Optimizing Optical Network Terminal Units With Logic

Emrys Maier

Functional Block Diagram

For the purpose of this brief, a simplified Optical Network Terminal unit (ONT) block diagram is used to illustrate the logic and translation use cases, see Simplified Block Diagram for Optical Network Terminal Units. Each red block has an associated use-case document. Links are provided in Table 1 and Table 2. For a more complete block diagram, see the interactive online end equipment reference diagram for Optical Network Terminal units.

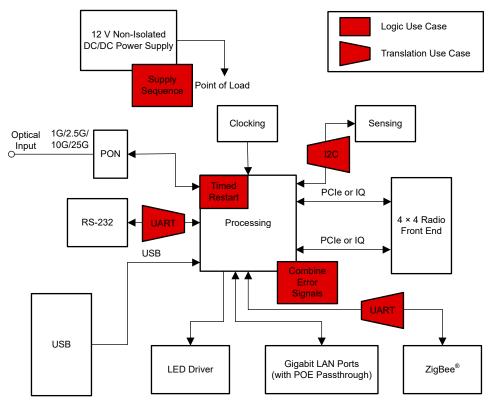


Figure 1. Simplified Block Diagram for Optical Network Terminal Units

Logic and Translation Use Cases

Each use case is linked to a separate short document that provides additional details including a block diagram, design tips, and part recommendations. The nearest block and use-case identifiers are listed to match up exactly to the use cases shown in the provided *simplified block diagram*.

Table 1. Logic Use Cases	Table	1. L	_ogic	Use	Cases
--------------------------	-------	------	-------	-----	-------

<u>- </u>				
Nearest Block	Use-Case Identifier	Use Case		
Non-Isolated DC/DC Power Supply		Power Sequencing With RC Circuits and Schmitt-Trigger Logic		
Processing	Timed Restart	Reset a System for a Short Time		
	Combine Error Signals	Combine Error Signals		

Table 2. Translation Use Cases

Nearest Block	Use-Case Identifier	Use Case
Sensing	I2C	Translate Voltages for I2C
RS-232, ZigBee®	UART	Translate Voltages for UART

Power Sequencing With RC Circuits and Schmitt-Trigger Logic

Optical Network Terminal units (ONTs) have multiple internal modules that can be operating at different voltages and require specific power-up sequencing to prevent spurious data from being sent during the system start-up. In many cases, simple logic gates and RC delays can be used to provide a power-up sequence.

The RC delays produce signals that are too slow for standard CMOS inputs, so logic parts with Schmitt-trigger inputs are required for this application. Fortunately, TI has the HCS logic family which has Schmitt-trigger architecture on every input, so any required logic function is available for use.

AND gates are the most common gate used for logic sequencing. Figure 2 shows an example circuit with 2 input power good signals and three delayed output stages. When PG1 goes high, there is a short delay ($t_1 = R_1 \times C_1$) after which PG2 can directly enable stage one. When PG2 becomes high, stage 1 immediately is activated and the timer for stage two begins ($t_2 = 2 \times R_2 \times C_2$), which then activates stage 2, and finally, after a short delay ($t_3 = R_3 \times C_3$), stage 3 is activated. The connection of PG1 provides an immediate disable signal to stages two and three, while stage 1 takes a short time (t_1) to become disabled. If PG2 becomes low, stage 1 is immediately disabled and stages two and three are disabled after their sequential delays; the same as during the start-up.

Of course, this is just one example. There are infinitely many combinations that can be achieved using discrete logic, and the HCS family enables you to build your own design with reliable operation, low size, and maximum flexibility.

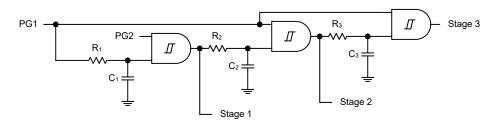


Figure 2. Example Logic Circuit for Sequencing Components

See more about a similar use case in the *Combine Power Good Signals* application report and the *Logic Minute* video *Combining Power Good Signals*.

- Schmitt-trigger input architecture is required for having slow transitioning input signals; a dedicated Schmitttrigger buffer can be added if a logic gate does not include Schmitt-trigger input architecture
- The best practice is to power the start-up sequence logic gates directly from the primary power source or from a dedicated low I_Q LDO regulator so the logic is powered before all other circuitry
- All HCS logic family devices include positive input clamp diodes, so be sure to add a series resistor to any inputs that can exceed VCC + 0.5 V. Choose resistor values based on the input voltage (V_{IN}), forward voltage (V_F, typically 0.65 V), gate supply voltage (V_{CC}) and maximum clamp diode current (I_{IK}) per the following equation: R > V_{IN} V_{CC} V_F / I_{IK}
- Need additional assistance? Ask our engineers a question on the TI E2E™ Logic Support Forum

Table 3. Recommended Parts

Part Number	Automotive Qualified	V _{CC} Range	Туре	Features
SN74HCS08-Q1	✓			Schmitt-trigger inputs
SN74HCS08		2 V – 6 V	Quad AND gate	Positive input clamp diodes on all pins; add series resistors if input voltage exceeds V _{CC}
SN74LVC1G17-Q1	✓			Schmitt-trigger inputs
SN74LVC1G17		1.65 V – 5.5 V	Schmitt-trigger buffer	Inputs are over-voltage tolerant; signals can exceed V_{CC}
SN74LVC1G57				Schmitt-trigger inputs
SN74LVC1G58		1.65 V – 5.5 V	Configurable Logic Gate	Between the '1G57 and '1G58, all 2-input logic gate functions can be produced. See data sheets for details.
SN74LV14A-Q1	✓	2 V – 5.5 V		Schmitt-trigger inputs
SN74LV14A			Hex inverter	Overvoltage tolerant inputs Partial power-down support (I _{off}) Improved noise characteristics
SN74LV08A-Q1	✓			Over-voltage tolerant inputs
SN74LV08A		2 V – 5.5 V	Quad AND gate	Partial power-down support (I _{off}) Improved noise characteristics
SN74AUP1G57				Schmitt-trigger inputs
SN74AUP1G58		0.8 V – 3.6 V	Configurable Logic Gate	Ultra low-power operation (0.6 µA max I _{CC}) Overvoltage tolerant inputs

For more devices with Schmitt-trigger input architecture, browse the *online parametric tool* which can be sorted by the desired voltage, output current, and other features.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated