40 to +85°C) ⇒ 1 = 26°C 
at Room Temp. 1

Kelvin (Room Temp.) 299.15 K

Boltzmann’s Constant 13.8 x 10-24 W-s/K

LDO Reg Line Regulation 0.05 %/V

ADC Supply Voltage-VA19 1.9 V

ADC Supply Voltage-VA11 1.1 V

ADC Supply Voltage-VD11 1.1 V

DIFF Amp Supply Voltage 5 V

BW 1 GHz

Noise BW—1st Order System 1.57 GHz

Noise BW—2nd Order System 1.22 GHz

http://www.ti.com/adj


Texas Instruments	 2	 ADJ 3Q 2020

Signal ChainAnalog Design Journal

For example, a simple 50-Ω resistor with a 5% toler-
ance, 1,000 ppm/°C over a –40°C to +85°C temperature 
range (125°) and a life drift of 2% over 1,000 hours would 
yield a resistance error of ±9.75 Ω.

Or, using Equation 1, where the total resistor tolerance 
is equal to:

	 Rvalue ± (Rtol + Rtempco + Rlife)	 (1)
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Initially, 40.25 Ω to 59.75 Ω looks like a big range of 
resistance variability, especially for a 50-Ω resistor. 
However, this is over the resistor’s entire temperature 
range and life. For simplicity, it is best to understand the 
tolerance at room temperature, or 25°C; in this case, 
setting the TempRange = 1 in the example. This setting 
tightens up the resistor’s error range, yielding 46.45 Ω to 
53.55 Ω, which is a bit more realistic for a lab setting. 
Tighter tolerance resistors can also have a dramatic effect 
in cleaning up the error range as well.

Table 2 captures all of the resistor values in the spread-
sheet and organizes them neatly. Eventually, the errors 
and tolerances can be factored in for each resistor 
throughout the signal chain. A table at the end of this 
article includes a minimum and maximum value for each 
resistor and how it influences the signal chain.

Table 2. Resistor error specifications

Diff Amp Circuit & Resistor Specs Value Unit

Amp Gain (Av), [Calculated] 4

Amp Gain (dB), [Calculated] 12.04 dB

Rg 50 Ω

Rf 175 Ω

Rfint [DS]1 25 Ω

Rs1 and Rs2 8.66 Ω

Rt 282 Ω

Characteristic Impedance (Z) 50 Ω

Resistor Coefficient 1000 ppm/°C

Resistor Tolerance 5 %

Resistor Life Tolerance, 1000 hours 2 %
1[DS]—Value from datasheet

Amplifier errors
There are two types of amplifier errors:

•	 Inherent errors like bias current, offset voltage and 
common-mode error.

•	 Environmental-type errors like power-supply rejection 
ratio (PSRR) and temperature. These errors are more 
dependent on or influenced by outside parameters at 
the system level.
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References 3 and 4 provide a fully functional model on 
amplifier errors and how they are manifested. Both docu-
ments go into great detail on the derivations of amplifier 
model errors. For simplicity, Figure 2 and Table 3 offer a 
breakdown of these errors.

The equations in Table 3 yield a referred-to-output 
(RTO) summary of errors that can be root-sum-squared 
(RSS) to achieve a total cumulative error for the amplifier 
as well as an output signal level in the signal chain.

With all resistor errors captured and organized, to start 
the amplifier analysis, it is best to solve the feedback 
factors, coefficients and equivalent resis-
tances defined in Table 3. Each of these 
will provide a minimum and maximum, 
based on the minimum and maximum 
resistance values previously defined in 
Table 2.

Solving for the feedback factors, coef-
ficients and equivalent resistances is the 
first step in understanding the output 
signal-level error or gain error based on 
the qualitative factors shown in Table 3. 
Next, calculate through all of the other 
errors listed in the amplifier error 

Table 3. Amplifier error equations (referred to output)

Quantity Symbol General Expression
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Figure 2. Simple amplifier error model
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equation table and collect them in a spreadsheet: input 
offset error, input bias current error, common-mode 
mismatch, PSRR, etc. See Table 4.

Once completed, subtotal the simple RSS summation of 
the errors and add that total to the output signal level to 
obtain the total RTO error.

Interface errors
An anti-aliasing filter helps minimize the noise bandwidth 
coming from the amplifier. Even simple resistor-capacitor-
type low-pass filters will wiggle and ripple through the 
pass band because of tolerances, parasitics and frequency 
mismatches. However, for simplicity in this signal-chain 
design, bandwidth is key, so a simple matching pad will 
interface between the output of the amplifier and the 
input of the ADC.

As previously described in the Signal-chain overview 
and resistor errors section, first calculate the values used 
to create the matching pad. Next, calculate the K-ratio 
errors based on standard 3-dB pad calculations found in 
most radio-frequency (RF) cookbooks or even an internet 
search. See Figure 3.

After obtaining the variance in loss of the pad (in this 
case, 3 dB nominal), it is possible to then determine the 
signal loss through this portion of the signal chain coming 
from the output of the amplifier, and what signal level the 
ADC will actually sample.

Table 4. Amplifier error specifications

Amplifier Specs Design Spec. Unit

Input Offset Voltage Drift 10 mV

Input Bias Current Drift 150 µA

Input Bias Current 70 µA

Input Offset Current 2 µA

PSRR –80 dB

Input Offset Voltage 1 mV

Open Loop Gain (Av) 60

Amp CMRR 72 dBc

Input CM 0.4 mV

Output CM –27.0 mV

Input Voltage Noise 1.25 nV

Input Noise Current 3.5 pA

Figure 3. X-dB, T-attenuator pad calculations 

dB = Attenuation in decibels

Z = Source/load impedance (resistive)

K > 1

K = Z × V V = 10IN OUT
dB 20⁄ ⁄
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R2 = Z × (2K K – 1)
2⁄

R1

VIN VOUT
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Attenuation Z = 50 Ω
dB K = VIN / VOUT R1 (Ω) R2 (Ω)

1.0 1.1220 2.88 433.34

2.0 1.2589 5.73 215.24

3.0 1.4125 8.55 141.93

4.0 1.5849 11.31 104.83

6.0 1.9953 16.61 66.93

10.0 3.1623 25.97 35.14

20.0 10.0000 40.91 10.10
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Data converter errors
Finally, the signal hits the ADC, but it has errors as well; 
see References 1 and 6 for more information. Figure 4 
illustrates four types of ADC errors: gain, offset, differen-
tial nonlinearity (DNL) and integral nonlinearity (INL). To 
get a better sense of the errors that affect the ADC’s accu-
racy, PSRR should be included as well. While this spec can 
be difficult to find in some data sheets, the reasoning for 
including this particular error in Table 5 is that the head-
room on data converter supplies is decreasing, largely 
driven by today’s speed and bandwidth demands, which in 
turn, this drives the designs of these data converters into 
smaller process geometries. Table 5 sums these errors.

Like amplifier errors, calculating the RSS of these errors 
together will provide the total accumulation of error given 
by the data converter.

Table 5. ADC error specifications

ADC Specs.
Datasheet 

Spec.
Design 
Spec.

Unit

ADC Number of Bits 12 bits

ADC Input Full Scale  
(Differential) 800 mVPP

ADC LSB Size, [Calculated] 195.31 µVPP

Linearity (INL) ±2 4 LSB

Offset Error ±2 10 mV

Gain Error ±50 100 mVPP

Offset Drift 23 30 µV/°C, LSB

Gain Drift –0.01 40 %/°C, LSB

PSRR 5 LSB –60 5 LSB, V

Clock Rate (fs) 10.4 GSPS

Ideal 12 bit SNR, [Calculated] 74 dB

SNR 55 at 1 GHz 55 dBFS

SINAD 53.4 at 1 GHz 53.4 dBFS

ENOB, [Calculated] 8.58 bits

Figure 4. DC errors: gain, offset, DNL and INL
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Final analysis
It is now possible to RSS each subtotal error to get an 
understanding of the full accuracy error throughout the 
entire signal chain on the input signal, and what that 
difference is relative to the full-scale range of the ADC. 
Table 6 shows the final analysis.

The RSS approach is a popular way to properly sum 
errors throughout the signal chain because it isn’t as pessi-
mistic as a straight summation, also known as a worst-case 
analysis. There will always be some random variation of 
these errors, as some errors can cancel or move in oppo-
site directions. Self-heating, temperature and other 
environmental factors also have an effect. Another 
approach is to assign a weighting factor into a particular 
error or set of errors, which helps to understand the 
sensitivity within a certain part of the signal chain that is 
critical to the design.
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Table 6. Full signal-chain error accumulation

Signal Chain Calculations Min Max Unit

Amp Resistor Errors

Total Tolerance 
(Rg+Rtol+Rtempco+Rlife) 46.45 53.55 Ω

Total Tolerance 
(Rf+Rtol+Rtempco+Rlife) 162.58 187.43 Ω

Feedback Factors 1 & 2 0.22 0.18

Coefficients 1 & 2 1.0001 0.9999

Equivalent Resistances 1 & 2 36.13 41.65 Ω

Total Tolerance (Gain/Loss) 3.5 4.57 Gain

Output Signal Level 1.10277 1.10281 V

Amp Errors

Input Offset Voltage Error, [RTO]1 4.5993 4.5994 mV

Input Bias Current Error, [RTO] –1.77 1.78 mV

Input Offset Current Error, [RTO] 0.358 0.358 mV

CM Mismatch, [RTO] –5.38 5.38 mV

Input CM, [RTO] 115.53 115.53 nV

PSRR, [RTO] 23 23 µV

Amp Total Accuracy Error, [RSS]2 7.307 7.309 mV

Amp Output Signal Level, [RSS] 1.1101 1.1101 V

Network Errors

Total Tolerance  
(Rs1 & Rs2+Rtol+Rtempco+Rlife) 8.05 9.27 Ω

Total Tolerance 
(Rt+Rtol+Rtempco+Rlife) 261.98 302.02 Ω

K Ratio Tolerance (Rs) 1.38 1.46

K Ratio Tolerance (Rt) 1.45 1.38

Average Network Loss 2.82 3.25 dB

Amp & Network Output Signal Level 0.80208 0.7636 V

ADC Errors

ADC Linearity, INL (LSB), [DS]3 = ±2.0 781.25 µV

ADC Offset Error, [DS] = ±2.0 1.9531 mV

ADC Gain Error, [DS] = ±50 800 µVPP

ADC Offset Drift, [DS] = 23 24 µV

ADC Gain Drift, [DS] = –0.01 % 32 µV

ADC PSRR, [DS] = 5 LSB 550 5 LSB, nV

ADC Total Accuracy Error 2.2509 mV

Amp & ADC Total Accuracy Error 
[RSS] 7.6459 7.6475 mV

ADC Input Signal Level [RSS] 804.3306 765.8546 mV

DC Accuracy-FS 4.81 %
1[RTO] = Referred to Output, 
2[RSS] = Errors are Root Sum Squared, 
3[DS] = Datasheet Spec.
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