

Application Report SLAA356–June 2007

Upgrading From ADS7808/09 to ADS8508/09 Devices

Tom Hendrick

Precision Analog Applications

ABSTRACT

The information contained in this document applies to current applications using the ADS7808 or ADS7809 in a surface-mount SOIC (DW) package. This document is a guide to users of the ADS7808/09 devices with regards to potential compatibility issues when upgrading to the new ADS8508 and ADS8509 series of devices.

1 Package and Pin Compatibility

The ADS8508 and ADS8509 were designed to be fully pin-compatible with the surface-mount SO-20 (DW package) versions of the ADS7808 and ADS7809 devices. The updated chips feature greater throughput (up to 250 ksps), lower power, and better ac and dc performance

The following table is hyperlinked to provide easy access to the associated data sheets of both the ADS78xx and ADS85xx devices.

Current ADS78xx Family	New ADS85xx Family
ADS7808 – <u>SBAS018</u>	ADS8508 – <u>SLAS433</u>
ADS7809 – <u>SBAS017</u>	ADS8509 – <u>SLAS324</u>

2 Electrical Compatibility

The following section describes potential electrical compatibility issues.

2.1 Absolute MAX Voltage Input Changes

The new ADS8508 and ADS8509 devices differ in the maximum working voltage. These items are presented in Table 1.

Table 1. ADS8508	and ADS8509	Maximum	Working
	Voltage		•

ADS78xx MAX Voltage Specification					
V _{ANA}	7 V				
V _{DIG}	7 V				
ADS85xx MAX Voltage Specification					
V _{ANA}	6 V				
V _{DIG}	6 V				

1

2.2 Input Impedance and Capacitance Changes

The new ADS85xx devices have different input impedance and capacitance features as well. The major differences are noted in Table 2.

DADAMETED		7	78 SERIES			85 SERIES			
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
ADSxx08	÷								
Impedance	±10-V Range		22.9		11.5			kΩ	
	±5-V Range		13.3		6.7			kΩ	
	±3.3-V Range		10.7			5.4		kΩ	
	0-V to 10-V Range		13.3			6.7		kΩ	
	0-V to 5-V Range		10.0			5.0		kΩ	
	0-V to 4-V Range		10.7			5.4		kΩ	
Capacitance			35			45		pF	
ADSxx09									
Impedance	±10-V Range		22.9			11.5		kΩ	
	±5-V Range		13.3			6.7		kΩ	
	±3.3-V Range	10.7				5.4		kΩ	
	0-V to 10-V Range		13.3			6.7		kΩ	
	0-V to 5-V Range		10.0			5.0		kΩ	
	0-V to 4-V Range		10.7			5.4		kΩ	
Capacitance			35			45		pF	

Table 2. ADS85xx I	nput Im	pedances	and Ca	pacitances
--------------------	---------	----------	--------	------------

2.3 Performance Compatibility

The new ADS8508 and ADS8509 devices have performance characteristics that meet or exceed the B-grade specifications listed in the ADS7808 and ADS7809 device data sheets. Primary interest regarding specific improvements depend on the actual application. In ac applications for example, the spurious-free dynamic range (SFDR) has improvements of up to 16 dB (typical).

For applications where dc performance is critical, integral nonlinearity (INL) and differential nonlinearity (DNL) have been improved by nearly 50%.

3 Functional and Timing Differences

The following sections discuss the functionality and timing differences between the ADS7808/09 and the ADS8508/09.

3.1 Functional Compatibility

The ADS8508 and ADS8509 devices retain the same basic functionality of the ADS7808 and ADS7809.

3.2 Timing Compatibility

The timing changes related to the ADS8508 and ADS8509 devices are discussed in detail throughout the following section. Depending on the specific application, these timing changes can affect the drop in replacement or ease of use in designs or end systems currently using the ADS7808 or ADS7809. A careful review of Table 3 and Table 4 highlights the timing differences between the ADS7808/09 and ADS8508/09.

3.3 Comparison of the ADS7808 and ADS8508 Timing Characteristics

The **bold** items inTable 3 show the affected timing parameters associated with the ADS7808 and ADS8508 device.

SYMBOL)L		ADS7808			ADS8508		
ADS7808 / ADS8508	DESCRIPTION	MIN	ТҮР	MAX	MIN	TYP	МАХ	UNIT
t1 / t _{w1}	Convert Pulse Width	40		4500	40			ns
t2 / t _{d1}	BUSY Delay			65		6	20	ns
t3 / t _{w2}	BUSY LOW			8			2.2	μs
t4 / t _{d2}	BUSY Delay after End of Conversion		220			5		ns
t5 / t _{d3}	Aperture Delay		40			5		ns
t6 / t _{conv}	Conversion Time		5.7	8			2.2	μs
t7 / t _{acq}	Acquisition Time			2	1.8			μs
t6 +t7 / t _{conv} + t _{acq}	Throughput Time		9	10			4	μs
t8 / t _{d4}	R/C LOW to DATACLK Delay		450			270		ns
t9 / t _{c1}	DATACLK Period		440			110		ns
t10 / t _{d5}	Data Valid to DATACLK HIGH Delay	20	75		15	35		ns
t11 / t _{d6}	Data Valid to DATACLK LOW Delay	100	125		20	35		ns
t12 / t _{c2}	External DATACLK Period	100			35			ns
t13 / t _{w3}	External DATACLK HIGH	20			15			ns
t14 / t _{w4}	External DATACLK LOW	30			15			ns
t15 / t _{su1}	DATACLK HIGH Setup Time	20		t12 + 5	15		t _{c2} + 5	ns
t16 / t _{su2}	R/C to CS Setup Time	10			10			ns
t17 / t _{d7}	SYNC Delay after DATACLK HIGH	15		35	3		35	ns
t18 / t _{d8}	Data Valid Delay	25		55	2		20	ns
t19 / t _{d9}	CS to Rising Edge Delay	25			10			ns
t20 / t _{d10}	Data Available after CS LOW	4.5			2			μs

Table 3. ADS7808 and ADS8508 Timing Parameters

3.4 Comparison of the ADS7809 and ADS8509 Timing Characteristics

The **bold** items in Table 4 show the affected timing parameters associated with the ADS7809 and ADS8509 device.

SYMBOL			ADS7809			ADS8509			
ADS7809 / ADS8509	DESCRIPTION	MIN	TYP	MAX	MIN	ТҮР	MAX	UNIT	
t1 / t _{w1}	Convert Pulse Width	40		4500	40			ns	
t2 / t _{d1}	BUSY Delay			65		6	20	ns	
t3 / t _{w2}	BUSY LOW			8			2.2	μs	
t4 / t _{d2}	BUSY Delay after End of Conversion		220			5		ns	
t5 / t _{d3}	Aperture Delay		40			5		ns	
t6 / t _{conv}	Conversion Time		5.7	8			2.2	μs	
t7 / t _{acq}	Acquisition Time			2	1.8			μs	
t6 +t7 / t _{conv} + t _{acq}	Throughput Time		9	10			4	μs	

Table 4. ADS7809 and ADS8509 Timing Characteristics

SYMBOL		ADS7809				9		
ADS7809 / ADS8509	DESCRIPTION	MIN	TYP	МАХ	MIN	TYP	МАХ	UNIT
t8 / t _{d4}	R/C LOW to DATACLK Delay		450			270		ns
t9 / t _{c1}	DATACLK Period		440			110		ns
t10 / t _{d5}	Data Valid to DATACLK HIGH Delay	20	75		15	35		ns
t11 / t _{d6}	Data Valid to DATACLK LOW Delay	100	125		20	35		ns
t12 / t _{c2}	External DATACLK Period	100			35			ns
t13 / t _{w3}	External DATACLK HIGH	20			15			ns
t14 / t _{w4}	External DATACLK LOW	30			15			ns
t15 / t _{su1}	DATACLK HIGH Setup Time	20		t12 + 5	15			ns
t16 / t _{su2}	R/C to CS Setup Time	10			10			ns
t17 / t _{d7}	SYNC Delay after DATACLK HIGH	15		35	3		35	ns
t18 / t _{d8}	Data Valid Delay	25		55	2		20	ns
t19 / t _{d9}	CS to Rising Edge Delay	25			10			ns
t20 / t _{d10}	Data Available after CS LOW	4.5			2			μs

Table 4. ADS7809 and ADS8509 Timing Characteristics (continued)

4 **Potential Application Issues**

4.1 When Using Internal Serial Clock

Customers using the internal SCLK function must ensure that their host processor is capable of handling the increased serial clock speed. The ADS85xx devices output a serial clock on the order of 9 MHz; the ADS78xx provide a serial clock of approximately 2 MHz. The increased conversion clock speed also means that the BUSY signal returns to its active-high state much faster - 8 μ s with the ADS78xx devices, versus 2.2 μ s with the ADS85xx devices. Processors that use the BUSY output to signal an interrupt service routine may need to add delays to the system in order to accommodate the speed increase.

4.2 When Using External Serial Clock

Customers using the ADS7808/09 serial interface parts with an external DATA clock may need to modify their software depending on the application of the R/C input. Customers using an external DATA clock must ensure that the R/C is released before attempting to read data. If the BUSY signal is used to trigger an SPI interrupt/transfer routine, the host processor must be prepared to handle the higher data rate of the ADS85xx device.

As noted in the timing tables of section 3, the BUSY signal returns high nearly four times faster in the ADS85xx. If the R/C input is longer than 2.2 μ s, BUSY could go active-high before the R/C input is released. If the serial clock is started while R/C is low, output data can be missed and or improperly received because the output data is high-z while R/C is low.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
Low Power Wireless	www.ti.com/lpw	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated