Analog Engineer's Circuit

Single-supply, 2nd-order, Sallen-Key low-pass filter circuit

Amplifiers

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{i\text{Min}}$</td>
<td>$V_{i\text{Max}}$</td>
<td>$V_{o\text{Min}}$</td>
</tr>
<tr>
<td>–2.45V</td>
<td>+2.45V</td>
<td>0.05V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gain</th>
<th>Cutoff Frequency (f_c)</th>
<th>V_{ref}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1V/V</td>
<td>10kHz</td>
<td>2.5V</td>
</tr>
</tbody>
</table>

Design Description

The Butterworth Sallen-Key low-pass filter is a second-order active filter. V_{ref} provides a DC offset to accommodate for single-supply applications. A Sallen-Key filter is usually preferred when small Q factor is desired, noise rejection is prioritized, and when a non-inverting gain of the filter stage is required. The Butterworth topology provides a maximally flat gain in the pass band.

Design Notes

1. Select an op amp with sufficient input common-mode range and output voltage swing.
2. Add V_{ref} to bias the input signal to meet the input common-mode range and output voltage swing.
3. Select the capacitor values first since standard capacitor values are more coarsely subdivided than the resistor values. Use high-precision, low-drift capacitor values to avoid errors in f_c.
4. To minimize the amount of slew-induced distortion, select an op amp with sufficient slew rate (SR).
Design Steps

The first step is to find component values for the normalized cutoff frequency of 1 radian/second. In the second step the cutoff frequency is scaled to the desired cutoff frequency with scaled component values.

The transfer function for second order Sallen-Key low-pass filter is given by:

\[
H(s) = \frac{1}{s^2 + \left(\frac{1}{R_1 \times C_1} + \frac{1}{R_2 \times C_1}\right) s + \frac{1}{R_1 \times R_2 \times C_1 \times C_2}}
\]

\[
H(s) = \frac{a_0}{s^2 + a_1 \times s + a_0}
\]

Here,

\[
a_1 = \frac{1}{R_1 \times C_1} + \frac{1}{R_2 \times C_1}, \quad a_0 = \frac{1}{R_1 \times R_2 \times C_1 \times C_2}
\]

1. Set normalized values of \(R_1\) and \(R_2\) (\(R_{1n}\) and \(R_{2n}\)) and calculate normalized values of \(C_1\) and \(C_2\) (\(C_{1n}\) and \(C_{2n}\)) by setting \(\omega_c\) to 1 radian/sec (or \(f_c = 1 / (2 \times \pi)\) Hz). For the second-order Butterworth filter, (see the Butterworth Filter Table in the Active Low-Pass Filter Design Application Report).

\[
\omega_c = 1 \text{ radian second} \rightarrow a_0 = 1, \quad a_1 = \sqrt{2}, \quad \text{let} \quad R_{1n} = R_{2n} = 1, \quad \text{then} \quad C_{1n} \times C_{2n} = 1 \text{ or } C_{2n} = \frac{1}{C_{1n}}\]

\[
\therefore C_{1n} = \sqrt{2} = 1.414 \text{ F}, \quad C_{2n} = \frac{1}{C_{1n}} = 0.707 \text{ F}
\]

2. Scale the component values and cutoff frequency. The resistor values are very small and capacitors values are unrealistic, hence these have to be scaled. The cutoff frequency is scaled from 1 radian/sec to \(\omega_0\). If \(m\) is assumed to be the scaling factor, increase the resistors by \(m\) times, then the capacitor values have to decrease by \(1/m\) times to keep the same cutoff frequency of 1 radian/sec. If the cutoff frequency is scaled to be \(\omega_0\), then the capacitor values have to be decreased by \(1/\omega_0\). The component values for the design goals are calculated in steps 3 and 4.

\[
R_1 = R_{1n} \times m, \quad R_2 = R_{2n} \times m
\]

\[
C_1 = \frac{C_{1n}}{m \times \omega_0} = \frac{1.414}{m \times \omega_0} \text{ F}
\]

\[
C_2 = \frac{C_{2n}}{m \times \omega_0} = \frac{0.707}{m \times \omega_0} \text{ F}
\]

3. Set R1 and R2 values:

\[
m = 10000
\]

\[
R_1 = (R_{1n} \times m) = 10k\Omega
\]

\[
R_2 = (R_{2n} \times m) = 10k\Omega
\]
4. Calculate C_1 and C_2 based on m and w_0.

Given $\omega_0 = 2 \times \pi \times f_c$ where $f_c = 10$kHz and $m = 10000 = 10$ k

$$C_1 = \frac{1.414}{m \times \omega_0} F = \frac{1.414}{10k \times 2 \times \pi \times 10kHz} = 2.25nF \approx 2.2nF \text{ (Standard Value)}$$

$$C_2 = \frac{0.707}{m \times \omega_0} F = \frac{0.707}{10k \times 2 \times \pi \times 10kHz} = 1.125nF \approx 1.1nF \text{ (Standard Value)}$$

5. Calculate the minimum required GBW and SR for f_c.

$$\text{GBW} = 100 \times \text{Gain} \times f_c = 100 \times 1 \times 10kHz = 1MHz$$

$$\text{SR} = 2 \times \pi \times f_c \times V_{\text{ip}eak} = 2 \times \pi \times 10kHz \times 2.45V = 0.154 \frac{V}{\mu s}$$

The TLV9062 device has a GBW of 10MHz and SR of 6.5V/µs, so the requirements are met.
Design Simulations

AC Simulation Results

The following image shows the filter output in response to 5-Vpp, 1-kHz input signal (gain = 1V / V).

Transient Simulation Results
The following image shows the filter output in response to 5-Vpp, 100-kHz input signal (gain = 0.01 V/V).
Design References
1. See Analog Engineer's Circuit Cookbooks for TI's comprehensive circuit library.
2. SPICE Simulation File SBOC598.
3. TI Precision Labs.
4. Active Low-Pass Filter Design Application Report

Design Featured Op Amp

<table>
<thead>
<tr>
<th></th>
<th>TLV9062</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vss</td>
<td>1.8V to 5.5V</td>
</tr>
<tr>
<td>VinCM</td>
<td>Rail-to-Rail</td>
</tr>
<tr>
<td>Vout</td>
<td>Rail-to-Rail</td>
</tr>
<tr>
<td>Vos</td>
<td>0.3mV</td>
</tr>
<tr>
<td>Iq</td>
<td>538µA</td>
</tr>
<tr>
<td>Ib</td>
<td>0.5pA</td>
</tr>
<tr>
<td>UGBW</td>
<td>10MHz</td>
</tr>
<tr>
<td>SR</td>
<td>6.5V/µs</td>
</tr>
<tr>
<td>#Channels</td>
<td>1, 2, 4</td>
</tr>
</tbody>
</table>

Design Alternate Op Amp

<table>
<thead>
<tr>
<th></th>
<th>TLV316</th>
<th>OPA325</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vss</td>
<td>1.8V to 5.5V</td>
<td>2.2V to 5.5V</td>
</tr>
<tr>
<td>VinCM</td>
<td>Rail-to-Rail</td>
<td>Rail-to-Rail</td>
</tr>
<tr>
<td>Vout</td>
<td>Rail-to-Rail</td>
<td>Rail-to-Rail</td>
</tr>
<tr>
<td>Vos</td>
<td>0.75mV</td>
<td>0.150mV</td>
</tr>
<tr>
<td>Iq</td>
<td>400µA</td>
<td>650µA</td>
</tr>
<tr>
<td>Ib</td>
<td>10pA</td>
<td>0.2pA</td>
</tr>
<tr>
<td>UGBW</td>
<td>10MHz</td>
<td>10MHz</td>
</tr>
<tr>
<td>SR</td>
<td>6V/µs</td>
<td>5V/µs</td>
</tr>
<tr>
<td>#Channels</td>
<td>1, 2, 4</td>
<td>1, 2, 4</td>
</tr>
</tbody>
</table>

www.ti.com/product/TLV9062

www.ti.com/product/TLV316

www.ti.com/product/OPA325
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated