Current-to-voltage converter circuit for audio DACs

Paul Frost

Design Goals

<table>
<thead>
<tr>
<th>DAC I_{OUT} Amplitude</th>
<th>DAC I_{OUT} Common Mode Current</th>
<th>V_{OUT} Amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.8 mA<sub>P-P</sub></td>
<td>–6.2 mA</td>
<td>2.1 V<sub>RMS</sub></td>
</tr>
</tbody>
</table>

Design Description

Many high-performance audio digital-to-analog converters (DACs) feature a current output that must be converted into a voltage output for use with audio amplifiers. In *premium automotive audio applications*, for example, it is critical to ensure the DAC signal-to-noise ratio (SNR) and total harmonic distortion plus noise (THD+N) performance is not compromised by the current-to-voltage (I-V) output stage.

Design Notes

1. The first stage of the circuit converts the current output to a voltage output by providing a virtual ground potential to the OUTP and OUTN nodes of the DAC. The current flowing from the DAC then creates a voltage across the resistor, R1, in the feedback loop. Note that current-output audio DACs have a common-mode current that creates an offset to ensure that the DAC is always sourcing current. This common-mode current also results in the output of the first stage always being a negative value. The supplies of the amplifiers of the circuit are not required to be symmetrical.

2. The second stage of the circuit is a differential amplifier that converts the differential voltage of the first stage into a single-ended output voltage.
Design Steps

1. The DAC is selected based on the needs of the application. Consider the required SNR, THD+N, and supported I2S interface sample rates. While most audio DACs support rates ranging from 16kHz to 192kHz, not all support rates like 384kHz or 768kHz. Higher rates result in noise shaping that moves the out-of-band noise further from the audible range, but not all audio sources can provide them. Also note that not all current-output audio DACs have the same amplitude and common-mode current.

2. Select the amplifier based on its noise and THD performance. Ideally, these amplifiers should not gate the SNR performance of the DAC. A JFET or bipolar-input amplifier is recommended for its low voltage-noise. The higher current-noise is not an issue as the resistance values of the circuit are low.

3. The gain of the circuit is calculated with the following equation. Using \(R_1 = 820 \Omega \), \(R_2 = 511 \Omega \), and \(R_3 = 240 \Omega \), the output voltage will be approximately 6V_{P-P} or 2.1V_{RMS}. For this circuit, superior noise performance is achieved by having the first stage have a large gain, and the second stage actually attenuate the signal.

 \[
 V_{OUT} = I_{IN} \times R_1 \times \frac{R_3}{R_2}
 \]

4. The cutoff frequency \(f_C \) of the first stage can be calculated with the following equation:

 \[
 f_{C-FIRSTSTAGE} = \frac{1}{2 \times \pi \times R_1 \times C_1}
 \]

 The \(f_C \) of the second stage is calculated with the following equation:

 \[
 f_{C-SECONDSTAGE} = \frac{1}{2 \times \pi \times R_3 \times C_2}
 \]

 Using \(C_1 = 4.7nF \) and \(C_2 = 10nF \), the \(f_C \) of the first stage is approximately 44.2kHz and the \(f_C \) of the second stage is approximately 66.3kHz.

5. The capacitors used for the filter should be COG/NP0 type ceramics. COG/NP0 type capacitors have a lower voltage coefficient of capacitance, meaning that the capacitive value of the component is less impacted by the voltage bias across the device. As the capacitors are key for performance of the filter, other types of ceramic capacitors should be avoided in the signal path.

6. Thin-film resistors are recommended for the resistive elements in the circuits. All resistors feature voltage noise, which is well understood to be dependent on resistance and temperature, as shown in the first equation that follows. But resistors also have a current-noise, which is dependent on the voltage across the resistor, frequency, and a constant, \(C \), that is dependant on the material of which the resistor is composed, as shown in the second following equation:

 \[
 S_t = 4kRT,
 \]

 where
 \[
 \begin{align*}
 & k \text{ is Boltzman's constant} \\
 & R \text{ is resistance} \\
 & T \text{ is temperature}
 \end{align*}
 \]

 \[
 S_E = \frac{(C \times U^2)}{f}
 \]

 where
 \[
 \begin{align*}
 & C \text{ is a constant derived from the resistor material} \\
 & U \text{ is the differential voltage across the resistor} \\
 & f \text{ is the frequency}
 \end{align*}
 \]
DC Transfer Characteristics

The simulation shows that the 7.8-mA_{P-P} differential input current results in an approximately 6V_{P-P} output, or 2.1V_{RMS}.

![Input Current and Output Voltage Graph](image1)

Filter Characteristics

The filters created by the two amplifier stages have a –3-dB corner frequency of approximately 32.1kHz. This will attenuate out-of-band noise from the output, while not affecting the audible range (20Hz to 22kHz).

![Gain vs Frequency Graph](image2)

32.13kHz
54.7dB
Noise Simulation

The following simulation shows the benefit of having the majority of the gain of the circuit in the first stage. The two curves were generated by the same circuit with different resistor values, but resulting in the same total gain. The green line has a higher gain in the first stage, but lower total noise.
Design References

See *Analog Engineer's Circuit Cookbooks* for TI's comprehensive circuit library.

See the *HiFi Audio circuit design application report*.

Download the companion simulation files for this circuit.

For direct support from TI Engineers use the E2E community

E2E Community

Design Featured Devices

<table>
<thead>
<tr>
<th>Device</th>
<th>Key Features</th>
<th>Link</th>
<th>Other Possible Devices</th>
</tr>
</thead>
</table>

Other Links:

Learn more about how to use precision DACs at our [Precision DAC Learning Center](http://www.ti.com).

Learn about TI's audio DAC portfolio and find more technical content.
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated