
1SLAA202B–February 2005–Revised December 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing IrDA With MSP430™ MCUs

Application Report
SLAA202B–February 2005–Revised December 2018

Implementing IrDA With MSP430™ MCUs

Melisa Nunez-Arzuaga and Andreas Dannenberg .. MSP430 Applications

ABSTRACT
The development of wireless communications has occurred rapidly throughout the past decade. One of
the standards used is the Infrared Data Association (IrDA) specification. The protocol introduced by this
entity consists of three basic layers: IrPHY, IrLAP, and IrLMP, which supply a base for many other
applications.

This application report implements the IrDA Lite protocol (IrPHY, IrLAP, and IrLMP) on select MSP430™
microcontrollers (MCUs), as well as Tiny Transfer Protocol (TTP) and IrCOMM 3-wire services as a
passive secondary-only device. IrPHY implementations are provided using a Timer_A-based approach
and also using the USCI_A hardware module.

The source code and software described in this application report can be downloaded from
http://www.ti.com/lit/zip/slaa202.

Contents
1 Introduction ... 3
2 Hardware Description ... 3

2.1 Hardware Overview... 3
2.2 Circuit Description .. 3

3 Software Description .. 5
3.1 Implementing IrPHY Layer Using Timer_A.. 5
3.2 Implementing IrPHY Layer using USCI_A0 ... 7
3.3 Implementing IrLAP... 8
3.4 Implementing IrLMP... 11
3.5 IAS Implementation ... 12
3.6 TTP Implementation .. 12
3.7 IrCOMM Implementation ... 13
3.8 Application Layer .. 13

4 PC Demonstration Application.. 13
5 IrDA Protocol Basics ... 14

5.1 Physical (IrPHY) Layer ... 15
5.2 Link Access Protocol (IrLAP) Layer... 15
5.3 Link Management Protocol (IrLMP) Layer ... 16
5.4 Information Access Services (IAS).. 17
5.5 Tiny Transfer Protocol (TTP) .. 17
5.6 IrCOMM... 18

6 IrDA Communication Diagram .. 20
7 Frame Exchange Log .. 21
8 References .. 24

List of Figures

1 Schematic Using MSP430F149.. 4
2 Schematic Using MSP430FG4619 .. 4
3 Schematic Using MSP430F2274 .. 4
4 IR Byte .. 5

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA202B
http://www.ti.com/lit/zip/slaa202

www.ti.com

2 SLAA202B–February 2005–Revised December 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing IrDA With MSP430™ MCUs

5 Transmission With Timer_A .. 6
6 Detailed Byte Reception .. 7
7 Unnumbered and XID Command Frame Formats .. 8
8 Discovery Response XID Format.. 9
9 SNRM Frame Format ... 9
10 Information Frame Format .. 10
11 Disconnect Command Frame Format ... 10
12 Device Information Field Format ... 11
13 IrLMP Data Transfer Frame Format ... 12
14 IAP Frame Format ... 12
15 IrDA Stack... 14
16 IrPHY Frame .. 15
17 IrLAP Frame Format ... 15
18 IrLAP Service Primitives... 16
19 IrLMP Frame Format... 17
20 TTP Frame Formats ... 18
21 IrDA Communication Diagram .. 20

Trademarks
MSP430 is a trademark of Texas Instruments.
Windows is a registered trademark of Microsoft Corporation.
Sharp is a registered trademark of Sharp Microelectronics.
All other trademarks are the property of their respective owners.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA202B

www.ti.com Introduction

3SLAA202B–February 2005–Revised December 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing IrDA With MSP430™ MCUs

1 Introduction
It is helpful if the reader of this application report has some prior knowledge of the Infrared Data
Association (IrDA) specifications. Some general information on the stack is provided in Section 5 but this
is by no means interchangeable with the full documentation and specifications for IrDA.

This implementation follows the standards defined by IrDA Lite. The application uses IrPHY, IrLAP, IrLMP,
TTP, and IrCOMM 3-wire services to implement an IrDA serial port connection as a passive, secondary-
only device. When a primary IrDA peer transmits the string "t" to the MSP430 MCU, the MCU detects the
string, reads the ADC internal temperature sensor, and responds with the temperature reading. Within this
application report, three different projects are included:
• IrDA demonstration application running on an MSP430F149 device, using Timer_A to implement IrPHY

encoding and decoding and using the ADC12 to obtain the temperature reading
• IrDA demonstration application running on an MSP430FG4619 device, using USCI_A0 to implement

IrPHY encoding and decoding and using the ADC12 to obtain the temperature reading
• IrDA demonstration application running on an MSP430F2274 device, using USCI_A0 to implement

IrPHY encoding and decoding and using the ADC10 to obtain the temperature reading

To provide a more complete solution, a demonstration application for Windows®-based PCs is also
included. This application is written in the C programming language and shows how to establish an IrDA
connection between a PC and the MSP430 IrDA stack using only standard Windows API calls.

2 Hardware Description

2.1 Hardware Overview
The hardware design for this application focuses on the interfacing of the MSP430F149, the
MSP430FG4619, and the MSP430F2274 with the Sharp® GP2W0110YPSF IrDA transceiver device.
Other MSP430 MCUs can also be used, depending on the requirements of the end application.

The Sharp GP2W0110YPSF was selected because it follows all ISO specifications for IrDA V1.0. The fact
that this part can be used at a 3.0-V level is a benefit when interfacing with the MSP430 MCU, because
no external circuitry is necessary to adapt the voltage levels. It also needs only three signals for interfacing
with the microcontroller: transmit, receive, and shutdown. This leaves most of the MCU pins free for other
purposes.

The DIr169 evaluation board is compatible with the MSP430F149-based software presented in this
application report.

2.2 Circuit Description
The circuitry around the GP2W0110YPSF is simple (see Figure 1). Two pins are connected to the 3.0-V
supply voltage (VCC and LEDA), one pin is connected to the common ground, and three pins interface to
the MSP430 (TxD, RxD, and SD). Two bypass capacitors are placed in parallel between VCC and ground
close to the transceiver to compensate for current pulses that occur when the transmit IR LED is operated.
The TxD and RxD connections are made to Timer_A pins in case of the MSP430F149 (see Figure 1), and
to USCI_A0 pins in case of the MSP430FG4619 (see Figure 2) and the MSP430F2274 (see Figure 3).

For the MSP430F149-based design, the device is sourced by a 32-kHz watch crystal that provides a
reference clock to calibrate the internal high-speed DCO using a software FLL. This configuration is
needed to meet the requirements of the IrPHY physical layer timing specification.

The MSP430FG4619-based design also uses a 32-kHz watch crystal. However, in this case, the built-in
FLL circuit of the device clock module generates the system clock.

No external crystal is needed for the MSP430F2274-based design. In this case, the factory-provided DCO
calibration constants are loaded into the DCO during device startup, to provide an accurate and stable
system clock.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA202B
http://www.irda.org/

RST

DVCC

AVCC

DVSS

AVSS

P3.4/UCA0TXD

P3.5/UCA0RXD

P1.3

0.1 µF

MSP430F2274
3 V

TxD

RxD

SD

LEDA

GND

VCC

GP2W0110YPSF
3 V

22 µF

0.1 µF

RST

DVCC

AVCC

DVSS

AVSS

P2.4/UCA0TXD

P2.5/UCA0RXD

XIN

XOUT

P1.3

0.1 µF

MSP430FG4619

32 kHz

3 V

TxD

RxD

SD

LEDA

GND

VCC

GP2W0110YPSF
3 V

22 µF

0.1 µF

RST

DVCC

AVCC

DVSS

AVSS

P1.6/TA1

P1.2/TA1

XIN

XOUT

P1.3

0.1 µF

MSP430F149

32 kHz

3 V

TxD

RxD

SD

LEDA

GND

VCC

GP2W0110YPSF
3 V

22 µF

0.1 µF

Hardware Description www.ti.com

4 SLAA202B–February 2005–Revised December 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing IrDA With MSP430™ MCUs

Figure 1. Schematic Using MSP430F149

Figure 2. Schematic Using MSP430FG4619

Figure 3. Schematic Using MSP430F2274

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA202B

Data Bits

Pulse Width

3/16 Bit Time

Stop

Bit

Start

Bit

Bit

Time

0 1 0 1 0 0 1 1 0 1

www.ti.com Software Description

5SLAA202B–February 2005–Revised December 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing IrDA With MSP430™ MCUs

3 Software Description
This section provides a description of the implemented IrDA protocol stack. The entire demonstration
application is written in assembly language and resides in one file. Functions have been named in ways
which make it simple to understand which layer they belong to and what their functionality is. All service
primitives for the IrPHY, IrLAP, and IrLMP layers have been implemented as specified by the IrDA Lite
documentation. The TTP and IrCOMM 3-wire cooked services have been implemented to provide a
demonstration of the working stack.

This chapter discusses two different implementation methods of the IrPHY layer. The first method uses
Timer_A, and is utilized by the MSP430F149-based design discussed in this application report. The
second method uses the USCI_A0 hardware communication module, and is used by both
MSP430FG4619- and MSP430F2274-based designs. However all designs use the exact same IrDA
communication algorithms.

3.1 Implementing IrPHY Layer Using Timer_A
The Timer_A peripheral module found on all MSP430s can be used to implement the IrPHY layer, in case
that no hardware module with IrDA support is available.

The approach is to design a unit that behaves as a UART but processes data received from and sent to
the IR transceiver. The IR-pulse duty cycle is 3/16th of a bit period as specified in the IrPHY
documentation. The transmission and reception schemes are similar.

3.1.1 Transmission
For transmission, the initial XBOF flags are sent first followed by the BOF flag. Then the rest of the frame
is transmitted. The FCS is calculated and sent after the whole frame has been sent, followed by the EOF
flag. The actual sending of the individual bytes is performed by fitting each bit into 3/16th of a pulse, where
a 0 is represented by a pulse and a 1 is represented by no pulse (see Figure 4). The transmission process
is interrupt driven and is handled by the Timer_A module.

Figure 4. IR Byte

The actual encoding is manipulated in its entirety by the Timer_A module.
1. The bit length and 3/16th of the bit length are calculated given the speed at which the Timer_A clock

source is operating, and they are stored as constants for use in the transmission process.
2. Timer_A is cleared and the clock source is set to SMCLK.
3. The pin being used for transmitting data is configured for the CCR1 peripheral function, and its

direction is set to output.
4. The current state of TAR is stored in register CCR1 which, given that TAR has been previously

cleared, holds a value of 0.
5. One bit length is added to the value stored in CCR1, and then CCR1 is copied into register CCR0.
6. The number of counts that equal 3/16th of a pulse width is added to CCR0.
7. The stop bit and start bit are added to the 8 bits of data to be transmitted.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA202B

OutputMode 3:

Set/Reset

EQU1:

Set

EQU0:

Reset

EQU1:

Reset

OutputMode 5:

Reset

OutputMode 3:

Set/Reset

OutputMode 5:

Reset

EQU1:

Set

EQU0:

Reset

EQU1:

Reset

Stop BitStart Bit

0 1 0 1(...)

Data Bits

Software Description www.ti.com

6 SLAA202B–February 2005–Revised December 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing IrDA With MSP430™ MCUs

8. The transmission counter is loaded with 10, to include the start and stop bits.
9. The CCR0 interrupt is enabled in the CCTL0 control register.
10. Output Mode 3 Set/Reset is selected for CCR1 to transmit the start bit.
11. Timer_A is started in continuous mode.
12. The CCIE flag is polled to determine when the transmission has ended, because the ISR clears the

CCIE flag when all bits of the byte have been transmitted. The CCIE flag is polled by a subroutine
inside the transmission routine and as soon as the CCIE flag is cleared, the transmission routine
returns.

13. When TAR reaches CCR1, the output goes high and it returns back low when TAR reaches CCR0.
This generates the start bit.

Figure 5 shows the switching between the output modes as well as the resulting output signals.
1. The Timer_A module first adds 1 bit length to CCR1 and CCR0. This keeps them 3/16th of a bit apart

from each other but sets them up in time to transmit the next bit.
2. If the bit is 0, then it is sent using Output Mode 3 Set/Reset which produces a pulse, given that all bits

must be sent inverted.
3. If the bit is 1, then Output Mode 3 is changed to Output Mode 5 Reset to make sure that the output is

held low.
4. When the bit counter reaches 0, the interrupts for CCR0 are disabled and the ISR returns.

Figure 5. Transmission With Timer_A

3.1.2 Reception
Reception is based not on trying to capture the pulse when it comes in but is instead based on latching
the input and testing for the presence of a pulse some time after the bit has been sent by the primary.
Therefore, the interrupt flag for the port pin is checked before the time allocated for sending the bit is over.
The main reason for this implementation is that 3/16th of a pulse does not allow much room for error and
if reception is off by a small percentage, then more bits could be missed and the frame would be
corrupted.

The pointer to the buffer is incremented, and the following bytes are stored through the same process until
the EOF flag is encountered. Finally, the pointer is offset to the next location in memory. When idle, the
application is always in receive mode waiting for an incoming start bit.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA202B

Last Data BitFirst Data Bit Stop Bit

CCR1 Int.,

(Compare)

0 0 0(...)

Start Bit

1

Data Bits

CCR1 Int.,

(Capture)

P1IFG Set P1IFG Set

CCR1 Int.,

(Compare)

CCR1 Int.,

(Compare)

www.ti.com Software Description

7SLAA202B–February 2005–Revised December 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing IrDA With MSP430™ MCUs

The process through which each byte is received depends on the IrDA_RX routine and the TA1_ISR. To
receive:
1. A bit counter is loaded with 8 bits, the clock source for Timer_A is set to SMCLK, and the mode control

bits are set to use the timer in continuous mode.
2. The capture/compare block 1 is configured to capture the falling edge of the input signal synchronized

with the timer clock (SMCLK), and interrupts are also enabled.
3. When the ISR is done collecting the bits, it clears the CCIE flag, indicating that the reception of one

byte has finished.

Every time the TA1_ISR is called, it adds the time to the next bit to CCR1 and tests CCTL1 for its
capture/compare setting. If it is in capture mode, then the start bit is being handled. The routine adds an
additional quarter of the bit length to the value in CCR1 which now holds a total of one and a quarter bit
length and then sets the pin to I/O function. The I/O interrupt edge select is set to be triggered on a high-
to-low transition (register P1IES), and the interrupt flag is cleared (register P1IFG) to clear the latched
edge. After this, a switch is made to compare mode before returning from the ISR.

If the test for the capture/compare setting of CCTL1 results in a 0, there are incoming data bits. The
P1IFG flag for the I/O pin is then tested. If the bit is set, a 0 was received, and if the bit is not set, a 1 was
received. Next, the received bit is rotated through the use of an RRC instruction into the IR_DATA variable
which holds the byte being received.

The received bit is then inverted, and the edge latch is cleared. Finally, the counter for bit reception is
decremented by 1. If the counter is not 0, then the interrupts continue to be enabled and because, at the
return from the interrupt, the CCIE flag is still not 0, the next incoming data bits are processed until the
counter reaches 0 and interrupts are stopped. At this point, the entire byte has been successfully received.
Figure 6 shows this process.

Figure 6. Detailed Byte Reception

3.2 Implementing IrPHY Layer using USCI_A0
On MSP430 devices with a USCI peripheral module, the USCI_A0 can be used in UART mode to
conveniently decode and encode the IrDA PHY pulse train. To activate the hardware bit shaping, the bit
UCIREN in the UCA0IRCTL control register needs to be set.

The provided MSP430FG4619 and the MSP430F2274 demo applications operate with an SMCLK
frequency of 4 MHz and use the exact same USCI initialization sequence. To achieve an IrDA baud rate
of 9600 bps using a BRCLK frequency of 4 MHz with the oversampling mode enabled (UCOS16 = 1), the
BITCLK16 frequency must be 9600 bps × 16 = 153.6 kHz. For this, the baud rate prescaler is set to 26,
and a first-stage modulator setting of 1 is used, giving a very close match to the desired divider.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA202B

Unnumbered: XID command control:

X X X

P

/

F

X X 1 1 0 0 1 P 1 1 1 1

Software Description www.ti.com

8 SLAA202B–February 2005–Revised December 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing IrDA With MSP430™ MCUs

The IrDA transmitter is configured to generate pulses with a pulse length of exactly 3/16th of a bit time by
setting UCIRTXCLK = 1 and UCITXPLx = 5. This setting can be reduced if a shorter pulse length is
permissible, resulting in current savings during the operation of the externally connected IrDA transceiver.
The byte transmission in IrDA mode is exactly the same as in UART mode. The application ensures that
the transmit buffer can be loaded by ensuring that UCA0TXIFG is clear, and then simply loads the
transmit data byte into UCA0TXBUF. The USCI module will then start transmitting and bit-shaping the
IrDA pulse train.

The receiver configuration includes the setting of UCIRRXPL to match the polarity of the receive signal
provided by the IrDA transceiver. An optional analog deglitch filter can be configured to improve system
robustness; however, this feature is not used here. To receive data, the USCI_A0 receive interrupt is
enabled, and the low-power mode is entered. Upon the reception of a data byte, the receive interrupt
service routine is entered, and the data is fetched from the UCA0RXBUF receive buffer.

For more information on the configuration and operation of the USCI module, see the MSP430F4xx or
MSP430F2xx family user's guides [12][13].

3.3 Implementing IrLAP
The approach for the implementation of the IrLAP layer was to develop functions performing all the tasks
described in the primitives that also behave according to the state tables found in the IrDA Lite
documentation. This layer depends on the services provided by the IrPHY layer to function properly. This
layer provides a reliable connection for data transfer.

To process the frames correctly, first it is necessary to know which of the three classes of frames is being
handled. The three types of frames in IrLAP are supervisory (S), information (I), and unnumbered (U). The
most effective way to identify the frame is through parsing of the bytes. As soon as the byte pattern that
identifies a certain type of frame is found, the program jumps to the routines responsible for its handling.
Then, as the bytes are identified and decoded, actions are taken depending on the primitive to which they
correspond as shown below in a code excerpt from the application. This routine is called
IR_MSG_PROCESS, and it is the piece of code responsible for parsing of the frame and sending the data
to the right primitive for processing.

It is simple to identify which type of frame was received, given the bytes used to identify each command. It
is enough to check one or two bits of the byte which are in a certain position to identify the IrLAP
command that was received. After the command has been identified, the proper response is generated
and sent through the IrPHY layer to the transceiver. After this, the program goes back to the main loop
and waits until the next frame is received from the primary.

3.3.1 Discovery Services
IrLAP routines are responsible for the negotiation of the link and identification exchange while in NDM
mode. The first communication that happens between devices is the identification exchange (XID)
process. During this time, the primary issues a cycle of XID frames according to the set number of
discovery slots. The frame is received and parsed. First, it is identified as an unnumbered (U) frame by
checking bits 0 and 1 of the IrLAP control byte, and if they are both 1, then the frame is in the
unnumbered format. To identify the unnumbered frame as an XID command frame, bit 5 of the byte is
tested next. If this bit is 1, then the identification process of an XID command frame is positive (control
bytes shown in Figure 7).

Figure 7. Unnumbered and XID Command Frame Formats

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA202B

N Bytes1 Byte4 Bytes 4 Bytes

New Connection Address

Source

Device Address

Destination

Device Address

Conn.

Addr.

C

/

R

Negotiation Parameters

1 Byte

XID

Cmd.

1 Byte

ADDR

1 Byte 1 Byte 1 Byte4 Bytes 4 Bytes 1 Byte 1 Byte 32 Bytes1 Byte

ADDR
XID

Resp.

Form.

ID

Source

Device Address

Destination

Device Address

Disc.

Flags

Slot

Nr.

Ver.

Nr.

Discovery

Info

www.ti.com Software Description

9SLAA202B–February 2005–Revised December 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing IrDA With MSP430™ MCUs

As soon as an XID command frame is identified, the discovery flag is checked to see if the XID command
has been answered already. If discovery has not happened yet and the frame is not the final slot frame,
which is marked by a 0FFh slot number, then an XID response is sent out. The routine in charge of
assembling the XID response frame first verifies that the frame was sent for the broadcast address (0FFh)
and then produces a frame with the format of an IrLAP XID response frame as the one seen in Figure 8.

Figure 8. Discovery Response XID Format

The MSP430 is set to always answer to discovery slot 0. Therefore, when the first discovery slot is sent by
the primary, a frame is sent that claims that spot by issuing the XID response frame. This means the
following XID command frames are ignored.

3.3.2 Connect Services
After the exchange identification frames have been handled, it is time to negotiate the connection
parameters. For the negotiation procedure, accepted connection parameters are established using
constants. For the purpose of this application, the constants defined in the IrDA Lite specification are used
as the default transmission parameters (for example, 9.6 kbps, 64 bytes, and 1 frame). Then, the primary
device produces a set of parameters which it supports and sends it as soon as the discovery process is
completed successfully. The other important value introduced by the set normal response mode (SNRM)
frame is the connection address (CA). The CA is the byte which is used to contact the specific peer by the
primary device instead of the broadcast address.

The format of this SNRM frame is the IrLAP unnumbered type (see Figure 9). An SNRM frame can be
easily identified by its control field 093h at byte 2 of the frame (IrLAP control byte). The only bit that is
necessary to check is bit 7 because this bit is not set for any other control field of an unnumbered format
frame.

Figure 9. SNRM Frame Format

When entering the connection process, the UA response to the SNRM command is issued. The routine
responsible for issuing this response verifies that the frame is coming from the device with the same
address as the one which caused the discovery sequence to take place. It also includes in the response
frame the parameters supported by the secondary for the connection. As part of the routine responsible
for assembling the UA response frame to the SNRM command, the counters for amount of sent and
received frames (Ns and Nr, respectively) are reset, and the connected flag is set high to let other
services know that a connection has been successfully established. On the success of the connection
process, NRM is entered.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA202B

1 Byte

DISC

Cmd.

1 Byte

ADDR

P

/

F

NS

1 Byte 1 Byte

ADDR CTRL

N Bytes

DATA

NR 0

Software Description www.ti.com

10 SLAA202B–February 2005–Revised December 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing IrDA With MSP430™ MCUs

3.3.3 Data Services
After a connection has been established, a change occurs from NDM to NRM. Once in NRM mode, higher
layers take over the connection, and IrLAP frames are used as a means to transfer their data reliably. All
the frames exchanged must follow the IrLAP information (I) format. The main feature of this frame format
is the inclusion of the Nr, Ns, and Poll/Final (P/F) bits as seen in Figure 10.

Figure 10. Information Frame Format

First, the connection address is verified to ensure that a reply to a frame that was not meant for the
MSP430 is ignored. If the connection address was the one assigned to the MSP430, then the frame
sequence is verified through the comparison of the value stored in Nr and the value of Ns in the incoming
frame. If this check is successful, then the value stored in Nr is now incremented by 1, and the frame is
passed to the upper layers for proper manipulation. If the check is unsuccessful, then the frame is ignored,
and the connection is dropped. The other condition while in NRM that could cause the connection to be
dropped from the IrLAP layer, not including a disconnect request, is if an SNRM frame is received, in
which case a request disconnect (RD) response is issued to the primary.

If data is requested by an upper layer while in NRM, then data is queued and buffered, the parts of the
frame corresponding to IrLAP are prepared, and the frame is the responsibility of the higher layer. If an I-
command frame is received, then it means that the secondary stack is now allowed to transmit frames.
Depending on the state of the Ns and Nr counts, either an I- response frame carrying data or an S-
response of the type receive ready (RR) or receive not ready (RNR) is sent. The response to receiving a
RR command frame is similar to the one explained above as are the responses to RNR and reject (REJ)
commands. The same response is also issued in the case of an unknown command frame with the P bit
set and from an unknown type frame as it is described in the IrLAP state table for IrDA Lite.

On the other hand, if a U-frame carrying a disconnect command is received, then the proper UA response
is issued and the connection state is now NDM.

3.3.4 Disconnect Services
A disconnect command frame is of unnumbered format and has a control field equal to 053h. The IrLAP
frame size is 2 bytes only (see Figure 11).

Figure 11. Disconnect Command Frame Format

When this frame is identified, a UA response is issued immediately, and the NDM state is entered. A
disconnect command can only be issued by a primary and is received by the disconnect primitive whose
only responsibility is to issue the UA response and to notify the success of the disconnection to the user
layer.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA202B

1 Byte

Char.

Set

N Bytes

Service Hints

< (23 - N) Bytes

DATA

www.ti.com Software Description

11SLAA202B–February 2005–Revised December 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing IrDA With MSP430™ MCUs

3.4 Implementing IrLMP
The implementation of the IrLMP layer was accomplished by following the specifications of the IrDA Lite
documentation. The main task of this layer is to verify that the DLSAP-SEL and SLSAP-SEL values are
correct and that the correct service is using them. It also verifies that the services requested by the peer
are supported as specified in the GetValueByClass function. Finally, it provides the frame format that
carries the data to be exchanged by the two devices.

3.4.1 Discovery Services
These services are in charge of starting an IrLAP discovery procedure when requested by the user layer.
Its only involvement is in adding the service hints and the device information field to the IrLAP XID frame.
As shown in Figure 8, the XID response frame includes a field for the device information named discovery
info. This field, as described by the IrLMP documentation, is composed of the service hints and the device
nickname. The device nickname is itself divided into two other fields which are the character set and the
actual name of the device as shown in Figure 12. The service hints provided in this application are
08204h. As can be seen from Table 1, these bits correspond to an extension bit, PDA/Palmtop support,
and IrCOMM implementation. The total length of the device information field must not exceed 23 bytes,
although the IrLAP XID frame reserves 32 bytes.

Figure 12. Device Information Field Format

3.4.2 Link Connect and Connect Services
Because all IrLMP data is exclusively in I-format frames from IrLAP, the first parsing that occurs to identify
an IrLMP frame is at an IrLAP level. If the frame is not recognized as an IrLAP packet, then IrLMP parsing
takes place. First, there is a check to see if it is an IrLMP data frame by checking byte 3 of the IrLAP
frame and testing bit 7. This is a characteristic of data transfer packets in IrLMP which provides easy
identification of frames carrying IrLMP data. Then, by checking byte 5 of the frame it is possible to
recognize the IrLMP command being issued by the primary. If bit 0 of this byte is set, then the command
is an IrLMP connect command. On the receipt of this command, the program enters the IrLMP connect
confirm routine.

The responsibilities of this routine are to store the DLSAP-SEL and the SLSAP-SEL bytes from the IrLMP
connect command frame that was received. These are values used by the two devices when
communicating at the IrLMP level and, whenever called later by another service, other LSAP-SELs are
assigned and stored as the ones corresponding to the particular service.

Next, the value of Nr is incremented by 1 and the value of Ns is placed in the following byte. The F bit is
set because the connection parameters specify one window frame. This means that each device is
allowed to transmit only one frame on each turn. The next two bytes are occupied by DLSAP-SEL and
SLSAP-SEL, respectively, and then the opcode for a connect confirm 081h is placed on the next byte. The
following byte is reserved and must be set to 0. The next field is the LMP-User Data field which is used by
the user layer. The total number of bytes in the frame is loaded into the transmit counter variable, the
buffer containing the assembled byte is passed to the transmission pointer, and the routine responsible for
sending the frame is called. After this, the program waits for the next incoming frame from the primary
peer.

3.4.3 Data Services
After the frame has been identified as an IrLAP I-frame carrying user-data, the first test in the IrLMP
parsing process is to determine if it is an IrLMP frame carrying data, IrLMP-connection parameters, or
TTP-connection parameters. After bit 7 of the third IrLAP byte has been tested and if it is a 0, then the
frame is positively identified as an IrLMP frame carrying data. Figure 13 shows the encoding of an IrLMP
data frame.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA202B

A

C

K

1 Byte1 Byte 1 Byte N Bytes

0 DS 0 SS DATA

L

S

T

OPCODE

CTRL

1 Byte 1 Byte N Bytes

0 DS 0 SS DATA

Software Description www.ti.com

12 SLAA202B–February 2005–Revised December 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing IrDA With MSP430™ MCUs

Figure 13. IrLMP Data Transfer Frame Format

3.4.4 Disconnect Services
Disconnect services as specified by the IrDA Lite documentation are linked directly to IrLAP disconnect.
As soon as a disconnect frame is identified, given its IrLMP opcode 002h, the following byte is passed to
the user layer. Immediately afterwards, an IrLAP disconnect command is issued, dropping all connections
and entering the NDM state once more until another discovery session occurs.

3.5 IAS Implementation
The IAS services store information about other devices. It also provides information about the services
supported by the implementation. As specified by the IrDA Lite documentation, the only service primitive
required is GetValueByClass. Figure 14 shows the IAP IrLMP data frame format.

Figure 14. IAP Frame Format

The GetValueByClass call issued by the primary carries the class and attribute names which are
supported by its IrDA implementation and that are relevant to the service to be used for the connection. As
soon as this frame is identified by GetValueByClass opcode 084h which is in byte 3 of the IrLMP data
frame, the first thing that must be done is to confirm that the class and attributes advertised are supported
by the implementation. The routine CHECK_CLASS_ATTRIB verifies that the class and attributes are both
supported by the implementation by checking those received in the frame against the values stored in a
memory table.

First, the class is checked. If the class name is unknown, then the GetValueByClass return frame is
assembled with the return code corresponding to: "No such class: no other results". If the class check
passes, then the attributes are checked. If the attributes are not known, then the return code used
corresponds to: "No such attribute: no other results". If the check for both class and attributes is
successful, then the frame contains not only the return code for success but also the results. Results
include a list length encoded as a 16-bit unsigned integer for which this implementation has a value of 1,
followed by the object identifier encoded also as a 16-bit unsigned integer with a value of 3, and finally an
attribute value of type integer with a fixed length of 4 octets equal to 003h. This is the extent of the
implementation of the IAS capabilities according to the IrDA Lite documentation.

3.6 TTP Implementation
The operation of TTP involves the exchange of data TTP-PDUs (protocol data units). Effectively, this adds
a single octet of header to the IrLMP-MUX data LM-PDUs. This additional octet is used to convey
increments (credits) to the number of data TTP-PDUs that may be exchanged in each direction using the
underlying IrLMP service.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA202B

www.ti.com Software Description

13SLAA202B–February 2005–Revised December 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing IrDA With MSP430™ MCUs

In this implementation, a simple policy for advancing credit is used. This means that the credit is held
longer at AvailCredit rather than being advanced at the earliest opportunity. This leaves buffers available
to be reclaimed and redeployed to other needy TTP connections or to relieve resource problems
elsewhere in a system.

Connect TTP-PDUs exchanged during connection establishment are not regarded as requiring or
consuming credit. Segmentation and reassembly is not implemented. Because the IrLAP window size is
equal to 1, a single TTP connection can take full advantage of the underlying IrLAP window.

For this particular implementation, when the initial TTP connection frame is identified, credit is issued so
that the peer entity can transfer its data. As soon as the MSP430 responds and after it has received an
RR command from the primary, it then issues more credit for the peer entity to continue transmitting data.

3.7 IrCOMM Implementation
This is the layer that is in charge of the actual data exchange. The only times when it does not use the
IrLMP services is for identifying the frames that carry user data, for constructing the frames that send data
to the peer device, and when dealing with TTP services. For connection and disconnection, it uses the
respective IrLMP services.

IrCOMM services are the same services as provided by the IrLMP layer. IrCOMM uses the services
provided by the service layer, and this call would propagate down the protocol stack. It uses the data
PDUs from IrLMP to transmit all data and control channel information. These two types of frames can be
differentiated because when sending data there is an overhead of two bytes. The first byte is equal to the
amount of credit that the peer has left to transmit after the data-carrying frame is received, and the second
one is equal to 0 following the IrLMP LM-MUX overhead. In the case of the connection frames, a control
field follows the TTP overhead where the first byte indicates the length in bytes of the connection
parameters. As the connection parameters for IrLAP and TTP, these are in groups of three.

3.8 Application Layer
The application layer is the layer that uses the services provided by the stack to perform a specific task. In
this case, for demonstrating functionality, the user layer waits for the ASCII character 't'. After the
character has been received, the MSP430 obtains a temperature reading from the ADC module integrated
temperature sensor and appends it through the use of the IrCOMM layer to the user data field of a data
carrying IrLMP frame. The temperature sent then is displayed by the peer device, and the MSP430 then
issues more credit to the peer entity so that more data can be sent.

4 PC Demonstration Application
The PC demonstration application supplied with this application report is provided as both C source code
and as an executable single-file Win32 command line application. It has been decided to develop the
software as a command line application to make it both easy to understand and also compatible with all
common Windows-based C development systems such as Microsoft Visual C++ or Borland C++. The
demonstration software requires at least Windows 2000 or Windows XP operating system and a properly
installed infrared port. This IR port can either be integrated (such as found in notebook computers) or
provided by an external Windows-supported IrDA adaptor (for example, the Actisys ACT-IR220L+).

The current Windows operating systems come with a built-in IrDA stack that implements various IrDA
communication modes, such as the 9-wire IrCOMM mode. This mode can easily interface with external
devices like PDAs, cell-phones, and the presented MSP430 IrDA stack. Microsoft decided to expose the
IrDA stack through the Windows sockets library rather than by providing virtual COM ports. If virtual COM
ports need to be used, then additional third-party driver software such as IrCOMM2k is required [9].
However, the more elegant approach is to perform IrDA communication by using the standard Windows
built-in driver model as shown in this demonstration application.

The PC demonstration application provides feedback about every Windows API call it does. If one of the
calls fail, the application terminates and displays the Windows error code as obtained by the Windows
sockets function WSAGetLastError(). For detailed information about the error codes, see the Microsoft
Windows Platform SDK documentation [8].

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA202B

IR Adapter

IrPHY (Physical Layer)

IrLAP (Link Access Protocol Layer)

IrLMP (Link Management Layer)

IAS (Information

Access Services)

TTP

(Tiny Transport

Protocol)

IrCOMM,

OBEX, IrLAN,

IrFM, etc.

IrDA Protocol Basics www.ti.com

14 SLAA202B–February 2005–Revised December 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing IrDA With MSP430™ MCUs

When starting the application, it tries to open the Winsock system library (DLL). At least version 2.2 is
required for proper operation of the IrDA communication. The program exits with an error message if an
incompatible version is located. After opening the Windows IrDA socket, the reception and transmit
timeouts are configured to 3 seconds to prevent the software from indefinitely waiting for the end of the
communication. The software then generates a list of IrDA devices which have been discovered already.
For the sake of simplicity, the first device is taken from the list and assumed to be the IrDA peer the user
wants to communicate with. At this point, the user could be provided with a list of the discovered devices.
Next, the peer's IAS database is scanned to check whether or not it supports the 9-wire communication
mode. If the 9-wire mode is supported, then it is activated. Otherwise, the application terminates with an
error message.

From this point on, using the Windows IrDA stack does not differ from using any other Windows sockets
such as TCP or UDP. The connection is opened by calling the connect() function. After that, a single t
character is transmitted using send(). When the MSP430 IrDA stack receives this character, it initiates an
A/D conversion of the ADC12 module internal temperature sensor and then sends back the current MCU
temperature as an ASCII string. Finally, the data that was received and buffered by the Windows IrDA
stack is read out using the sockets function recv() and displayed on the screen. The Windows socket and
therefore the IrDA stack are now closed by calling closesocket(). It is important that the socket is closed
every time it has been used, even if an error occurred. Otherwise, internal Windows IrDA stack resources
could remain locked and the IrDA port can no longer be accessed until the next system start-up.
Therefore, make sure not to interrupt the demo application by not pressing Ctrl+C. Detailed information
about the built-in Windows IrDA functionality can be found in the Microsoft Windows Platform SDK.

5 IrDA Protocol Basics
Communication protocols are commonly divided into layers. These layers have their own responsibilities
and dependencies to the layers above and below them, thus creating the concept of a protocol stack.
Figure 15 shows the IrDA stack. This stack is built from the bottom up, with each layer dependant on the
layers below. The first three layers shown are mandatory while those on top of IrLMP, except IAS, are
optional protocols required only for specific applications. The required layers are:
• IrPHY: Specifies optical characteristics following ISO standards, data encoding/decoding, and framing

for various speeds.
• IrLAP: Establishes the basic reliable connection, frame formatting, and parameter negotiation

procedures.
• IrLMP: Multiplexes services and applications on the IrLAP connection level.
• IAS: Provides a database of services on a device.

Some of the optional layers are:
• TTP: Manages per-channel flow control.
• OBEX: Object exchange protocol, used to easily transfer files or other data objects.
• IrCOMM: Serial and parallel port emulation enabling devices that use these services to use IrDA

interchangeably without problems.

Figure 15. IrDA Stack

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA202B

1 Byte N Bytes1 Byte

DATACTRLADDR

Connection Address

C

/

R

N Bytes1 Byte 2 Bytes 1 Byte10 Bytes

DATABOF EOFFCSXBOF

www.ti.com IrDA Protocol Basics

15SLAA202B–February 2005–Revised December 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing IrDA With MSP430™ MCUs

5.1 Physical (IrPHY) Layer
The physical (IrPHY) layer is responsible for the sending and receiving of frames, some framing as
beginning- and end-of-frame flags, and cyclic redundancy checks (CRC) or check sums. The latter are
used as means of error detection mechanisms. Even though there is no means by which to repair the data
(if the data is known to be corrupted), it could be requested again.

A frame at the IrPHY level is identified by 10 extra beginning-of-frame (XBOF) flags, 1 byte each as
specified by the IrDA Lite documentation. After the XBOF flags are sent, a single beginning- of-frame
(BOF) flag, 1 byte, is sent followed by data (payload). At the end of each frame, there are 2 bytes which
compose the frame check sum (FCS) followed by a single end-of-frame (EOF) flag marking the end of the
frame. Figure 16 shows the frame structure.

Figure 16. IrPHY Frame

5.2 Link Access Protocol (IrLAP) Layer
The link access protocol (IrLAP) layer is responsible for reliable data transfer at a low level; upper layers
can then rely on the services provided by this layer. The data is delivered and if delivery is not possible,
then the upper layer is aware of this fact and acts accordingly. The IrLAP layer provides a point-to-point
half-duplex connection with no data collision control mechanism. It is possible to simulate a full-duplex
connection when the timing requirements are not critical.

The devices connected to the IrLAP layer are known as the primary and secondary devices which
correspond to a master-slave relationship, respectively. The responsibilities of each device vary depending
on the role it performs. Although many times a primary station can take on the role of a secondary, the
opposite is not true when a secondary-only implementation is followed.

The primary station is responsible for:
• Sending command frames (commencing connections and transfers)
• Control and organization of data
• Manipulating data link errors

The secondary station:
• Sends response frames only

The IrLAP layer is built around two modes of operations: normal disconnect mode (NDM) and normal
response mode (NRM). NDM is used when a connection does not yet exist. When the devices identify the
IR media to be free, then the discovery process can begin with the default parameters for negotiating a
connection. NRM is used when a connection exists and then upper layers proceed to exchange
information. Figure 17 shows the basic IrLAP frame format.

Figure 17. IrLAP Frame Format

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA202B

Upper Layers

(Primary)

Request

Confirm

IrLAP Layer

(Primary)

Frames

IrLAP Layer

(Secondary)

Response

Indication

Upper Layers

(Secondary)

IrDA Protocol Basics www.ti.com

16 SLAA202B–February 2005–Revised December 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing IrDA With MSP430™ MCUs

The address and control fields only take 1 byte each; thus, adding little overhead to user data. Three
different framings exist that are applied to the data before it is sent. Proper framing depends solely on the
speed at which the data is sent. The scope of this report is up to 115.2 kbps; therefore, asynchronous
framings schemes are followed.

The operations performed by this layer are defined in its service primitives; these can be understood as
IrLAP API definitions. Figure 18 shows an example of how these service primitives work. Not all the
primitives defined are required to have an IrDA implementation. The primitives defined by the IrDA Lite
protocol as required are:
• Discovery and address conflict services
• Connect services
• Data services
• Disconnect services

Figure 18. IrLAP Service Primitives

5.3 Link Management Protocol (IrLMP) Layer
The link management protocol (IrLMP) layer depends completely on the reliable connection services and
the negotiated link provided by the IrLAP layer. The services provided by the IrLMP layer include:
multiplexing of the link, address conflict resolution above the IrLAP layer, and information access services
(IAS).

To be able to have multiple LMP connections on one single LAP connection, the IrDA developed a way of
addressing these connections. Its method consists of having various logical service access points (LSAPs)
which access a service or application. This is accomplished through the use of LSAP-SELs (LSAP
selectors), which are 1-byte numbers that depending on the range they belong to is the service they
provide.

Just like the IrLAP layer, the IrLMP layer has a series of primitives that stipulate the services it provides,
which are, according to the IrDA Lite specification:
• Discovery services
• Link connect services
• Connect services
• Data services
• Disconnect services

The IrLMP layer adds 2 bytes of overhead in the information field of the IrLAP frame. Figure 19 shows the
IrLMP frame format.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA202B

1 Byte 1 Byte N Bytes

C DS r SS DATA

www.ti.com IrDA Protocol Basics

17SLAA202B–February 2005–Revised December 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing IrDA With MSP430™ MCUs

Figure 19. IrLMP Frame Format

The control bit (C) identifies the frame as a command (C = 1) or data frame (C = 0) and the r bit is
reserved. DLSAP-SEL (DS) and SLSAP-SEL (SS) are the service addresses of the destination of the
frame and for the sender of the frame, respectively.

As part of the discovery services, the IrLMP layer adds overhead to the IrLAP XID frame. This overhead is
constituted by the device discovery information. This field is then divided in three fields which are: service
hint bits, character set, and device nickname. The service hint bits are 2 bytes that, depending on which
bits are set, determine which services that specific device supports (see Table 1). The character set most
widely used is ASCII, although other character sets are permitted. Finally, the device nickname is the
name by which the device is identified in the IAS database service.

Table 1. Service Hint Bits

Byte 1 Byte 2
Bit Function Bit Function
0 PnP compatible 0 Telephony
1 PDA/Palmtop 1 Fileserver
2 Computer 2 IrCOMM
3 Printer 3 Reserved
4 Modem 4 Reserved
5 Fax 5 OBEX
6 LAN access 6 Reserved

7 Extension (additional hint byte
follows if this bit is set) 7 Extension

5.4 Information Access Services (IAS)
Information access services (IAS) provide a directory of services for a device. All the applications available
for connections must have entries in the IAS which determine their LSAP-SEL. This address is used when
querying the application for further information about the services it provides.

According to the IrDA Lite standard, the only service primitive which is mandatory when implementing IAS
is the GetValueByClass primitive. The application which makes the inquiry must provide the following
information: class and attribute name. The application responding provides the LSAP-SELs that provide
the requested service or an indication that the specific attribute does not exist in its database.

5.5 Tiny Transfer Protocol (TTP)
Tiny transfer protocol (TTP) provides a higher level of flow control than that of the IrLAP layer. It makes
use of the multiplexing capabilities of the IrLMP layer to enable two different LMP connections to use the
same underlying IrLAP connection without the loss of any data in the process. The way in which TTP is
able to provide this service is by issuing a credit to each party. This credit is directly proportional to the
buffer space that one side has. Sending data causes one credit to be used. Periodically, the receiver
issues more credit to the sender to keep receiving the intended data. TTP also has segmentation and
reassembly capabilities; this feature is not described in this application report.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA202B

Data Packet:

Connect Packet:

1 Byte N Bytes

1 Byte

P = 0: No parameters included

P = 1: Parameters included

N Bytes

P IC DATA

M = 0: Last segment

M = 1: Not last segment

M DC DATA

IC: Initial Credit

DC: Delta Credit

IrDA Protocol Basics www.ti.com

18 SLAA202B–February 2005–Revised December 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing IrDA With MSP430™ MCUs

TTP has its own set of primitives that describe the behavior of this layer. The primitives for TTP are:
• Connect services
• Disconnect services
• Reliable or unreliable data services
• Local flow control services

Two frame formats are used in TTP. Both add overhead to the User-Data field of the IrLMP

frame. These frames, as shown in Figure 20, establish a connection where initial credit (IC) is issued or
transfer data where delta credit is accounted for. Delta credit (DC) is the amount of data frames that a
device is allowed to send before it has to turn the connection over to another device.

Figure 20. TTP Frame Formats

5.6 IrCOMM
IrCOMM is serial and parallel port emulation over IR, also known as wire replacement. It provides four
different services: 3-wire raw, 3-wire cooked, 9-wire, and Centronics. For this application, the IrCOMM 3-
wire services are implemented. 9-wire services are needed to communicate with Windows. Because the
Windows IrDA stack does not actually handle the control channel, it is possible to achieve
communications with Windows by the same means as 3-wire cooked as long as the 9-wire service is
advertised.

The 3-wire cooked service class makes use of TTP flow control, so that it may coexist with other
connections that employ a higher level (not IrLAP) flow control (including other cooked IrCOMM
connections). Therefore, it is not limited to a single IrLMP connection. It also supports a control channel for
sending information like data format. Because of the need for flow control and the use of the control
channel, the 3-wire service type uses a more elaborate frame format.

IrCOMM introduces a new service hint bit to indicate that the device supports IrCOMM services. The
IrCOMM IAS entry is IrDA:IrCOMM with the following attributes: LsapSel and Parameters. The LsapSel
attribute is needed to make a connection. The Parameters attribute allows the client application to
distinguish among multiple IrCOMM services, because many different applications can use serial and
parallel ports to communicate. It has at least the service-type parameter with at least the 3-wire cooked-bit
set. The LsapSel attribute is also the unique address of the service within the context of one device and is
needed to connect to that service. If the IrDA:IrCOMM IAS entry is for 3-wire cooked service, then the
format to be used is IrDA:TinyTP:LsapSel.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA202B

www.ti.com IrDA Protocol Basics

19SLAA202B–February 2005–Revised December 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing IrDA With MSP430™ MCUs

The Parameters attribute contains one or more values which characterize the IrCOMM service being
provided. The attribute Parameters is mandatory, and it is to have a value type of octet sequence (002h).
Each parameter in the Parameters attribute consists of tuples of 3 (PI, PL, and PV). The parameters that
can be set are service type, port type, and fixed port name.

3-wire connections can coexist with other nonexclusive IrLMP connections. This is because 3-wire cooked
uses TTP flow control, a method which allows various connections with their own flow control to exist
concurrently. Despite the presence of a control channel, 3-wire cooked cannot emulate hardware
handshaking, because nondata signals are not emulated. If hardware handshaking is required, then the 9-
wire or Centronics service type is necessary.

In 3-wire cooked, the control channel is used for three purposes:
• Selecting the service type
• To exchange port communication settings (data rate, data format, and flow control information) when

emulating a serial port
• For certain Type 2 devices to deliver port line status (overrun, parity, and framing errors) back to Type

1 devices

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA202B

NRM (Normal Response Mode)

Discovery

NDM (Normal Disconnect Mode)

Send XID command

(Palm has 6 discovery

slots)
Send XID response

(MSP430 always

answers in slot zero)

Finish sending XIDs

No response to XIDs for

other slots

Secondary (MSP430)

Send SNRM command

(negotiate parameter

and connection address)
Send UA response with

parameters using

connection address

Send S-frame with RR

command control field

Send S-frame with RR

response control field

Send IAS queries

(GetValueByClass)

Send IAS queries

response

Open channel for data

Confirm channel open

for data

Send data or status

Send data or status

Send data or status

Send data or status

(repeat until data

exchange is done)

Send DISC command

(link shutdown)

Send UA response

Shutdown link

(back to NDM)

Primary (Palm V)

IrDA Communication Diagram www.ti.com

20 SLAA202B–February 2005–Revised December 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing IrDA With MSP430™ MCUs

6 IrDA Communication Diagram

Figure 21. IrDA Communication Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA202B

www.ti.com Frame Exchange Log

21SLAA202B–February 2005–Revised December 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing IrDA With MSP430™ MCUs

7 Frame Exchange Log
This section shows the frames exchanged in a connection between the IrCOMM2k driver for the PC and
the MSP430 IrDA stack. This is only meant to be an example, and it shows communication with no errors.
When a frame is similar to the previous frame, only the different fields are commented on. All the numbers
are in hexadecimal format, unless noted otherwise.

NOTE: IrCOMM2k is a driver for Windows that makes possible to use the IrCOMM services in the
Windows IrDA stack. It also enables the user to be able to use the Linux-IrDA stack ported to
Windows, if so desired (see IrCOMM2k, Virtual Infrared COM Port for Windows 2000/XP).

(001 from IrCOMM2k) XID command: FF 3F 01 29 23 BE 84 FF FF FF FF 01 00
Address Field: FF, where the last bit is the C/R bit. When set, the C/R bit indicates a command frame.
The previous seven bits, equal to 7F are the broadcast address.
Control Field: 3F, 001x1111b indicates an unnumbered type frame. 2F is the opcode for exchange
station identification. Bit 4 is the Poll/Final bit, which, when set by the primary, indicates the frame is
the final frame.
Format Identifier: 01 is a set value as defined in the IrLAP documentation.
Source Device Address: 2923BE84 is the address of the device sending the frame. Destination Device
Address: FFFFFFFF is the broadcast address during discovery. Discovery Flags: 01. The last two bits
indicate the amount of slots to be used during the
discovery, in this case six. Bit 2 is the conflict bit which is not set in this case. Slot Number: 00, marks
the first discovery slot.
Version Number: 00, as specified in the IrLAP documentation.

(002 from MSP430) XID response: FE BF 01 AB CD 12 34 29 23 BE 84 01 00 00 82 04 00 20 4D 53 50
34 33 30 20

Destination Device Address: 2329BE84 is the address of the device for which the frame is intended.
Service Hint Bits: 8204. These bits are set according to the IrLMP documentation and in this case they
are set to support PDA/Palmtop and IrCOMM.
Character Set: 00 indicates ASCII is used.
Device Nickname: 204D535034333220 reads MSP430 and is the name that stores this device
information in the peer device IAS database.

(003 from IrCOMM2k) XID command: FF 3F 01 29 23 BE 84 FF FF FF FF 01 01

(004 from IrCOMM2k) XID command: FF 3F 01 29 23 BE 84 FF FF FF FF 01 02

(005 from IrCOMM2k) XID command: FF 3F 01 29 23 BE 84 FF FF FF FF 01 03

(006 from IrCOMM2k) XID command: FF 3F 01 29 23 BE 84 FF FF FF FF 01 04

(007 from IrCOMM2k) XID command: FF 3F 01 29 23 BE 84 FF FF FF FF 01 FF 00 84 04 00 4C 54 41
30 38 36 36 32 36 35

Slot Number: FF marks the final discovery slot in the discovery sequence.
Service Hint Bits: 8404. This device supports PCs, PDA/Palmtops, and IrCOMM.

(008 from IrCOMM2k) SNRM command: FF 93 29 23 BE 84 AB CD 12 34 70 01 01 3E 82 01 01 83 01
3F 84 01 7F 85 01 80 86 01 1F 08 01 07

Control Field: 93, 100x0011b = Unnumbered: Set Normal Response Mode (83) with the final bit set
Connection Address: 38 this corresponds to the middle six bits of 70.
Negotiation Parameters:

• Baud Rate: (01, 01, 3E) 9600, 19200, 38400, 57600, and 115200 bps supported
• Maximum Turnaround Time: (82, 01, 01) 500 ms
• Data Size: (83, 01, 3F) 64, 128, 256, 512, 1024, and 2048 bytes
• Window Size: (84, 01, 7F) 1, 2, 3, 4, 5, 6, and 7 frame windows
• Additional BOFs: (85, 01, 80) 0 additional BOFs at 115200 bps
• Minimum Turnaround Time: (86, 01, 1F) 10, 5, 1, 0.5, and 0.1 ms

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA202B
http://www.ircomm2k.de

Frame Exchange Log www.ti.com

22 SLAA202B–February 2005–Revised December 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing IrDA With MSP430™ MCUs

• Link Disconnect/Threshold Time: (08, 01, 07) 3/0, 8/3, and 12/3 seconds

(009 from MSP430) UA Response: 70 73 AB CD 12 34 23 29 BE 84 01 01 02 82 01 01 83 01 01 84 01
01 85 01 01 86 01 01 08 01 01

Address Field: 70. Bit 0 is the C/R bit indicating a response, and the upper 7 bits use from now on the
'Connection Address' received in the SNRM frame number 38.
Control Field: 73, 011x0011b = Unnumbered: Unnumbered Acknowledgement (63) with the poll bit set.

(010 from IrCOMM2k) RR command: 71 11
Address Field: 71 with the C/R bit set and the CA (connection address) set to 38.
Control Field: 11 where bits 0-3 indicate a supervisory frame with a receive ready opcode, bit 4 is the
P/F bit, and bits 5-7 indicate the received frame count (Nr).

(011 from MSP430) RR response: 70 11

(012 from IrCOMM2k) IrLMP Connect Command: 71 10 80 5A 01 00
Control Field: 10 where bit 0 indicates an information type frame, bits 1-3 indicate the sent frame count
(Ns), bit 4 is the P/F bit, and bits 5-7 indicate the received frame count.
Destination: 80 where bit 7 is the control bit, and bits 0-6 are the DLSAP.
Source: 5A where bit 7 is reserved, and bits 0-6 are the SLSAP.
Opcode: 01 this corresponds to the connect command.
Reserved: 00 for future use.

(013 from MSP430) IrLMP Connect Confirm: 70 30 DA 00 81 00
Opcode: 81 corresponds to the connect confirm.

(014 from IrCOMM2k) IAS query: 71 32 00 5A 84 0B 49 72 44 41 3A 49 72 43 4F 4D 4D 0A 50 61 72 61
6D 65 74 65 72 73

IAP Control Field: 84 where bit 7 corresponds to the last frame bit, bit 6 is the acknowledge bit, and
bits 0-5 are the opcode to the GetValueByClass IAS query.
Class Name: 0B497244413A4972434F4D4D where the first byte represents the length of the class
name, and the rest is the ASCII hex for the class name: "IrDA:IrCOMM"
Attribute Name: 0A506172616D6574657273 where the first byte represents the length of the attribute,
name and the rest is the ASCII hex for the attribute name: "Parameters".

(015 from MSP430) IAS result: 70 52 5A 00 84 00 00 01 00 01 02 00 03 00 01 07
IAP Control Field: 84 where bit 7 corresponds to the last frame bit, bit 6 is the acknowledge bit, and
bits 0-5 are the opcode to the GetValueByClass IAS response.
Return: 00, success
List Length: 01
Object Identifier: 0001
Type: 02 for octet sequence
Sequence Length: 03
Sequence: 000107, where the first byte means service type, second byte is the length of result, and
the last byte has bits set for: 3-wire raw, 3-wire, or 9-wire service.

(016 from IrCOMM2k) IrLMP Disconnect: 71 54 80 5A 02 01
IrLMP opcode: 02
Reason: 01 meaning user request.

(017 from MSP430) RR response: 70 71

(018 from IrCOMM2k) IrLMP Connect Command: 71 56 80 5B 01 00

(019 from MSP430) IrLMP Connect Confirm: 70 94 DB 00 81 00

(020 from IrCOMM2k) IAS query: 71 78 00 5B 84 0B 49 72 44 41 3A 49 72 43 4F 4D 4D 13 49 72 44 41
3A 54 69 6E 79 54 50 3A 4C 73 61 70 53 65 6C

IAP Control Field: 84 where bit 7 corresponds to the last frame bit, bit 6 is the acknowledge bit, and
bits 0-5 are the opcode to the GetValueByClass IAS query.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA202B

www.ti.com Frame Exchange Log

23SLAA202B–February 2005–Revised December 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing IrDA With MSP430™ MCUs

Class Name: 0B497244413A4972434F4D4D where the first byte represents the length of the class
name, and the rest is the ASCII hex for the class name: "IrDA:IrCOMM".
Attribute Name: 13497244413A54696E7954503A4C73617053656C where the first byte represents the
length of the attribute name, and the rest is the ASCII hex for the attribute name:
"IrDA:TinyTP:LsapSel".

(021 from MSP430) IAS result: 70 B6 5B 00 84 00 00 01 00 01 01 00 00 00 02
Type: 01 indicating an integer result.
Value: 000002 indicating the LSAP to use for TTP.

(022 from IrCOMM2k) IrLMP Disconnect: 71 9A 80 5B 02 01

(023 from MSP430) RR response: 70 D1

(024 from IrCOMM2k) IrLMP/TTP Connect Command: 71 9C 82 55 01 00 10
TTP Connect Frame: 10 where bit 7 is the P bit indicating a parameter-less connection frame, and
where the remaining 7 bits indicate the Initial Credit given to the peer entity.

(025 from MSP430) IrLMP/TTP Connect Confirm: 70 F8 D5 02 81 00 01

(026 from IrCOMM2k) RR command: 71 B1

(027 from MSP430) RR response: 70 F1

(028 from IrCOMM2k) IrCOMM Parameter Set: 71 BE 02 55 00 12 00 01 04 10 04 00 00 25 80 11 01 03
12 01 0C 20 01 0C

IrCOMM header: 00
Length of Parameters: 12
Service Type: (00, 01 04) Service selected, equal to highest service in common, 9-wire
Data Rate: (10, 04, 00002580) 9600 bps
Data Format: (11, 01, 03) 8 bits, 1 stop bit, no parity
Flow Control: (12, 01, 0C) RTS/CTS on input and output
DTE Line Settings and Changes: (20, 01, 0C) DTR and RTS state

(029 from MSP430) IrCOMM Parameter Accept and TTP credit: 70 1A 55 02 02
TTP Credit: 02, where bit 7 is the M (more) bit, and the remaining six bits indicate the delta credit

(030 from IrCOMM2k) RR command: 71 D1

(031 from MSP430) RR response: 70 11

NOTE: The RR command and response and exchange continue (frames 32-37) until a device starts
sending.

(038 from IrCOMM2k) IrLMP PDU/IrCOMM: 71 D0 02 55 00 00 74
IrCOMM data header: 0000
User Data: 74, the hex value for the ASCII character t

(039 from MSP430) IrLMP PDU/IrCOMM: 70 3C 55 02 00 00 38 37 46 20
IrCOMM data header: 0000
User Data: 38374620, the hex sequence for the ASCII string 87F

(040 from IrCOMM2k) RR command: 71 F1

(041 from MSP430) TTP advancing credit: 70 3E 55 02 02
TTP Credit: 02, where bit 7 is the M (more) bit, and the remaining six bits indicate the delta credit.

The exchange of RR command/response frames, IrCOMM user data and TTP credit continues until one of
the peers requests disconnection after finishing the data transfer.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA202B

References www.ti.com

24 SLAA202B–February 2005–Revised December 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Implementing IrDA With MSP430™ MCUs

8 References
1. Serial Infrared Physical Layer Specification V1.4, Infrared Data Association, 2001
2. Serial Infrared Link Access Protocol (IrLAP) V1.1, Infrared Data Association, IBM Corporation, Hewlett-

Packard Company, Apple Computer, Inc., Counterpoint Systems Foundry, Inc., 1996
3. Link Management Protocol V1.1, Infrared Data Association, 1996
4. Minimal IrDA Protocol Implementation (IrDA Lite) V1.0, Infrared Data Association, Counterpoint

Systems Foundry, Actisys Corporation, 1996
5. 'Tiny TP': A Flow Control Mechanism for use with IrLMP V1.1, Infrared Data Association, 1996
6. IrDA Object Exchange Protocol OBEXTM V1.3, Extended Systems, Microsoft Corporation, 2003
7. 'IrCOMM': Serial and Parallel Port Emulation over IR (Wire Replacement) V1.0, Counterpoint Systems

Foundry, Inc., Hewlett-Packard Company, Lexmark International, Inc., Sharp Corporation, NTT
Corporation, Nokia, 1995

8. Microsoft Windows Platform SDK
9. IrCOMM2k, Virtual Infrared COM Port for Windows 2000/XP
10. MSP430x13x, MSP430x14x Mixed-Signal Microcontrollers
11. MSP430x1xx Family User's Guide
12. MSP430x2xx Family User's Guide
13. MSP430x4xx Family User's Guide
14. GP2W0110YPSF Low Power IrDA Transceiver Module Datasheet, Sharp Corporation, 2002

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA202B
http://msdn.microsoft.com/library)
http://www.ircomm2k.de
http://www.ti.com/lit/pdf/SLAS272
http://www.ti.com/lit/pdf/SLAU049
http://www.ti.com/lit/pdf/SLAU144
http://www.ti.com/lit/pdf/SLAU056

www.ti.com Revision History

25SLAA202B–February 2005–Revised December 2018
Submit Documentation Feedback

Copyright © 2005–2018, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from June 22, 2007 to December 4, 2018 .. Page

• Editorial and formatting changes throughout document.. 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA202B

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Implementing IrDA With MSP430™ MCUs
	1 Introduction
	2 Hardware Description
	2.1 Hardware Overview
	2.2 Circuit Description

	3 Software Description
	3.1 Implementing IrPHY Layer Using Timer_A
	3.1.1 Transmission
	3.1.2 Reception

	3.2 Implementing IrPHY Layer using USCI_A0
	3.3 Implementing IrLAP
	3.3.1 Discovery Services
	3.3.2 Connect Services
	3.3.3 Data Services
	3.3.4 Disconnect Services

	3.4 Implementing IrLMP
	3.4.1 Discovery Services
	3.4.2 Link Connect and Connect Services
	3.4.3 Data Services
	3.4.4 Disconnect Services

	3.5 IAS Implementation
	3.6 TTP Implementation
	3.7 IrCOMM Implementation
	3.8 Application Layer

	4 PC Demonstration Application
	5 IrDA Protocol Basics
	5.1 Physical (IrPHY) Layer
	5.2 Link Access Protocol (IrLAP) Layer
	5.3 Link Management Protocol (IrLMP) Layer
	5.4 Information Access Services (IAS)
	5.5 Tiny Transfer Protocol (TTP)
	5.6 IrCOMM

	6 IrDA Communication Diagram
	7 Frame Exchange Log
	8 References

	Revision History
	Important Notice

