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ABSTRACT

Shift registers provide a simple, low cost, and flexible method for increasing the total number of input or output 
(IO) pins on a system controller. The fact that shift registers can be connected in series, or daisy-chained 
together, means that very few IO pins are required to support a large number of devices. The only two real 
caveats for their use are that they cannot provide a significant amount of power directly, and the IO signals must 
be much slower than the system clock.

Stepper motors require multiple relatively slow input signals that can be controlled through shift registers so long 
as the power for driving the motors comes from separate dedicated drivers. Appliances such as air conditioners, 
washers, dryers, and refrigerators commonly use stepper motors that benefit from shift registers. Industrial 
electronics such as servo motor drive controls for multi- or single-axis motors utilize shift registers for the same 
reasons.

It is also common to see shift registers in user interfaces for both LED control and keypad polling since humans 
are generally able to discern differences only on the millisecond time scale. Medical applications such as oxygen 
concentrators utilize shift registers for monitoring keys and lighting indicators. Similarly, fire control panels and 
elevator control panels commonly use shift registers for LED outputs and button inputs.

This document provides a complete description of the most common shift register functions (164, 165, 595), an 
explanation of how each common function operates, key design concepts to prevent issues when using them, 
and an example system design utilizing existing parts.
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1 Overview

1.1 Types of Shift Registers
There are three primary types of shift registers: Serial-In Parallel-Out (SIPO), Parallel-In Serial-Out (PISO), and 
so-called universal shift registers, which contain both parallel-in and parallel-out connections. Often these are 
shortened to parallel-in, parallel-out, and universal, as the parallel connections are the key concern. All shift 
registers have serial input and output connections to allow for series connection (aka daisy chaining) of devices.

Parallel-in shift registers are used to increase the number of inputs on a controller, an application often referred 
to as input expansion. Devices like the SN74HCS165 provide eight additional inputs per integrated circuit (IC).

Parallel-out shift registers are used to increase the number of outputs on a controller, an application often 
referred to as output expansion. Devices like the SN74HCS164 provide eight additional outputs per IC.

Universal shift registers provide the ability to switch between reading inputs into the internal registers or sending 
the internal data to outputs. They are not used as commonly, however, as they provide fewer storage bits 
than their dedicated input- or output-type counterparts. For example, a 16-pin universal shift register like the 
CD74HC194 can be used for inputs or outputs, however it can only contain up to 4 bits of data, while the 
aforementioned SN74HCS165 and SN74HCS164, both of which are also in 16-pin packages, can hold eight bits 
of data each.

1.2 Default State of a Shift Register
Shift registers, like many sequential logic devices, contain flip-flops which rely on the previous output state to 
determine the current output state. For example, see Table 1-1 for the common D-type Flip-Flop logical function 
table. The output when the clock is not being pulsed is purely dependent on the previous state, Q0.

Table 1-1. Typical D-type 
Flip-Flop Function Table

D CLK Q
L ↑ L

H ↑ H

X L, H, or ↓ Q0

Because of this dependency on the previous state, the values stored in a shift register are unknown at startup, 
and remain unknown until data is loaded into the registers. This can be problematic for some systems that 
depend on the outputs of the shift registers to be in a certain state at startup.

There are three ways around this. First, many shift registers include a direct clear pin to force all internal 
registers to a logic LOW. This allows a system designer to have a power-on-reset (POR) signal clear the 
registers immediately when power is applied.

The second, and most common, method is to load in data to overwrite the unknown values. It is common 
practice to have an initialization routine for shift registers that pushes initial values into all registers to prevent 
undesired behavior.

Finally, some devices provide the ability to put the outputs into a high-impedance state, which allows pull-up or 
pull-down resistors to set something of a default value at the outputs. Alternatively, 3-state buffers can be added 
to any shift register’s outputs to provide a high-impedance state. This should not be confused with changing 
the internal register values, however, as this method will only set the output values as long as they are in 
the high-impedance state. The internal registers are still unknown and must be overwritten before beginning 
operation.

Disabling the outputs with a POR signal combined with writing in known values can create a very effective 
initialization routine for a system with many shift registers. The POR just needs to last long enough for data to be 
written into the registers at system startup.

For details on creating a POR signal, please see this video: Generate a Reset Signal at System Power On
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1.3 164 Function Shift Registers
The 164 function is an 8-bit parallel-out shift register. The serial data inputs are logically ANDed together to 
provide an easy method for disabling the register. If either A or B is in the LOW state, then the data input to the 
shift register is LOW, and each rising-edge clock input will load a LOW, irrespective of the state of the opposite 
input. To permanently enable the serial data input, either A or B can be tied directly to VCC, and the opposite 
input can be used as the serial data input.
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Figure 1-1. Visual Representation of the Effect for Clock Input of 164 Function Shift Registers

When a rising edge is detected at the CLK input, the eight registers are loaded with the data value indicated by 
the arrows in Figure 1-1. To be clear, the result of A AND B is loaded into QA, while the value that was in QA is 
loaded into QB, the value that was in QB is loaded into QC, and so on. The last value, which was in QH, is shifted 
out, or, in other words, it is overwritten.

The 164 function comes with a dedicated asynchronous active-low clear pin (CLR) which allows forcing the 
internal register (and thus the output) values to zero. If this pin is held low during startup, the outputs will remain 
low as soon as the device is within the operating voltage range.

For normal functionality, eight bits of data are loaded into the serial data input one at a time with eight clock 
pulses. With each rising edge at the clock input, the outputs will change immediately to match the values inside 
the serial registers.

The output QH comes directly from the last internal shift register, which allows it to be used for daisy-chaining 
devices together.

1.4 165 Function Shift Registers
The 165 function is an 8-bit parallel-in shift register. The parallel data inputs are logically connected to the 
internal serial registers. The shift or load (SH/LD) input pin determines the operating state of the device.

In the load mode, the inputs are asynchronously copied into the internal registers. The clock (CLK) and clock 
inhibit (CLK INH) have no effect in this mode. The QH output will immediately take on the value of data at the H 
input.
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Figure 1-2. Visual Representation of the Primary Operating States for the 165 Function.

In the shift mode, when a rising edge is detected at the CLK or CLK INH input, assuming the opposite input is in 
the LOW state, the eight registers are loaded with the data value indicated by the arrows in right hand diagram 
of Figure 1-2. To be clear, the value at SER is loaded into A, while the value that was in A is loaded into B, the 
value that was in B is loaded into C, and so on. The last value, which was in H (and is accessible at the output 
QH), is shifted out, or, in other words, it is overwritten.

For normal functionality, the values are loaded into the register, then seven clock pulses are applied to read all 
eight internal values from the QH output pin.

The output QH comes directly from the last internal shift register, which allows it to be used for daisy-chaining 
devices together.
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1.5 595 Function Shift Registers
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Figure 1-3. Visual Representation of the Effect for Each Clock Input of 595 Function Shift Registers

The 595 function includes latched output registers, which allow the serial shift registers to change while holding 
the outputs constant. Figure 1-3 illustrates the operation of the 595 function. On the rising edge of the SRCLK 
input, the data at SER will be loaded and the serial registers will shift by one location as indicated by the arrows 
in the left diagram of Figure 1-3. To be clear, the value at the SER input will be loaded into the first serial register, 
the value that was in the first serial register will be loaded into the second serial register, the value that was in 
the second serial register is moved to the third serial register, and so on. The value that was in the last register, 
which was previously accessible from the QH’ output pin, is “shifted out,” or, in other words, it is overwritten.

On the rising edge of the RCLK input, illustrated in the right diagram of Figure 1-3, the data in the serial registers 
will be copied to the output registers. The shift registers will still retain the same data in the same locations after 
this operation is complete.

It is possible to operate this device with SRCLK and RCLK directly shorted together. In this mode of operation, 
the previous data in the shift registers is first sent to the outputs and then is shifted to the next positions. In this 
way, the outputs will always be one clock pulse behind the serial register values. To be clear, it will take nine 
pulses to send eight bits of data to the outputs, and those values will be read into the device with the first eight 
pulses.

The output QH’ comes directly from the last internal shift register, which allows it to be used for daisy-chaining 
devices together.

1.6 Daisy-Chain Two Shift Registers
Any shift register can be daisy-chained, so long as it has a serial data input and direct access to the last serial 
register’s contents. In order to connect two shift registers in series, connect the serial output of one device 
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(usually QH or QH’) to the serial input (usually SER) of the next device. Typically, all of the clock signals will be 
shorted together, although they can be separated for unique cases.

QAQB

SER

QCQDQEQFQGQHQH’

Serial  Registers

Output  Registers

QAQB

SER

QCQDQEQFQGQHQH’

Serial  Registers

Output  Registers

SRCLK SRCLK

O0O1O2O3O4O5O6O7

Serial Clock

Serial Data

Controller

O8O9O10O11O12O13O14O15

Device 1Device 2

RCLK RCLK

Register Clock

Figure 1-4. Daisy-Chaining two 595 Function Shift Registers Together

Figure 1-4 provides an example of connecting two 595 function shift registers together to convert 3 output pins 
into 16 output pins (O0 to O15). The first device connects to the system controller as usual, with the serial data 
and clocks coming directly from the controller. For the second device in the chain, the only difference is that the 
data input comes from the QH’ output of the previous device rather than the controller.
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Clock

Data Output
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SH/LD

CLK

SER

SH/LD

CLK

SERQHQH

CLK

SER
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Figure 1-5. Block Diagram for Adding 16 Outputs and 16 Inputs to a Controller Using 4 I/Os

Figure 1-5 shows an example of connecting two parallel-in and two parallel-out shift registers to provide 16 new 
inputs and 16 new outputs. By using this configuration, the number of I/Os required by the controller remains 
only four, while the number of outputs (or inputs) can be increased almost indefinitely. There are multiple design 
challenges that need to be addressed to ensure proper operation. See Section 2 for details.
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2 Design Challenges

2.1 Controller Loading Limits
Most CMOS logic circuits are designed to operate with relatively light loads. For example, the SN74LVC1G08, 
which has very strong output drivers, is designed to operate with a capacitive load of 50 pF or less 
(SN74LVC1G08, section 6.8). The SN74AUP1G08 has weaker output drivers and is specified for a load of 
30 pF or less (SN74AUP1G08, section 6.9). For another example, the MSP430FR2311 has the output timing 
specified only up to 20 pF (MSP430FR2311, Table 5-11).

The output loading can usually be found in the data sheet timing specifications as a test condition. Most modern 
CMOS-based controllers will have relatively weak outputs, so it’s a good idea to avoid loading them too heavily. 
It is recommended to avoid exceeding the tested load values provided in the data sheet. This limit can be 
bypassed, however, by adding a buffer to redrive the signal.

Controller

Output supports 

up to 20 pF load

S
N

7
4

H
C

S
2

4
4

Output supports 

up to 50 pF load

Ci(max) = 5 pF

Each output can drive up to 10

HCS family logic inputs

Total load for 7 inputs is ~35 pF

Shi� Register

CLK

CLK

Figure 2-1. Example of Signal Fanout Using Only Logic Buffers

Discrete buffers can be used as many times as necessary to redrive the signal. Creating duplicate signals from 
a single input is known as fanout and can be accomplished using normal discrete logic buffers such as the 
SN74HCS244. See Figure 2-1 for an example of redriving a single weak output to multiple 50 pF loads. Each 
buffer will add some delay to the signal, so be sure to follow the guidelines in Section 2.3 to avoid issues.

2.2 Operating over Large Distances
When designing with small circuits, the time it takes electric signals to travel is typically negligible. As circuits get 
physically larger, delays increase and can become problematic. For example, in large digital billboard signs, the 
distance from the controller to the farthest corner of the display could be fifty feet or more. This large distance 
can cause problems for designing with shift registers.

In the ideal case (light speed in a vacuum), signals could propagate across 1 ft in approximately 1 ns, however 
we find in practice that signals in a transmission line (or on a PCB) tend to propagate at about half that speed, so 
2 ns is a more realistic estimate. Additionally, this does not take into account the physical position on the line and 
other transmission line effects.
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Figure 2-2. (left) Simulated Clock Waveforms Received by the First, Third, Sixth, and Eighth Shift 
Registers. (right) Zoomed Versions of the Same Four Waveforms to More Clearly Show the Rising Edge.

Utilizing the available IBIS models on TI.com and the PathWave ADS simulator, Figure 2-2 shows the same 
clock signal arriving at eight different shift registers spaced six inches (1 ns delay) apart from each other. The 
right-hand side is zoomed in on the rising edge to provide more details. The “stair step” waveform shown is 
caused by the transmission line effects (reflections), an explanation of which are beyond the scope of this 
application report.

Looking at the clock trigger times marked it green, it can be seen that there is a 6 ns delay from when the last 
shift register is triggered to when the first one is triggered. This seems counter-intuitive, but looking closer at the 
waveform shows that the wave does reach in1 first at approximately 4 ns, however the reflections cause the 
waveform to seemingly pause at approximately half the total voltage from approximately 5 ns until 18 ns.

There are two major issues that need to be considered from the input signals shown in Figure 2-2. First, the 
mismatch in clock trigger timing can cause data loss when shift registers are daisy-chained together. In the 
example shown, only one buffer is used to drive the line in order to better show the transmission line effects, 
however it is common practice to redrive signals using buffers throughout a system, which can help with signal 
integrity, but will add additional delays. For an explanation of how this can cause data loss, see the explanation 
in Section 2.3.

Second, although in this case the “stair step” in the input signals is only 6 ns, it does illustrate that long 
transmission lines can create slow and possibly non-monotonic edges. For many standard CMOS devices, slow 
edges and holding an input voltage near VCC/2 can cause internal oscillations, excessive power consumption, 
and reduction in reliability. Schmitt-trigger architecture inputs will prevent all of these issues, so the HCS logic 
family is ideal to handle this type of operation.

For a full explanation on how slow inputs affect standard CMOS devices, see the application report Implications 
of Slow or Floating CMOS Inputs. For a full explanation on the benefits of the Schmitt-trigger architecture, see 
the application report Understanding Schmitt Triggers.

2.3 Data Loss Due to Signal Timing
For the majority of systems involving shift registers, delays will be short and no added delays will be required. 
However, when building a system with many shift registers, especially in larger and more complex systems, 
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timing can become a critical concern. If one shift register in the chain is clocked much earlier than the next, then 
data can be lost.
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Figure 2-3. Example of Configuration That Can Result in Data Loss

Figure 2-3 shows an example scenario in which data can be lost. The initial configuration is shown in the top 
diagram, with the stored data shown as an alternating pattern, 01010101. The clock signal arrives first at Device 
1, which causes all values in Device 1 to shift (to the left in the image). The value in register G is moved to 
register H (middle diagram). Device 2 does not receive the shift register clock pulse until after the value stored 
in register H has been overwritten, and thus the value loaded into register A of Device 2 is what was stored in 
register G of Device 1, and the value that was in register H of Device 1 is lost (bottom diagram). The data, which 
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has been shifted one place to the left, is now 01011101. The fourth bit (counting from the right) has flipped to an 
incorrect value only because of the timing of the clock inputs.
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Figure 2-4. Example of Long Clock Delay That Does Not Result in Data Loss

The solution to this issue is to simply ensure that the clock reaches the devices in the reverse order that data is 
shifting. By sending the clock to the last device in the chain first, placing added delays in the reverse direction, it 
can be ensured that no data will be lost.

Figure 2-4 shows an example with this reversed order. The initial state is the same as the first example (top 
diagram), however the clock arrives to Device 2 first in this scenario. This allows Device 2 to read in the QH’ 
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value from Device 1 before it changes (middle diagram). When the clock finally reaches Device 1, the data is 
shifted and overwrites the value in register H, however it has already been copied into Device 2 and no data is 
lost.

This configuration can be used with any number of shift registers. See Section 3 for a detailed design example.

2.4 Data Rate Limitations
Although the number of shift registers connected can be expanded indefinitely, the speed at which data can be 
loaded into the registers is finite. Each device has a limited maximum clock speed, and data is sent serially from 
one device to the next, so the total number of bits loaded and the clock frequency applied will affect the total time 
it takes to read or load the registers. The total time required to load a given number of serial shift registers (tload) 
can be calculated using Equation 1 with N≔Total registers to load and Fclk≔Shift register clock frequency (Hz).

tload = NFclk (1)

For example, the SN74HCS595 has a maximum clock speed of 60 MHz. If 16 serial shift registers (128 bits total) 
are to be loaded at this speed, the fastest it can be completed is 2.133 μs. With a more typical clock speed of 1 
MHz, the total time to load the same 128 registers would be 128 μs.

Similarly, when loading inputs from multiple parallel-in shift registers such as the SN74HCS165 the same 
equation can be used. For example, if reading 32 registers (4 devices) with a 100 kHz clock, the time to 
complete the read would be 320 μs.
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2.5 Software Overview

Read or write bit ‘j’

Start

Pulse serial CLK

j = j + 1

j < 8

j = 0

TRUE

FALSE
Pulse 

register 

CLK

i = 0

i < Ni = i + 1

TRUE

FALSE
Done

N = # of shift registers

De�ne / Ini�alize data 

storage variable(s)

Outer loop repeats for each device (shift register)

Inner loop repeats for each bit (register)

8 is the number of 

bits per shift register

Figure 2-5. Generic Flowchart for Software Control of Shift Registers

The software required to control a set of shift registers is relatively simple. Figure 5 provides a generic flowchart 
that can be used for producing code in any language and with any hardware for GPIO control of shift registers. 
In this flowchart, there are two loops. The outer loop, shown in blue, repeats for every shift register in the chain. 
The inner loop, shown in red, repeats for every bit within a shift register. Typically, the number of bits is eight, 
however it can vary.

The [Read or write bit ‘j’] block is the most important and the most difficult to implement. Please see the example 
code shown in code example 1 for an approach using an MCU’s built-in SPI module, and the example shown in 
code example 2 for a direct GPIO control approach.

There is also code provided for the Example Design – Daisy Chain 128 Shift Registers.
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3 Example Design - Daisy Chain 72 Shift Registers

3.1 System Overview
For this example design, we will be driving 576 total indicator LEDs only using three GPIO pins from our selected 
MCU. We will also be reading in eight digital values from a set of DIP switches using only one additional GPIO 
pin.

This design is intentionally overly complex in order to show how to handle the “worst case” for driving multiple 
shift registers. In the majority of systems, none of the complexity shown here will be required, however all of the 
issues that are solved below should be considered.

For any system, the first step is to define the requirements.

• Voltage supply is 3.3 V
– Since this document is not concerned with the power supply design, it is assumed that the supply is stable 

and all boards receive the appropriate amount of power required
• 8-channel DIP switch on controller board provides configuration
• Six individual remote boards contain 96 LEDs each
• LED forward voltages range from 2 V to 2.4 V, operate at 1 to 2 mA each
• Update LEDs and read configuration 30 times per second (33 ms max refresh time)
• Controller maximum output frequency is 1 MHz at 20 pF load
• Controller board is physically separated from LED boards, see Figure 3-1 for the system diagram
• Boards are connected via 50 cm long 120 ohm transmission lines (ribbon cables)

Based on the system requirements, it would be very difficult and costly to get a single controller that could 
individually handle all the required LEDs (96 per board, 576 total), not to mention the large number of wires that 
would be required to connect them. Instead, we will be using shift registers to reduce the required number of 
GPIOs and signal wires to only five.

The SN74HCS595 is used to allow for the LEDs to change simultaneously. This capability does require an extra 
control signal (RCLK), however it is very beneficial for LED applications since flickering can be observed while 
loading simpler shift registers like the SN74HCS164, which do not include output storage registers.

For the controller board, the DIP switch states will be read by a parallel-in, serial-out shift register. Each switch 
is debounced using a simple RC circuit and the SN74HCS165 is used to support the slow input transition times 
caused by the debounce circuits. See Debounce a Switch for more details regarding debounce circuits.

3.2 System Design

Controller

Board

LED Panel

1

50 cm

Z0 = 120 Ω  

LED Panel

2

50 cm

Z0 = 120 Ω  

LED Panel

3

50 cm

Z0 = 120 Ω  

LED Panel

6

LED Panel

5

50 cm

Z0 = 120 Ω  

LED Panel

4

50 cm

Z0 = 120 Ω  

50 cm

Z0 = 120 Ω  

50 cm

Z0 = 120 Ω  

50 cm

Z0 = 120 Ω  

Figure 3-1. System Block Diagram With Arrows Indicating the Direction of Clock Propagation From the 
Controller Board

A hierarchical design is being used to more easily show this relatively large-scale system design. See Figure 3-1 
for the top-level system block diagram. The LED Panel boards are labelled numerically in the order that the data 

Example Design - Daisy Chain 72 Shift Registers www.ti.com

14 Designing with Shift Registers SCEA117 – JULY 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://training.ti.com/debounce-switch
https://www.ti.com
https://www.ti.com/lit/pdf/SCEA117
https://www.ti.com/feedbackform/techdocfeedback?litnum=SCEA117&partnum=


is propagating through the system. The clock propagates in the reverse order, arriving at board six first, then 
travelling back to board five and so on. The order of the clock arrival is indicated by arrows in the block diagram.
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LED 

Board N-1

SRCLK

RCLK

100 Ω 

U1 U2 U3 U4 U5 U6

U7 U8 U9 U10 U11 U12
B1

100 Ω 

100 Ω 

Not populated 

for LED Panel 1

Not populated

for LED Panel 1

B2

B3

Figure 3-2. Block Diagram for LED Panels.

Each LED panel board contains 12 shift registers, split into two banks of six for the clock signals. See Figure 3-2 
for an illustration of how these are connected. The incoming clock signals are first buffered by B1 and B2, each 
of which drives six total CMOS inputs. This equates to approximately 35 pF of total load capacitance. The trace 
capacitance also needs to be estimated, which is approximately 22 pF.1 This gives a total capacitive load of 57 
pF, which is a bit higher than the load at which the datasheet specifications are measured, but not so much that it 
would be considered an area of concern.2

Table 3-1. Clock Timing for one LED Panel
Time (ns) Event

0.0 Clock edge (CLK) is generated

3.3 CLK arrives at LED Panel 6, triggering input buffer B1

13.2 CLK is generated at the output of buffer B1

13.3 CLK arrives at input of buffer B2

15.2 CLK has reached all 6 of the shift registers U7 to U12, loading all SER inputs

23.2 CLK is generated at the output of buffer B2

23.3 CLK arrives at the input of buffer B3

25.0 Shifted values appear at QH' outputs for registers U7 to U12

25.2 CLK has reached all 6 of the shift registers U1 to U6, loading all SER inputs

33.2 CLK is generated to send to the next board

35.0 Shifted values appear at QH' outputs for registers U1 to U6

To give an idea of the clock timing for each board in the system, see Table 3-1. It takes approximately 33.2 ns 
from the time the signal is generated at the controller to the time the clock signal is leaving LED Panel 6 to go 
towards LED Panel 5. In total, the time for a clock pulse to reach all boards is approximately 200 ns. Given this 
information, we would set our clock to only pulse once per 200 ns, however that is not really necessary since 
the signal doesn’t need to propagate through all shift registers in the chain for data to be preserved using the 
configuration we have chosen, as explained in Section 2.3.Fmax  = 121.7 ns   =  46 MHz (2)

It takes approximately 21.7 ns from the time a clock signal is received at a given set of shift registers to the time 
the shifted data is available to be read by the following board in the chain. This value gives a good idea of the 
maximum operating frequency, as calculated in Equation 2.
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Table 3-2. System-level Timing of Clock and Data
Time (ns) Event

0.0 Serial clock edge (CLK) is generated
Serial data edge (DATA) is generated

3.3 CLK arrives at LED Panel 6, triggering input buffer B1
DATA arrives at LED Panel 1, now waiting to be loaded into U1

33.2 CLK is generated from B3 to send to LED Panel 5

36.5 CLK arrives at LED Panel 5, triggering input buffer B1

66.4 CLK is generated from B3 to send to LED Panel 4

69.7 CLK arrives at LED Panel 4, triggering input buffer B1

99.6 CLK is generated from B3 to send to LED Panel 3

102.9 CLK arrives at LED Panel 3, triggering input buffer B1

132.8 CLK is generated from B3 to send to LED Panel 2

136.1 CLK arrives at LED Panel 2, triggering input buffer B1

166.0 CLK is generated from B3 to send to LED Panel 1

169.3 CLK arrives at LED Panel 1, triggering input buffer B1

191.2 CLK arrives at the last set of shift registers (U1 to U6), loading DATA into SER

In theory, this system of shift registers could be driven at 46 MHz without any issues, however our system has a 
maximum operating speed of 1 MHz (from the system requirements), and our desired refresh rate won’t require 
such a high speed. Additionally, operating beyond 5 MHz (200 ns per clock pulse) would complicate loading of 
data as the serial data signal would have to be delayed based on the total time it takes the clock to propagate 
through the system to reach the first set of shift registers (U1 to U6) on LED Panel 1.

To load all 576 registers in under 33.3 ms, the clock speed must be at least 17.3 kHz ( F  = 133.3 ms ≈ 30 kHz ). 
This works out very well for our system, as we can load in data much faster than this and have RCLK control the 
output timing precisely.

The clock speed of 100 kHz is selected for SRCLK, loading all 576 registers in approximately 5.76 ms, which 
allows plenty of time for additional processing, if necessary, and RCLK can be separately timed to send the 
loaded data to the outputs every 33.3 ms. This speed also allows time for data to be set for each clock pulse 
without concern for matching propagation delays. In other words, the clock will completely propagate through the 
system in under 200 ns, as shown in Table 3-2, while the period of the clock is 10 μs, providing over 9.8 μs of 
buffer time to set the serial data input value. Table 3-2 shows the data arriving at the same time as the clock 
is generated, which provides a setup time of 187.9 ns – far more than is necessary for correct operation of the 
device. According to the datasheet, only 71 ns is necessary for operation at 3.3 V.3
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MCU

Controller Board

SN74HCS165

3.3V
A B C D E F G H

QH CLK

SRCLK

DATA

RCLK

SN74LVC3G34

100 Ω  

100 Ω  

100 Ω  

SH/LD

Figure 3-3. Controller Board Block Diagram. Unlabeled Resistors and Capacitors are 22 kΩ and 1 μF, 
Respectively

The last area of concern is reading the configuration data in from the SN74HCS165 parallel-in shift register. 
Figure 3-3 shows the selected configuration for the serial-in shift register to reduce the total number of pins 
required at the controller. RCLK and SRCLK are shared with the SH/LD and CLK pins, respectively.

Each switch includes a simple RC debounce circuit with values of 22 kΩ and 1 μF for each respective 
component. The slow edge produced by this debounce circuit would normally need to be put through signal 
conditioning prior to reaching a standard CMOS input, however the SN74HCS165 includes Schmitt-trigger inputs 
that support slow signals, so no additional circuitry is required.

In this configuration, the switch states can either be read in during the write operation of the other shift registers, 
or it can be read in separately. For the sake of this imagined system, the switch states will be read in at the same 
time that the first eight outputs bits are being written to the parallel-out shift registers.

By keeping RCLK in the normally high state, the data in the SN74HCS165 can be loaded every time RCLK is 
pulsed, and the data can be read in with the first eight clock pulses of SRCLK. Although this is a very effective 
and efficient use of GPIO pins, there is one drawback to this configuration. The software required to read in and 
write out data simultaneously is slightly more complex than that required to do these tasks separately. In some 
systems, it may be beneficial to perform these tasks separately. See Section 2.5 and Section 3.3 for details 
regarding the software required for this system.
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Since each board is separated by 50-cm long transmission lines, source-terminating resistors are used to 
prevent reflections from causing issues. The output of the LVC logic family buffers used is expected to provide 
approximately 15 ohms of source impedance. A perfect match is not possible or necessary4, so the common 
value of 100 ohms is selected to match this to the 120 ohm characteristic impedance transmission lines.

Note
1. The calculator at https://technick.net/tools/impedance-calculator/microstrip/ was used to estimate 

the capacitance using the following values: W = 0.000203 m, H = 0.00025 m, T = 0.0000348 m, Er 
= 4.2

2. All capacitors will cause a large transient output current initially, which will taper off after a short 
time. Since the device is characterized with a particular load, that value can definitely be used 
safely, however there is an unspecified value that can cause damage. It is recommended to add 
a series resistor to limit current and avoid damage if the capacitive load is too large. For a good 
rule of thumb, don’t go past 150% of the maximum load in the switching characteristics table 
without adding a series limiting resistor. For most devices, this means 75 pF is the maximum 
direct capacitive load.

3. Timing requirement for 3.3-V supply is estimated using linear interpolation from the existing 2-V 
and 4.5-V supply data.

4. The output of a CMOS device is not a constant value of resistance. It can vary with temperature, 
process, supply voltage, and output voltage.

SN74HCS595

QA

QB

QC

QD

QE

QF

QG

QH

QH’

SRCLK

SER

RCLK

GND

VCC

D

R

S

H

3.3 V

0.1 �F

595

Block

D

R

S H

Figure 3-4. Detailed Schematic for 595 Block

Each 595 Block contains eight LEDs as shown in Figure 3-4, each with an individually selected resistor to limit 
the current through that LED to the appropriate value. For example, with a 2.2-V forward voltage, a resistor value 
of 732 Ω is selected to get 1.5 mA of current.

The eight LEDs for each SN74HCS595 device will draw less than 16 mA total, which is safely below the total 
maximum current for the device (70 mA). Shift registers can be used to control LEDs that require more current, 
however additional LED driver circuitry may be necessary if more than 8.75 mA per channel (70 mA total) is 
required.

Each LED board is small enough that the delays are negligible between the shift registers on that board.
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Figure 3-5. (left) Simulated Clock Waveforms Received by the First, Third, and Sixth Shift Registers. 
(right) Zoomed in Versions of the Same Three Waveforms to More Clearly Show the Rising Edges.

Figure 3-2 shows how the signals are routed on the LED boards.

Figure 3-5 shows the expected signal integrity at each clock input. Due to the short traces involved, there is little 
distortion or delay and the devices would be expected to operate normally.
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3.3 Software Examples
For this design, the software is relatively simple. For simplicity, we are using Energia and the MSP430G2553 as 
the controller, which is a simple and widely available microcontroller (MCU).

By using the built-in SPI module for the MCU, much of the code is simplified. The SPI.transfer() function provides 
both read and write simultaneously, as shown in the provided code.

Example Code for using the SPI module of MSP430G2553 in Energia to load and read shift registers.

/*
 * This is a demo file for using SPI to control 72 parallel-out (595) shift registers
 * and one parallel-in shift register (165)
 * 
 * The hardware used for verification was the MSP-EXP430G2 launchpad with the MSP430G2553 MCU
 * 
 * The USCI_B0 SPI interface is used (which is the default)
 * 
 * P1.5 --> SPI Clock
 * P1.6 --> SPI Data Input (to QH of SN74HCS165)
 * P1.7 --> SPI Data Output (to SER of first SN74HCS595)
 * 
 * P1.2 --> Register Clock and Shift / Load(active low) Output
 */

#include <SPI.h>

byte data[72];   // Data to be sent to the shift registers (1 byte per shift register)
byte sw_val = 0; // DIP switch contents

void setup() {
  // Configure RCLK (also SH/LDn) as output and set default LOW
  pinMode(P1_2, OUTPUT);
  digitalWrite(P1_2, HIGH);

  // Configure SPI module
  // Energia sets MCLK to 16 MHz by default
  // SPI clock is selected at MCLK / 128 = 125 kHz
  SPI.setModule(0);
  SPI.setBitOrder(MSBFIRST);
  SPI.setDataMode(SPI_MODE0);
  SPI.setClockDivider(SPI_CLOCK_DIV128);
  SPI.begin();

  for(int i = 0; i < 72; i++){
    // This data is generic just for example purposes
    data[i] = i;     // Initialize data contents
    SPI.transfer(0); // Initialize all shift registers to contain '0'
  }

  // Load DIP switch values into the SN74HCS165
  // Also loads register values (0) to all output registers
  digitalWrite(P1_2, LOW);
  delayMicroseconds(10); // Wait 10 us (100 kHz rate)
  digitalWrite(P1_2, HIGH);
}

void loop() {
  // Load values into the shift register
  
  // The first byte of data needs to be retained. This is coming
  // in from the SN74HCS165.
  // The 'SPI.transfer()' function sends and receives simultaneously
  sw_val = SPI.transfer(data[0]);

  // For the remaining data, the received value is discarded
  for(int i = 1; i < 72; i++) {
    SPI.transfer(data[i]);
  }

  // The preceeding 128 data transfers should take ~1.024 ms to complete

  // Pulse RCLK and SH/LDn to complete
  digitalWrite(P1_2, LOW);
  delayMicroseconds(10); // Wait 10 us (100 kHz rate)
  digitalWrite(P1_2, HIGH);
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  // 32 ms is added to have a 'frame length' of ~33ms (30 fps)
  delay(32);

  // In a real system, other operations would replace the above delay.
  // For example, the 'data' will likely need to be created for each
  // frame, or loaded from some memory to provide the desired effect.
  
}

Example Code for using GPIOs of MSP430G2553 in Energia to load and read shift registers.

/*
 * This is a demo file for using GPIOs to control shift registers.
 * 
 * This code loads values into four shift registers then reads back the four values.
 * The shift registers are loaded as though they are driving seven-segment displays.
 * 
 * The hardware used was the MSP-EXP430G2 launchpad with the MSP430G2553 MCU
 * Four 595-type shift registers are connected in series
 * 
 * P1.2 --> Register Clock
 * P1.5 --> Serial Clock
 * P1.6 --> Data Input
 * P1.7 --> Data Output
 */

// The following pin definitions are chosen arbitrarily.
// Any GPIO can be mapped to any of the following signals.
static const uint8_t RCLK   = P1_2; // Output -- Register Clock (rising edge)
static const uint8_t SRCLK  = P1_5; // Output -- Serial Clock (rising edge)
static const uint8_t DI     = P1_6; // Input  -- Serial data from shift registers
static const uint8_t DO     = P1_7; // Output -- Serial data to shift registers

#include <SPI.h>

// Seven segment interface data
// digit[#] will display # on the seven segment display
byte digit[] =  {0b00111111, 
                 0b00000110, 
                 0b01011011, 
                 0b01001111, 
                 0b01100110, 
                 0b01101101,
                 0b01111101,
                 0b00000111,
                 0b01111111,
                 0b01101111};
// dp only lights up the decimal point for the seven segment
// this is intended to be used with digit[] and a logical OR
byte dp = 0b10000000;

// Global counter
int i = 0;
int value = 0;

void pulseSRCLK() {
  // Advance the shift registers when called
  digitalWrite(SRCLK, HIGH);
  delayMicroseconds(1); // Wait 1 us
  digitalWrite(SRCLK, LOW);
}

void pulseRCLK() {
  // Loads serial register data into the output registers when called
  digitalWrite(RCLK, HIGH);
  delayMicroseconds(1); // Wait 1 us
  digitalWrite(RCLK, LOW);
}

int SR_transfer_byte(byte tx_val) {
  // This function writes 'tx_val' to the first shift register
  // while simultaneously reading 'rx_val' in from the last shift register
  int rx_val = 0;   // Initialize receive value
  int read_val = 0; // Initialize read value
  
  for( int i = 0; i < 8; i++ ) {
    // Loop over eight bits
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    if( (0b00000001 << (7-i)) & tx_val )
      // When the 'i'th bit in tx_val is 'high'
      digitalWrite( DO, HIGH );
    else
      // When the 'i'th bit in tx_val is 'low'
      digitalWrite( DO, LOW );

  read_val = digitalRead( DI );
  rx_val = (read_val << (7-i)) | rx_val;

  // Pulse the serial clock
  pulseSRCLK();
  
  } // byte send/receive complete

  return rx_val;
  
}

// The setup() function is called once at startup and is used for configuration.
void setup() {
  // Configure pin modes
  pinMode(SRCLK, OUTPUT);
  pinMode(RCLK, OUTPUT);
  pinMode(DO, OUTPUT);
  pinMode(DI, INPUT);

  // Initialize output values
  digitalWrite(SRCLK, LOW);
  digitalWrite(RCLK, LOW);
  digitalWrite(DO, LOW);

  // Load in values to all 4 shift registers
  SR_transfer_byte(digit[1]);
  SR_transfer_byte(digit[2]);
  SR_transfer_byte(digit[3]);
  SR_transfer_byte(digit[4]);
  pulseRCLK();

  // Initialize 'value' for first loop
  value = digit[5];
  delay(500);
}

// The loop() function is called after the setup() function and loops forever
void loop() {
  value = SR_transfer_byte(value);
  pulseRCLK();
  delay(500);
  // For this example, the values are looped and the imaginary 
  // 4 digit 7-segment display would show:
  // 1 2 3 4
  // 2 3 4 5
  // 3 4 5 1
  // 4 5 1 2
  // 5 1 2 3 -- this would loop forever
}
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4 References
• Appliances

– Dishwasher
– Refrigerator and Freezer
– Washer and Dryer
– Air Conditioner Indoor Unit
– Air Conditioner Outdoor Unit

• Medical
– Oxygen Concentrator

• Motor Drives
– Servo Drive Control Panel
– Servo Drive Power Stage Module
– AC Drive Power Stage Module

• Building Automation
– Fire Alarm Control Panel (FACP)
– HVAC Motor Control
– Calling Buttons Operating Panel
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