XTR108
Quick Start System Reference Guide
by Art Kay
High-Precision Linear Products
XTR108 Quick Start Contents

- Short Background on the XTR108.. 3-11
- Current Output Mode Calibration Example
 - Selecting Components for Your Application.. 12-17
 - Set Up the Hardware (Install Resistors/Set Jumpers)........................... 18-21
 - Step by Step Calibration walk through.. 22-28
 - Calibrating the Over/Under Scale.. 29-35
 - Expected Results.. 36-38
- Voltage Output Mode Calibration Example
 - Set Up the Hardware... 39-43
- Appendix 1: General Software Information
 - Ranges Don’t Match... 44-46
 - Reset to Default... 47
 - DC to DC Converter.. 48-49
 - Unique MUX Setup: 3-Wire and 4-Wire RTD.. 50-52
- Appendix 2: Equations Used in Software... 52-87
Short Background
on XTR108
XTR108 Operation

The figure below shows a simple block diagram of the XTR108. This section of the Quick Start Guide will give a brief description of the major sections.

Let's start with the input multiplexer

[Diagram of XTR108 block diagram]
XTR108 Operation – Input Mux

The primary function of the XTR108 Input MUX is to allow a single hardware module to function for multiple RTD ranges, and types. In the typical XTR108 configuration one MUX channel is used for the RTD and five different channels remain for different ranges. Rz1 through Rz5 are used to set the minimum temperature (T_{min}) of a particular range. In the example shown below, $T_{\text{min}} = -200\,^\circ\text{C}$, Rz1 is selected to match the resistance of the RTD at this temperature (i.e. 18.7$\,\Omega$ closest standard value). This will force the differential input voltage of the PGIA to be approximately zero at T_{min}. R_{cm} generates a common mode voltage so that the common mode range of the XTR108 is not violated.
XTR108 Operation – Input Mux

The figure below shows the same multiplexer configuration with the RTD at maximum temperature $T_{\text{max}} = 850^\circ\text{C}$. At this point the differential input to the PGIA is maximum (e.g. 186mV). This example range is summarized in the table below.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>V_{RTD} to Ground</th>
<th>V_{RZ1} to Ground</th>
<th>Vin to PGIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>-200$^\circ\text{C}$</td>
<td>0.532V</td>
<td>0.532V</td>
<td>0V</td>
</tr>
<tr>
<td>850$^\circ\text{C}$</td>
<td>0.718V</td>
<td>0.532V</td>
<td>0.186V</td>
</tr>
</tbody>
</table>
XTR108 Operation – Input Mux

The figure below shows how the current sources can be programmed to accommodate different types of RTD’s. The previous example used a 100Ω RTD (PT100). In this example we changed the RTD to 1000Ω (i.e. PT1000). The current sources I₁ and I₂ are scaled to accommodate this new resistor (i.e. they are changed from 500uA to 50uA). Rz1 and Rcm are also scaled to accommodate this new RTD type. Note that I₁ and I₂ are matched current sources programmed by one set of DACs (7 bit plus sign CoarseDac, 7 bit plus sign FineDac). These current sources will be programmed during calibration.
The range of the Iref DAC is set by Rset. For example, with a value of Rset = 12.1kΩ, the range of Iref is 480uA to 510uA. Using Rset = 121kΩ, the range of Iref changes to 48uA to 51uA. The XTR108 EVM Software has a “Find Resistors” tab that will help determine what the appropriate value for Rset.
All RTD’s have a nonlinear response over temperature. Typically this nonlinearity can be approximated as a second order function. This nonlinearity error can be calibrated out by modulating the excitation current with the input signal from the RTD. The range of this linearity correction is set by \(R_{\text{lin}} \).
XTR108 Operation – Linearity Correction

How it works!

The graph below illustrates how the linearity correction works. The RTD has a system response that is approximately quadratic. The positive feedback of the input signal through the LinDac generates a system response that is also approximately quadratic. The two responses counteract each other to generate a linear output.

The graph below illustrates how the linearity correction works. The RTD has a system response that is approximately quadratic. The positive feedback of the input signal through the LinDac generates a system response that is also approximately quadratic. The two responses counteract each other to generate a linear output.

\[V_{in_pgia} = (K_{lin} V_{in_pgia} + I_{ref}) \left(RTD - R_z \right) \]

\[V_{in_pgia} = \frac{I_{ref} (RTD - R_z)}{1 + K_{lin} (RTD - R_z)} \]

If you do a Taylor Expansion the response can be approximated as a second order

\[V_{in_pgia} = a + b (RTD - R_z) + c (RTD - R_z)^2 \]
XTR108 Operation – Linearity Correction

How much will it improve the nonlinearity?

The graph below shows pre and post correction for a typical RTD. Normally you can expect a 40:1 improvement in linearity.
Current Output Mode Calibration Example
Selecting Components for Your Application

There are several external components that are used to set the type of RTD used, and the temperature range that it can be used over. The XTR108 “Find Resistor” tab on the XTR108 Software is a tool that helps select resistors to accommodate five ranges on the XTR108. These components are located on the XTR108-EVM Sensor Board.

R_{z1} through R_{z5} – sets the zero temperature for the multiplexer channels 1 through 5.

R_{lin} – sets the range of linearity correction.

R_{cm} – the common mode resistor. This resistor ensures that the lowest common mode voltage is greater than the data sheet specification.

R_{set} – this resistor sets the range for the current references.

R_{vi} – the voltage to current resistor. This resistor is always selected to be 6.34k by the spreadsheet because this is the optimal value for the zero adjust circuit to work for 4mA to 20mA.
Selecting Components – Find Resistors

The “Find Resistors” tab on the XTR108 EVM Software can be used to determine what external resistors are required to configure the XTR108 for different RTD ranges.

1. Enter the RTD resistance at 0 degC and the temperature range.

2. Enter the Callendar-Van Dusen Coefficients here. The “Reset to PT100” button will reset the coefficients to that of a typical PT100 RTD.

3. Select current mode or voltage mode. Enter Rvi. Rvi is typically 6340Ω for most applications. The output at Max Temperature (I_max) and the output at minimum temperature (I_min).

4. Press the “Calculate Results” button. This will compute values for Rz1 through Rz5, Rset, and Rcm. If the XTR108 cannot accommodate all the ranges, then the program will give errors.
Selecting Components – Find Resistors

After the “Calculate Results” button is pressed, the resistors that will work for your temperature ranges and RTD types are calculated.
After the “Calculate Results” button is pressed, this summary of the “Worst Case Design Corners” is displayed. Note that the “LinDac Worst Case Resolution” shows a warning in this example. The value is 0.075% indicates that a change of one bit on the LinDac could cause the output to change as much as 0.075%. This is shown as a warning because it will make it difficult to attain a 0.1% post calibration error. The “Channel Where Worst Case Occurs” field indicates that the problem occurs on channel 1. This makes sense because this Channel has the widest temperature range. This problem can be moderated by eliminating either the most narrow temperature range (25, 75) or the widest temperature range (-200, 850).
In some cases, you may not want to use all of the channels available on the XTR108. In this case, you can enter 0 for the RTD Type. This will disable the channel.
Install The Resistors

Results — Install These Resistors

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rz1</td>
<td>18.7 ohms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rz2</td>
<td>100 ohms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rz3</td>
<td>100 ohms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rz4</td>
<td>78.7 ohms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rz5</td>
<td>110 ohms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rset 12100 ohms
Rlin 30900 ohms
Rcm 475 ohms
Install The Resistors

The figure below shows a typical component footprint on the XTR108 Sensor Board. The footprint is a surface mount resistor inside of a through hole resistor. The through hole resistor pads have “pin sockets” installed in them to allow easy replacement of the resistors. The pin sockets have gold plated springs internally that provide excellent contact with the resistor leads. The XTR108 EVM has surface mount resistors installed for a typical PT100 application. If you want to change the configuration, de-solder these surface mount resistors and connect the through hole resistors via the pin sockets.
Set the Jumpers

The table below and the figure illustrate the jumper settings for current output mode calibration.

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUMP1</td>
<td>Iout</td>
</tr>
<tr>
<td>JUMP2</td>
<td>FET</td>
</tr>
<tr>
<td>JUMP3</td>
<td>FET</td>
</tr>
<tr>
<td>JUMP4</td>
<td>Iout</td>
</tr>
<tr>
<td>JUMP5</td>
<td>Iout</td>
</tr>
<tr>
<td>JUMP6</td>
<td>No Load</td>
</tr>
<tr>
<td>JUMP7</td>
<td>Bypass</td>
</tr>
</tbody>
</table>
Connect the power

Connect the power to the XTR108 EVM. Use a 24V power supply for the + and - terminals. Connect the DVM to the measurement point indicated in the diagram. Use a serial port to communicate with the EVM.

Sensor PCB:
- Vloop
- Io
- RTD
- Rz
- Vcm

PC Interface:
- GND 6V
- To PC Serial Port

4.026mA is the current supplied to the sensor.

T = -200°C
R = 18.53Ω
Example Calibration: Step by Step Calibration
Enter The Resistor Values

Note that the values of the resistors computed in the find resistors tab are automatically copied to the calibration tab. Resistors can be entered manually if you are not using the Find Resistors feature.
Example Calibration: Enter the temperature range and Press "Step 1: Initial Calculation".

- Enter the RTD resistance at 0 degC.
- Enter the temperature range that you want to calibrate over.
- Press "Step 1: Initial Calculation". This will calculate register values for the XTR108 (e.g. the MUX channel, gain, Iref).
- Press "Write XTR" and "Write EEPROM". This will copy all the calculated register values into the XTR108 and into the EEPROM.
Example Calibration: The Callendar-Van Dusen Coefficients are taken from the table in the “Find Resistors” Tab.

<table>
<thead>
<tr>
<th>RTD Type (Ohms)</th>
<th>Min Temp (degC)</th>
<th>Max Temp (degC)</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>-200</td>
<td>850</td>
<td>3.908E-3</td>
<td>-5.775E-7</td>
<td>-4.183E-12</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>400</td>
<td>3.908E-3</td>
<td>-5.775E-7</td>
<td>-4.183E-12</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>125</td>
<td>3.908E-3</td>
<td>-5.775E-7</td>
<td>-4.183E-12</td>
</tr>
<tr>
<td>100</td>
<td>-55</td>
<td>125</td>
<td>3.908E-3</td>
<td>-5.775E-7</td>
<td>-4.183E-12</td>
</tr>
<tr>
<td>100</td>
<td>25</td>
<td>75</td>
<td>3.908E-3</td>
<td>-5.775E-7</td>
<td>-4.183E-12</td>
</tr>
</tbody>
</table>

Note: Enter 0 under RTD Type for unused channels.
Measure the Output

After the “Step 1: Initial Calculation” results are written into the XTR108, you will need to read the output at minimum and maximum RTD temperature. Note that linearity correction is turned off during this step and so, you should not expect to see an accurate 4mA to 20mA.

Minimum RTD temperature.

Maximum RTD temperature.
Example Calibration: Enter First Correction

Enter the current measurements at min and max temperature.

Press “Step 2: Corrections” to calculate minor corrections in the register values.

Press “Write XTR” and “Write EEPROM”. This will copy all the calculated register values into the XTR108 and into the EEPROM.
Measure the Output at Full Scale to Correct for Linearity DAC Errors
Measure the Output at Full Scale to Correct for Linearity DAC Errors

Enter the current measurement at max temperature.

Press “Step 3: 2nd Correction” to calculate the Lin DAC corrections.

Press “Write XTR” and “Write EEPROM”. This will copy all the calculated register values into the XTR108 and into the EEPROM.
Calibrating the Over/Under Scale

The underscale, and overscale is a programmable limit for the min and maximum value of the XTR108.

Overscale = 28mA

Underscale = 2.4mA
Calibrating the Over/Under Scale

The XTR108 overscale and underscale limits are set to maximum (2.4mA, 28mV) during calibration. This prevents the overscale and underscale limits from affecting any calibration results.
Calibrating the Over/Under Scale

The absolute accuracy of the overscale and underscale limits is not very good. An calibration is required to get accurate settings.
Calibrating the Over/Under Scale

Enter the overscale and underscale values in the form. Press “Compute Over / Under Limits”, “Write XTR”, and “Write EEPROM”. Note that register 5 has updated according to your selection.

In the next step, you will read the overscale and underscale output. In general, there is a significant error in these values. The final step will be to correct the overscale and underscale readings.
Calibrating the Over/Under Scale

Read Overscale

26.356mA
DVM
24V
Vloop
Io

Set RTD to Overscale Value

Read Underscale

4.0445mA
DVM
24V
Vloop
Io

Set RTD to Underscale Value
Calibrating the Over/Under Scale

Enter the measured results and press “Compute Adjusted Limit”. This will adjust the value of register 5 to correct for the errors. Press “Write XTR” and “Write EEPROM” to copy the information into the XTR and EEPROM.

Note that the initial setting had significant errors:
Target = 24mA and measured result = 26.356mA.
Calibrating the Over/Under Scale

Read Corrected Overscale

- **Post Cal Error**
 - Target = 24mA
 - Meas = 24.027mA

Set RTD to Overscale Value

Read Corrected Underscale

- **Post Cal Error**
 - Target = 3.8mA
 - Meas = 3.8169mA

Set RTD to Underscale Value
Example Calibration Done: Post Calibration Error is less then 0.1%

<table>
<thead>
<tr>
<th>Temp</th>
<th>I_meas</th>
<th>I_ideal</th>
<th>error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-200</td>
<td>4.00</td>
<td>4.00</td>
<td>-0.01</td>
</tr>
<tr>
<td>62.5</td>
<td>7.99</td>
<td>8.00</td>
<td>-0.06</td>
</tr>
<tr>
<td>325</td>
<td>12.00</td>
<td>12.00</td>
<td>-0.02</td>
</tr>
<tr>
<td>587.5</td>
<td>16.01</td>
<td>16.00</td>
<td>0.07</td>
</tr>
<tr>
<td>850</td>
<td>19.99</td>
<td>20.00</td>
<td>-0.06</td>
</tr>
</tbody>
</table>
Example Calibration Done: Post Calibration Error is less then 0.1%

1. Use the “RTD calculator” tab to compute the error.
2. Enter the temperature range and the output range.
4. Enter the measured output signal and press update table. This will compute the error.
Example Calibration Done: Post Calibration Error is less than 0.1%

Another useful feature in the “Error Calculator” tab is the “RTD to Temperature” calculator. This converts the RTD value entered to its associated temperature.

This feature computes RTD values based on temperature.
Voltage Output Mode Calibration Example
Voltage Output Mode
Set the Jumpers

The table below illustrates a typical Voltage output mode jumper configuration. Note that Jump2 and Jump3 are configured so that the sub-regulator is not being used. In this mode, the supply must be adjusted to 5V. Keep in mind that the diode D1 will drop Vloop by approximately 0.7V. It is recommended that a small negative voltage is connected to the input of the XTR108 V/I amplifier when the XTR108 is used in voltage output mode. The jumper configuration shown generates this voltage (~50mV) by connecting a small discrete charge pump to the clock signal. The XTR108 must be put in “continuous EE read mode” (see register 4, D0).

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Position</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUMP1</td>
<td>Vout</td>
<td>Use current output mode</td>
</tr>
<tr>
<td>JUMP2</td>
<td>Bypass</td>
<td>Bypass FET Sub-regulator</td>
</tr>
<tr>
<td>JUMP3</td>
<td>Bypass</td>
<td>Bypass FET Sub-regulator</td>
</tr>
<tr>
<td>JUMP4</td>
<td>CP</td>
<td>Use current output mode</td>
</tr>
<tr>
<td>JUMP5</td>
<td>Vout</td>
<td>Use current output mode</td>
</tr>
<tr>
<td>JUMP6</td>
<td>No Load</td>
<td>Do not connect load to Voltage Output</td>
</tr>
<tr>
<td>JUMP7</td>
<td>Bypass</td>
<td>Bypass Voltage Mode Charge Pump</td>
</tr>
</tbody>
</table>
Voltage Output Mode:
Continuous Read Mode to Generate Charge Pump Voltage

1. Set D0 = '0'.
2. Press “Write EEPROM”.
3. Press “Write XTR”
Voltage Mode

Connect the power
Select Voltage Mode and follow the steps as shown in the current mode example.
Appendix 1: General Software Information
Software Note: When Ranges Don’t Match the table, Use the Default Coefficients

In some cases you may wish to use the program to calibrate an RTD without using the “Find Resistors” tab. In this case, the program will display the error message shown below. The default Callendar-Van Dusen Coefficients can be entered through the “Setup” menu.
The “Enter Callendar-Van Dusen Coefficients” option under “Setup” allows you to change the default coefficients.

The default coefficients that the software uses is for a PT100 RTD. The “Enter Callendar-Van Dusen Coefficients” option under “Setup” allows you to change the coefficients.

Calibration Note: When Ranges Don’t Match the table, Use the Default Coefficients
Software Note:

Reset to Default

The XTR108EVM Software “remembers” the resistor values, temperature ranges, and Callendar-Van Dusen Coefficients after it has been shut down. If you want to reset it to the default values that it had when it was installed, you can use this option.
The XTR108EVM Hardware uses a DC to DC converter to isolate the digital communications section on the PC Interface PCB. The DC to DC converter is very noisy, and consequently, it is only turned on during communications. This mode will turn on the supply continuously. This mode is not recommended for normal operation, but may be useful for debug.
Noise from the DCR010505P

This scope shot illustrates the noise at the output of the DC/DC Converter (DCR01505P on the PC Interface Board) when turned on.
Unique MUX Setup: 3-Wire and 4-Wire

This feature is needed because the MUX is selected automatically for the standard configuration. The automatic MUX selection cannot be used for unique input connections as in 3-Wire and 4-Wire.
4 – Wire Manually Select Channels

Use the MUX button and the “Input MUX Configuration” window to select the proper MUX channels.
Rz Selection with Automatic MUX Selection Off

When automatic MUX selection is off, you must enter the same value for all values of Rz. This forces Rz to be the correct value regardless of the MUX channel used.
Appendix 2: Equations Used in Software

Step 1: Calculate Initial XTR108 Settings
RTD resistance as a function of Temperature in deg C

\[A_0 := 3.9083 \times 10^{-3} \quad R_0 := 100 \]

\[B_0 := -5.775 \times 10^{-7} \]

\[C_0 := -4.183 \times 10^{-12} \]

\[\text{RTD}(T) := \begin{cases}
R_0 \left[1 + A_0 \cdot T + B_0 \cdot T^2 + C_0 \cdot (T - 100) \cdot T^3 \right] & \text{if } T < 0 \\
R_0 \left(1 + A_0 \cdot T + B_0 \cdot T^2 \right) & \text{otherwise}
\end{cases} \]
Choose Temperature range

\[
T_{\text{min}} = 2.3
\]

\[
T_{\text{max}} = 100
\]

\[
T_{\text{mid}} = \frac{T_{\text{max}} + T_{\text{min}}}{2}
\]

\[
T_{\text{mid}} = 48.85
\]

Calculate RTD at Tmin, Tmid, Tmax

\[
RTD_{\text{min}} = RTD(T_{\text{min}})
\]

\[
RTD_{\text{min}} = 99.101
\]

\[
RTD_{\text{mid}} = RTD(T_{\text{mid}})
\]

\[
RTD_{\text{mid}} = 118.954
\]

\[
RTD_{\text{max}} = RTD(T_{\text{max}})
\]

\[
RTD_{\text{max}} = 138.505
\]

Choose Rz as closest standard value.

\[
R_z = 99.1
\]
Compute Nonlinearity

\[B_v := \frac{RTD_{\text{mid}} - \frac{RTD_{\text{max}} + RTD_{\text{min}}}{2}}{RTD_{\text{max}} - RTD_{\text{min}}} \]

\[B_v = 3.834 \times 10^{-3} \]

\[G_{\text{lin}} := \frac{2 \cdot B_v}{(0.5 + B_v) \cdot RTD_{\text{max}} - (0.5 - B_v) \cdot RTD_{\text{min}} - 2 \cdot B_v \cdot R_z} \]

\[G_{\text{lin}} = 3.863 \times 10^{-4} \]
Iref as a function of Front End PGA

Voltage Gain (Av)

\[R_{\text{set}} := 12100 \quad I_{\text{out_min}} := 0.004 \quad I_{\text{out_max}} := 0.02 \]

\[R_{\text{vi}} := 6340 \quad R_{\text{lin}} := 2.94 \times 10^4 \quad V_{\text{ref}} := 1.193 \]

\[I_{\text{set}} := \frac{V_{\text{ref}}}{R_{\text{set}}} \]

\[I_{\text{set}} = 98.595 \times 10^{-6} \]

\[V_{\text{out_max}} := \frac{I_{\text{out_max}} \cdot R_{\text{vi}}}{50} \quad V_{\text{out_max}} = 2.536 \]

\[V_{\text{out_min}} := \frac{I_{\text{out_min}} \cdot R_{\text{vi}}}{50} \quad V_{\text{out_min}} = 0.507 \]

\[I_{\text{ref}}(\text{Av}) := \frac{(V_{\text{out_max}} - V_{\text{out_min}}) \cdot [1 - G_{\text{lin}} \cdot (RTD_{\text{max}} - R_Z)]}{A_V \cdot (RTD_{\text{max}} - RTD_{\text{min}})} \]
Find Av that gives good Iref Range

\[I_{\text{ref}}_{\text{max}} := 1.35 (5 \cdot I_{\text{set}}) \]
\[I_{\text{ref}}_{\text{min}} := 0.65 (5 \cdot I_{\text{set}}) \]

\[I_{\text{ref}}_{\text{max}} = 665.517 \times 10^{-6} \]
\[I_{\text{ref}}_{\text{min}} = 320.434 \times 10^{-6} \]

The PGA gain should be chosen such that the Iref value is within +/-35% of 5*Iset to allow for room for calibration adjustments without having to go to another span step. The values Iref_max and Iref_min define the range.

Note that Iref_min < Iref(100) < Iref_max

Choose \[A_{\text{v_sel}} := 100 \]
Find initial values for Reg11, and Reg10

\[I_{\text{ref}} := I_{\text{ref}}(100) \quad I_{\text{ref}} = 5.07 \times 10^{-4} \]

\[\text{Reg11} := \text{round} \left(\frac{64 \cdot (I_{\text{ref}} - 5 \cdot I_{\text{set}})}{I_{\text{set}}} \right) \]

\[\text{Reg11} = 9 \]

\[\text{Reg10} := \text{round} \left(\frac{1024 \cdot (I_{\text{ref}} - 5 \cdot I_{\text{set}} - \left(\frac{\text{Reg11} \cdot I_{\text{set}}}{64} \right))}{I_{\text{set}}} \right) \]

\[\text{Reg10} - 2 \]

SBOA106C
May 2008
Compute Registers Reg12 and Reg13

\[I_0 := I_{\text{out_min}} - \frac{50 \cdot A_{v_sel} \cdot I_{\text{ref}} \cdot (\text{RTD}_{\text{min}} - R_z)}{R_{vi}} \]

\[I_0 = 4 \times 10^{-3} \]

\[I_{zpgm} := \frac{5V_{\text{ref}}}{8 \cdot R_{vi}} \]

\[\text{Reg13} := \text{round} \left[\frac{4(I_0 - 35 \cdot I_{zpgm})}{I_{zpgm}} \right] \]

\[\text{Reg13} = -4 = \text{FCh} \]

\[\text{Reg12} := \text{round} \left[\frac{64(I_0 - 35 \cdot I_{zpgm}) - \left(I_{zpgm} \cdot \frac{\text{Reg13}}{4} \right)}{I_{zpgm}} \right] \]
Done With Step 1: See Results
Step 2: Measure Gain and Correct Offset and Gain
Step 2: Measure Output at Minimum and Maximum

Minimum RTD temperature.

- 3.719mA
- DVM
- 24V

Maximum RTD temperature.

- 19.608mA
- DVM
- 24V

XTR08 EVM
Sensor PCB

6V dc

To PC Serial Port

T = -2.3°C
R = 99.1Ω

6V dc

To PC Serial Port

T = -100°C
R = 138.5Ω
Step 2: Uses Registers Calculated in Step 1 with Linearity Dac Turned off

Display before pressing button.
This is the settings after step 2 calculations.

Display after pressing button. Registers are updated and Lin DAC is set.
Step 2: Compute IA_{refAdj}

Measure $I_{\text{out min}}$ and $I_{\text{out max}}$

$$I_{\text{out min meas}} := 3.719 \times 10^{-3}$$

$$I_{\text{out max meas}} := 19.608 \times 10^{-3}$$

$$I_{\text{ref_reg}} := I_{\text{set}} \left(5 + \frac{\text{Reg11}}{64} + \frac{\text{Reg10}}{1024} \right)$$

$$I_{\text{ref reg}} = 5.07 \times 10^{-4}$$

$$IA_{\text{RefAdj}} := \frac{(I_{\text{out max meas}} - I_{\text{out min meas}} \cdot R_{vi}}{50 \cdot A_{v sel} \cdot (\text{RTD}_{\text{max}} - \text{RTD}_{\text{min}})}$$

$$IA_{\text{RefAdj}} = 5.113 \times 10^{-4}$$
Step 2: R_{z_adj} and G_{lin_adj}

\[dR_z := \frac{(I_o - I_{out_min_meas}) \cdot R_{vi}}{50 \cdot A_{v_sel} \cdot I_A_RefAdj} \]

$dR_z = 0.696$

$R_{z_adj} := RTD_{min} + dR_z$

$R_{z_adj} = 99.797$

\[G_{lin_adj} := \frac{2 \cdot B_v}{(0.5 + B_v) \cdot RTD_{max} - (0.5 - B_v) \cdot RTD_{min} - 2 \cdot B_v \cdot R_{z_adj}} \]

$G_{lin_adj} = 3.864 \times 10^{-4}$

$Reg14 := \text{round}(16 \cdot G_{lin_adj} \cdot R_{lin})$
\[G_{\text{lin,adj}} = 3.863 \times 10^{-4} \]

\[\text{Reg14} := \text{round}\left(16 \cdot G_{\text{lin,adj}} \cdot R_{\text{lin}}\right) \]

\[\text{Reg14} = 98 = 62h \]
Step 2: Compute $I_{B\text{refAdj}}$ and dI_{ref}

$$I_{B\text{RefAdj}} := \frac{(I_{\text{out_max}} - I_{\text{out_min}}) \cdot [1 - G_{\text{lin_adj}} \cdot (R_{TD\text{max}} - R_{Z\text{adj}})] \cdot R_{vi}}{50 \cdot A_{v_{sel}} \cdot (R_{TD\text{max}} - R_{TD\text{min}})}$$

$$I_{B\text{RefAdj}} = 5.072 \times 10^{-4}$$

$$dI_{\text{ref}} := (I_{\text{ref_reg}} - I_{A\text{RefAdj}}) + (I_{\text{ref_reg}} - I_{B\text{RefAdj}})$$

$$dI_{\text{ref}} = -4.387 \times 10^{-6}$$
Step 2: New Value for Reg10

\[\text{Reg10}_{\text{adj}} := \text{Reg10} + \text{round} \left(1024 \frac{dI_{\text{ref}} \cdot R_{\text{set}}}{V_{\text{ref}}} \right) \]

\[\text{Reg10}_{\text{adj}} = -44 = \text{D4h} \]
Step 2: New Value for Reg10, Reg11

\[
\text{Reg10}_{\text{adj}} := \text{Reg10} + \text{round} \left(1024 \cdot \frac{dI_{\text{ref}}}{V_{\text{ref}}} \right)
\]

\[
\text{Reg10}_{\text{adj}} = -44
\]

if Reg10adj < -127 or Reg10adj > 128 then

\[
I_{\text{refadj}} = I_{\text{ref_reg}} + dI_{\text{ref}}
\]

\[
\text{Reg11}_{\text{adj}} = \text{round} \left(64 \left(I_{\text{refadj}} - 5 \cdot I_{\text{set}} \right) \right)
\]

\[
\text{Reg10}_{\text{adj}} = \text{round} \left(1024 \left(I_{\text{refadj}} - 5 \cdot I_{\text{set}} - \left(\frac{\text{Reg11}_{\text{adj}} \cdot I_{\text{set}}}{64} \right) \right) \right)
\]

end if

Note that the change in \(I_{\text{ref}} \) required in this case was relatively small, so Reg11 (coarse ref adjust) was not adjusted. If the adjusted value of Reg10 out of range (i.e. Reg10 < -127 or Reg10 > 128), both Reg10 and Reg11 are adjusted as shown below.
Step 2: If the R10, R11 adjustment doesn’t work, it may be necessary to adjust Gain.

if Reg10adj > 128 then

\[A_v_sel = (A_v_sel)^2 \]

\[\text{Reg11}_adj2 = \text{round}\left(\frac{64\left(\frac{I_{\text{refadj}}}{2} - 5 \cdot I_{\text{set}}\right)}{I_{\text{set}}} \right) \]

\[\text{Reg10}_adj2 = \text{round}\left(\frac{1024\left(\frac{I_{\text{refadj}}}{2} - 5 \cdot I_{\text{set}} - \left(\frac{\text{Reg11}_adj2 \cdot I_{\text{set}}}{64}\right)\right)}{I_{\text{set}}} \right) \]

end if

if Reg10adj < 128 then

\[A_v_sel = \frac{A_v_sel}{2} \]

\[\text{Reg11}_adj2 = \text{round}\left(\frac{64\left(I_{\text{refadj}}\cdot 2 - 5 \cdot I_{\text{set}}\right)}{I_{\text{set}}} \right) \]

\[\text{Reg10}_adj2 = \text{round}\left(\frac{1024\left(I_{\text{refadj}}\cdot 2 - 5 \cdot I_{\text{set}} - \left(\frac{\text{Reg11}_adj2 \cdot I_{\text{set}}}{64}\right)\right)}{I_{\text{set}}} \right) \]

end if
Step 2: Compute dI_{zero}

$$dI_{\text{zero}} := I_{\text{out_min}} - I_0 - \frac{50 \cdot A_v \cdot v_{\text{sel}} \cdot IB_{\text{Ref_Adj}} \cdot (RTD_{\text{min}} - R_{\text{z_adj}})}{R_{\text{vi}}}$$

$$dI_{\text{zero}} = 2.787 \times 10^{-4}$$
Step 2: Compute Reg12, Reg13

Reg12_{adj} := \text{round}\left(\text{Reg12} + \frac{512dI_{zero} \cdot R_v}{5 \cdot V_{ref}}\right)

Reg12_{adj} = 153

If Reg12_{adj} < -127 or Reg12_{adj} > 128 Then

Reg13_{adj} := \text{round}\left[\frac{4(I_o + dI_{zero} - 35I_{zpgm})}{I_{zpgm}}\right]

Reg13_{adj} = 6

Reg12_{adj2} := \text{round}\left[\frac{64(I_o + dI_{zero} - 35I_{zpgm} - (I_{zpgm} \cdot \frac{\text{Reg13}_{adj}}{4}))}{I_{zpgm}}\right]

Reg12_{adj2} = -8 = \text{F8h}

Note that the change in Izero required in this case was relatively large, so Reg12 (coarse Io adjust) needs to be adjusted. i.e. in this case Reg12 < -127 or Reg12 > 128.
Step 2: Compute Reg12, Reg13

\[\text{Reg12}_{\text{adj}} := \text{round} \left(\text{Reg12} + \frac{512 \cdot dI_{\text{zero}} \cdot R_{vi}}{5 \cdot V_{\text{ref}}} \right) \]

\[\text{Reg12}_{\text{adj}} = 153 \]

If \(\text{Reg12}_{\text{adj}} < -127 \) or \(\text{Reg12}_{\text{adj}} > 128 \) Then

\[\text{Reg13}_{\text{adj}} := \text{round} \left(\frac{4 \left(I_o + dI_{\text{zero}} - 35 \cdot I_{\text{zpgm}} \right)}{I_{\text{zpgm}}} \right) \]

\[\text{Reg13}_{\text{adj}} = 6 \]

\[\text{Reg12}_{\text{adj}2} := \text{round} \left[\frac{64 \cdot I_o + dI_{\text{zero}} - 35 \cdot I_{\text{zpgm}} - \left(I_{\text{zpgm}} \cdot \frac{\text{Reg13}_{\text{adj}}}{4} \right)}{I_{\text{zpgm}}} \right] \]

\[\text{Reg12}_{\text{adj}2} = -8 = \text{F8h} \]

End if
Measure Full Scale Output

19.987mA

DVM

24V

6V dc

To PC
Serial Port

T = 100°C
R = 138.5Ω

12100

XTR108 Quick Start
System Reference Guide

SBOA106C
May 2008

Texas Instruments

RTD ohms @ 0 degC

100

Step 1: Initial Calculations

Temp deg C

Min
-2.3
4.0
mA

Max
100
20.0
mA

Step 2: 1st Correction

Al Min Temp
3.719
mA

Al Max Temp
19.608
mA

Step 3: 2nd Correction

Al Max Temp 19.987
mA

Step 1: Initial Calculation
Write XTR
Step 2: Correction
Write EEPROM
Step 3: 2nd Correction
Reset Calibration
Step 3: Measure \(I_{\text{out}} \) Full Scale and compute factors used in Lin-Dac correction

part 3 calibration

\[I_{\text{max_post_cal_meas}} := 0.019987 \]

\[I_{\text{cat}} := \frac{I_{B\text{RefAdj}} \cdot A_{\text{v_sel}} \cdot 50 \cdot (RTD_{\text{max}} - RTD_{\text{min}})}{R_{\text{vi}}} \]

\[I_{\text{cat}} = 15.761 \times 10^{-3} \]

\[I_{\text{dog}} := I_{\text{max_post_cal_meas}} - I_{\text{out_min}} \]

\[I_{\text{dog}} = 15.987 \times 10^{-3} \]
Step 3: Calculate Reg14

\[
\text{Meas}_G_{\text{linadj}} := \frac{I_{\text{dog}} - I_{\text{cat}}}{(RTD_{\text{max}} - R_{z_{\text{adj}}})(I_{\text{max_post_cal_meas}} - I_{\text{out_min}})}
\]

\[
\text{Meas}_G_{\text{linadj}} = 3.657 \times 10^{-4}
\]

\[
\text{G}_{\text{lin_final}} := \frac{\text{G}_{\text{lin_adj}}}{\text{Meas}_G_{\text{linadj}}} \cdot \text{G}_{\text{lin_adj}}
\]

\[
\text{G}_{\text{lin_final}} = 4.082 \times 10^{-4}
\]

\[
\text{Reg14}_{\text{adj}} := \text{round}(16 \cdot \text{G}_{\text{lin_final}} \cdot R_{\text{lin}})
\]

\[
\text{Reg14}_{\text{adj}} = 103 = 67h
\]
Step 3: Final Result
Step 4: (optional) Calibrate Over/Under Scale Limit
Choose Overscale and Underscale Target

![Cal Over / Under Scale window](image)
Choose Overscale and Underscale Target

<table>
<thead>
<tr>
<th>Underscale</th>
<th>Overscale</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.55</td>
<td>20.7</td>
</tr>
<tr>
<td>3.35</td>
<td>21.2</td>
</tr>
<tr>
<td>3.15</td>
<td>21.7</td>
</tr>
<tr>
<td>2.96</td>
<td>22.2</td>
</tr>
<tr>
<td>2.76</td>
<td>22.7</td>
</tr>
<tr>
<td>2.56</td>
<td>23.2</td>
</tr>
<tr>
<td>2.37</td>
<td>23.7</td>
</tr>
<tr>
<td>2.17</td>
<td>24.2</td>
</tr>
<tr>
<td>2.17</td>
<td>24.6</td>
</tr>
<tr>
<td>2.76</td>
<td>25.1</td>
</tr>
<tr>
<td>2.56</td>
<td>25.6</td>
</tr>
<tr>
<td>2.37</td>
<td>26.1</td>
</tr>
<tr>
<td>2.17</td>
<td>26.6</td>
</tr>
<tr>
<td>2.17</td>
<td>27.1</td>
</tr>
<tr>
<td>2.76</td>
<td>27.6</td>
</tr>
<tr>
<td>2.76</td>
<td>28.1</td>
</tr>
</tbody>
</table>

In the software interface, the Target Overscale Limit is set to 24 and the Target Underscale Limit is set to 3.
Set to a value below minimum RTD temperature to force underscale.

Set to a value below maximum RTD temperature to force overscale.
Compute the Adjusted Target

Overscale_Targ = 24
Overscale_Meas = 26.43
AdjOverTarget = Overscale_Targ - (Overscale_Meas - Overscale_Targ)
AdjOverTarget = 21.57

Underscale_Targ = 3
Underscale_Meas = 3.06
AdjUnderTarget = Underscale_Targ - (Underscale_Meas - Underscale_Targ)
AdjUnderTarget = 2.94
Choose Overscale and Underscale Target

<table>
<thead>
<tr>
<th>Underscale</th>
<th>Overscale</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.55</td>
<td>20.7</td>
</tr>
<tr>
<td>3.35</td>
<td>21.2</td>
</tr>
<tr>
<td>3.15</td>
<td>21.7</td>
</tr>
<tr>
<td>2.96</td>
<td>22.2</td>
</tr>
<tr>
<td>2.76</td>
<td>22.7</td>
</tr>
<tr>
<td>2.56</td>
<td>23.2</td>
</tr>
<tr>
<td>2.37</td>
<td>23.7</td>
</tr>
<tr>
<td>2.17</td>
<td>24.2</td>
</tr>
<tr>
<td></td>
<td>24.6</td>
</tr>
<tr>
<td></td>
<td>25.1</td>
</tr>
<tr>
<td></td>
<td>25.6</td>
</tr>
<tr>
<td></td>
<td>26.1</td>
</tr>
<tr>
<td></td>
<td>26.6</td>
</tr>
<tr>
<td></td>
<td>27.1</td>
</tr>
<tr>
<td></td>
<td>27.6</td>
</tr>
</tbody>
</table>

- **AdjOverTarget** = 21.57
- **AdjUnderTarget** = 2.94
Check Error

Set to a value below minimum RTD temperature to force underscale.

Set to a value below maximum RTD temperature to force overscale.

Target = 3mA
Error = 0.06mA

Target = 24mA
Error = -0.27mA
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
<th>www.ti.com</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
<td>www.ti.com/automoive</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
<td>www.ti.com/broadband</td>
</tr>
<tr>
<td>Interface</td>
<td>Digital Control</td>
<td>www.ti.com/digitalcontrol</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
<td>www.ti.com/military</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
<td>www.ti.com/opticalnetwork</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
<td>www.ti.com/security</td>
</tr>
<tr>
<td></td>
<td>Telephony</td>
<td>www.ti.com/telephony</td>
</tr>
<tr>
<td></td>
<td>Video & Imaging</td>
<td>www.ti.com/video</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
<td>www.ti.com/wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to test the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Audio</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Automotive</td>
</tr>
<tr>
<td>DSP</td>
<td>Broadband</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Digital Control</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Military</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Optical Networking</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Security</td>
</tr>
<tr>
<td>RFID</td>
<td>Telephony</td>
</tr>
<tr>
<td>RF/I/F and ZigBee® Solutions</td>
<td>Video & Imaging</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated