ABSTRACT
The Flash-programmable 16-MHz MSP430AFE253 device developed by Texas Instruments is a highly flexible and powerful single-chip mixed-signal measurement device targeting electricity meter and sub-meter applications.

In such applications, high reliability and accuracy of better than 0.1% is often required.

This application report demonstrates robust real-time embedded software running on the MSP430AFE253 device and the test cases it has passed. This firmware is developed to meet the China State Grid (CSG) specification for single-phase electricity meters. The software covers the use of the on-chip analog front end to measure electricity as well as other related metering parameters.

Project collateral and source code discussed in this application report can be downloaded from the following URL: http://www.ti.com/lit/zip/slaa488.
1 Introduction

The test cases developed for this application are divided into three parts:

• Functional tests
• Performance tests
• Robustness tests

This firmware is referred to as CSG firmware in this document.

Note that a key focus of this document is to describe the test procedures developed for the CSG specification-based electricity metering code. For a description of the actual CSG specification itself, see the GB standard documentation (GB/T 17215.321-2008).

2 Test System Setup

A complete single-phase meter is built to enable the development and testing of the embedded software. This meter consists of an MSP430F4481 device as the main MCU and the MSP430AFE253 as the front-end measurement device. The 'F4481 drives the serial peripheral interface (SPI) to the 'AFE253. A serial port connects the meter to an external PC. A GUI, running on the PC, allows you to set the modes of the 'AFE253 and to calibrate the system. Figure 1 to Figure 3 display the system setup.

2.1 Hardware Setup

Four parts are used in this test:

• Single-phase demo meter
• MSP-EXP430FG4618 demo board
• Laptop
• E-meter test facility
Figure 1. Demo Meter and MSP-EXP430FG4618 Demo Board
The test system is arranged as illustrated in Figure 2.
Figure 3 shows the connection between the demo meter and the MSP-EXP430FG4618 board.

Figure 3. Connection Between Demo Meter and MSP-EXP430FG4618 Demo Board

2.2 Communication link Setup

The software include three parts:
• MSP430AFE253 firmware
• MSP430F4481 host firmware
• Windows® GUI calibrator.exe

Program MSP430AFE253 and MSP430F4481 with corresponding firmware before test.

There are two kinds of MSP-EXP430FG4618 boards: one with RS232 interface and the other with USB interface. If the RS232 interface board is used, it defaults to COM1 in the laptop computer. In these tests, the USB version of the MSP-EXP430FG4618 board from a third party LSD was used, which integrates USB interface to the PC and can provide higher baud rate communication. The Windows system dynamically assigns a port number to it. Follow these steps to choose the right port for the GUI.

1. Plug the USB connector into the MSP-EXP430FG4618 board.
2. Check the Device Manager in Windows and find the serial port number that MSP-EXP430FG4618 device occupies (see Figure 5).
3. Modify the port number setting in calibration-config.xml (included in the GUI packet) and give the correct port number (see Figure 5). The calibration-config.xml file is used by Calibrator.exe as the configuration file.

```xml
<step current="35.000" phase="0.0" gain="1.0"/>
<step current="40.000" phase="0.0" gain="1.0"/>
<step current="45.000" phase="0.0" gain="1.0"/>
<step current="50.000" phase="0.0" gain="1.0"/>
</correction>
</temperature/>
</root>
</xml-defaults>

<meter position="1">
  <port name="\COM45\" speed="9600\"/>
</meter>

<reference-meter>
  <port name="com2" speed="9800"/>
  <log request="on" response="on"/>
</reference-meter>

<generator>
  <port name="com2" speed="9800"/>
  <log request="on" response="on"/>
</generator>

<idle voltage="230" current="5.0" phase="0" frequency="50.0"/>
<test-pattern>
```

Figure 4. Check Serial Port Number for MSP-EXP430FG4618 Demo Board

Figure 5. Modify Serial Port Number in calibration-config.xml
3 Use of the GUI

Calibrator.exe provides the following functions:

- Read out metering parameters
- Calibrate meter
- Set meter registers

The main frame window of Calibrator.exe is shown in Figure 6:

![Figure 6. Main Frame Window of calibrator.exe](image)

3.1 Metering Parameters Window

Calibrator.exe supports communication up to 24 meters. There are 24 columns on the control panel of the main frame window (see Figure 6), each representing one communication task for one meter. The green light on column 1 shows communication to meter 1 (here the demo e-meter) is active.
Click on column 1 on the main frame window to prompt the meter status window as illustrated in Figure 7:

Figure 7. Meter Status Window

The meter status window shows all metering parameters and registers read from the demo e-meter. This is a read-only window.
3.2 **Meter Calibration and Function Setting**

Click on the manual calibration button on the meter status window (see Figure 7) to prompt the meter configuration window (see Figure 8):

![Figure 8. Meter Configuration Window](image)

The meter configuration window contains two parts: upper and lower.

The upper part of the meter configuration window is used for meter calibration. It allows you to calibrate the demo meter on active power slope, phase shift, power offset (including active power and reactive power), Vrms slope, Irms slope, and Irms offset by entering measurement errors in the corresponding edit box and clicking on the Update Calibration button. For example, if the calculated active power slope error for phase A is 0.3% and the active power offset for phase A is 2200 mW, just type 0.3 on the Active Gain edit box and 220 on the P Offset edit box within Phase A column, then press the Update Calibration button. The GUI calibrates the demo e-meter according to the entered number. As for how to calculate calibration factors, see Section B.2.4.
You can also check the demo e-meter's current calibration factors from the Meter calibration factors window (see Figure 9), which is activated by clicking on the Meter calibration factors button on the Meter status window (see Figure 7).

![Figure 9. Meter Calibration Factors Window](image)

The lower part of the meter configuration window (see Figure 8) is used to set the demo e-meter's system registers. It allows you to change the demo e-meter functions by entering new system register values in corresponding edit boxes and click the Update register button. For example, if you want to set meter energy pulse const to 800, type 800 on the Meter const edit box and press Update register button.

The detailed information of calibration and meter registers is discussed in Section B.2.4.

4 Demo E-Meter Host MCU Program

The host MCU MSP430F4481 provides application level service of a typical energy meter and acts as a bridge between the analog front end (AFE) and the end user; in this case, the end user refers to the GUI calibrator.exe. Its functions mainly includes two parts:

- Decode GUI requests and operate on AFE accordingly.
- Access AFE253, readout metering parameters, and set AFE function mode.

In MSP430F4481, universal synchronous/asynchronous receiver/transmitter (USART0) is configured in SPI mode and used to talk with the MSP430AFE253. USART1 is configured in universal asynchronous receiver/transmitter (UART) mode and used to talk with the PC GUI in 9600 baud rate. The MSP430F4481 program always waits for the PC GUI command, then decodes it and performs the required operation accordingly.

The basic timer is set to trigger 1 second interrupt, in which time the ISR F4481 program reads all of the MSP430AFE253 parameters and stores them in static array. This action is without control of the PC GUI and assures that the MSP430F4481 device always has the most updated image of all the AFE registers.
Figure 10 illustrates the data flowchart of the MSP430F4481 program.

Figure 10. MSP430F4481 Host Program Flowchart

Detailed communication protocol and timing is described in Appendix A.

5 CSG Firmware Briefing

The MSP430AFE253 running the CSG firmware enables a hardware and software self-contained system that measures electrical parameters without the need of a host processor. The MSP430AFE253 integrates on-chip a 3-channel SD24 module, a hardware multiplier module, and an SPI interface.

Features of the CSG firmware include:
• A complete analog and digital functionality for China State Grid's single-phase meter specification
• Reactive power and apparent power support
• Two-wire and three-wire applications
• Tamper detection functionality
• Built-in calibration features and flexible user-configurable system setup
• Integrated AFE for voltage and current sampling
• Independent configurable analog input gain
• Self adaptable three-wire or four-wire SPI communication

5.1 CSG Firmware Operation

In MSP430FAFE253, three channel SD24 are grouped and set to be triggered in 4-HKz intervals and sampled on mains voltage, live current and neutral current. Using the integrated multiplier, the AFE253 MCU calculates electrical parameters based on sampled values in a self-contained manner.
CSG firmware setup, control, and access are provided by accessing CSG registers. These registers fall into three categories: system, calibration, and parameter registers. The host MCU accesses CSG firmware via SPI interfaces.

In CSG firmware, USART0 is configured in SPI mode and the RX interrupt is switched on. CSG firmware decodes all receiving packets and performs register accessing based on the host MCU command. Figure 11 shows the data flowchart of the MSP430AFE253 CSG firmware.

Figure 11. MSP430AFE CSG Firmware Flowchart

Detailed communication protocol and register introduction are described in Appendix B.

6 Test Specification

6.1 Terms

E-meter test facility settings:

- \(I_b \): Basic ac current, 5 A in this test specification
- \(I_{\text{max}} \): Maximum ac current, 60 A in this test specification
• Un: Nominal ac voltage, 220 V in this test specification
• E: Accuracy error in percentage, denotes the error between CSG firmware output and the reference meter

Demo meter setting
There are three signal input channels on the front-end circuit of the demo meter:
• L: Live line, feed to a shunt resistor of 300 μΩ
• N: Neutral line, feed to a transformer with n1:n2=1000:1, 10-Ωm burden resistor used
• V: An 1000:1 scaling down resistor ladder used
• A0, A1, A2: 3 SD24 input channels on MSP430AFE253

![Demo E-Meter Connection for CSG Test](image)

Figure 12. Demo E-Meter Connection for CSG Test

6.2 Function Test
The demo meter needs to be well calibrated before any of the following test.

6.2.1 Test Environment Setup
1. Connect front-end output to MSP430AFE253 in the following manner:
 • Front end to MSP430AFE253
 – L to A0
 – N to A1
 – V to A2
 • Generator to demo meter
 – Current to Live
 – Voltage to voltage
2. Connect the demo meter's active energy-pulse output pin to the reference meter so that you can determine the measurement error.
3. Assemble the demo meter on the test frame. Set the signal generator to output 100% Ib current and 100% Un voltage. The phase angle between current and voltage is 0.
4. Set the signal generator output frequency to 50 Hz.
5. Switch on the generator and reference meter.

6.2.2 Energy Pulse Enable/Disable Test

The error reading should be less than 0.2% at current setting. Then:
1. Clear the PPEN bit of the CSGCONF register and see if the active energy pulse stopped (error will not update anymore).
2. Set the phase angle between V and I to 90° in the generator and see if the error reading is less than 0.2%.
3. Clear the QPPEN bit of the CSGCONF register and see if the reactive energy pulse stopped (error will not update anymore).
4. Set the phase angle between V and I back to 0° in the generator.
5. Set the PPEN and QOPEN bits of the CSGCONF register.

CSG firmware passes this test.

6.2.3 Pulse Constant and Fast Pulse Test

1. Set the POWER_CONST register of CSG firmware to 800 (default is 1600) and set the pulse constant of the generator to 800 as well, see if the error is still reading less than 0.2%.
2. Set the FPEN bit of the CSGCONF register and see if the error is still less than 0.2%.
3. Set the FPF bits of the CSGCONF register to 01, 10, 11, respectively, and set the pulse constant of the generator to 1600, 3200, 6400 accordingly; the error in every case should be less than 0.2%.
4. Reset FPEN and FPF of the CSGCONF register. Set the POWER_CONST register of the CSG firmware back to 1600 and set the pulse constant of the generator back to 1600.

CSG firmware passes this test.

6.2.4 Negative Energy Accumulation Test

1. The default value of the CSG firmware CSGCONF register EMOD bits are 00 to allow negative energy accumulation. Set the phase angle between V and I to 180° in the generator for 1 minute and see if the energy pulse stops. Read the CSG firmware STATUS register and see if the I1_REV bit is set. Read the CSG firmware EP1_ACT register and see if its value decreases gradually. Switch the phase angle back to 0° for 1 minute, then see if the energy pulse resumes and if the error is less than 0.2%.
2. Set the CSG firmware CSGCONF register EMOD bits to 01 to prohibit negative energy accumulation. Set the phase angle between V and I to 180° in the generator. The energy pulse should still stop in this case. Read the CSG firmware STATUS register and see if the I1_REV bit is set. Read the CSG firmware EP1_ACT register and see if its value is unchanging.
3. Set the CSG firmware CSGCONF register EMOD bits to 10. In this mode, negative energy is treated as positive energy as well. Set the phase angle between V and I to 180° in the generator. The energy pulse will resume in this case and see if the error reading is less than 0.2%. Read the CSG firmware STATUS register and see if the I1_REV bit is set. Read the CSG firmware EP1_ACT register and see if its value keeps increasing.
4. Set the phase angle between V and I back to 0° in the generator and see if the energy pulse stops. Set the CSG firmware CSGCONF register EMOD bits back to 00.

CSG firmware passes this test.
6.2.5 Channel Selection Test

1. CSG firmware default chooses A0 channel as the current signal input. Set the CSG firmware CSGCONF register CSEL bits to 10 to choose A1 channel as the current signal input. The energy pulse should stop in this case. Shut down the generator and feed the generator current output to the demo e-meter live input. Switch on the generator again and the energy pulse should resume. See if the error rate is less than 0.2%

2. Set the CSG firmware CSGCONF register CSEL bits to 00. In this mode, the CSG firmware automotive chooses the larger signal between I1 and I2 channels as the current signal input. Now the energy pulse should remain working. See if the error rate is less than 0.2%. Check that the CSG firmware STATUS register CH2 USED bit is set indicating the A1 channel is used for energy pulse generating.

3. Shut down generator, feed generator current output back to demo e-meter live input. Switch on generator again. Now energy pulse should remain working. See if error rate less than 0.2%. Read CSG firmware STATUS register, CH2_USED bit is reset indicating A0 channel used for energy pulse generating.

4. Set CSG firmware CSGCONF register CSEL bits back to 01.

CSG firmware passes this test.

6.2.6 ADC Gain Setting Test

1. Shut down generator.

2. Modify demo e-meter signal input in such manner:
 - Front end to MSP430AFE253
 - L to A1
 - N to A0
 - V to A2
 - Generator to demo meter
 - Current to live
 - Voltage to voltage

3. Set CSG firmware SYSCONF register GGAIN1 bits to 000 (1 time gain for CT channel) and GGAIN2 bits to 100 (16 times gain for shunt channel).

4. Recalibrate e-meter.

5. Repeat Channel Selection Test (see Section 6.2.5) and see if all error tested less than 0.2%.

6. Shut down generator. Feed L signal back to CSG firmware A0 pin pair; feed N signal back to CSG firmware A1 pin pair.

CSG firmware passes this test.

6.3 Performance Test

6.3.1 Accuracy Test

1. Shut down generator.

2. Connect front-end output to MSP430AFE253 in the following manner:
 - Front end to MSP430AFE253
 - L to A0
 - N to A1
 - V to A2
 - Generator to demo meter
 - Current to live
 - Voltage to voltage

3. Connect demo meter's active energy pulse output pin to the reference meter.
4. Set signal generator to output 100% Un voltage. Set signal generator output frequency to 50 Hz. Test the meter on the test points shown below (the grey test points are not required). On every test point, there were three error readings from the test bench. The final result is the arithmetic average value of three readings. The final result should be less than 0.2%

<table>
<thead>
<tr>
<th>Imax</th>
<th>Imax/2</th>
<th>300%lb</th>
<th>100%lb</th>
<th>50%lb</th>
<th>20%lb</th>
<th>10%lb</th>
<th>5%lb</th>
<th>2%lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.014</td>
<td>0.023</td>
<td>-0.012</td>
<td>0.014</td>
<td>0.011</td>
<td>-0.001</td>
<td>0.014</td>
<td>-0.059</td>
</tr>
<tr>
<td>0.5L</td>
<td>-0.014</td>
<td>-0.006</td>
<td>-0.003</td>
<td>0.003</td>
<td>-0.003</td>
<td>-0.076</td>
<td>-0.02</td>
<td></td>
</tr>
<tr>
<td>0.5C</td>
<td>0.035</td>
<td>-0.006</td>
<td>0.006</td>
<td>0.006</td>
<td>0.034</td>
<td>-0.021</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Connect the signal generator's output to the demo meter in the following manner and redo step 4.
 - Front end to MSP430AFE253
 - L to A1
 - N to A0
 - V to A2
 - Generator to demo meter
 - Current to live
 - Voltage to voltage

CSG firmware passes this test.

6.3.2 Voltage Influence Test
1. Shut down generator.
2. Connect front-end output to MSP430AFE253 in the following manner:
 - Front end to MSP430AFE253
 - L to A0
 - N to A1
 - V to A2
 - Generator to demo meter
 - Current to live
 - Voltage to voltage
3. Connect demo meter's active energy pulse output pin to the reference meter.
4. Set signal generator to output 110% Un and 90% Un voltage, respectively. Set signal generator output frequency to 50 Hz. Test the meter on the test points shown below (the grey test points are not required). On every test point, there were three error readings from test bench. The final result is the arithmetic average value of three readings. The final result should be less than 0.2%

<table>
<thead>
<tr>
<th>110%Un</th>
<th>90%Un</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%lb</td>
<td>100%lb</td>
</tr>
<tr>
<td>-0.21</td>
<td>-0.016</td>
</tr>
<tr>
<td>0.5L</td>
<td>-0.105</td>
</tr>
</tbody>
</table>

5. Connect the signal generator's output to the demo meter in the following manner and redo step 4.
 - Front end to MSP430AFE253
 - L to A1
 - N to A0
 - V to A2
 - Generator to demo meter
 - Current to Live
 - Voltage to Voltage

CSG firmware passes this test.
6.3.3 Frequency Influence Test

1. Shut down generator.

2. Connect front-end output to MSP430AFE253 in the following manner:
 - Front end to MSP430AFE253
 - L to A0
 - N to A1
 - V to A2
 - Generator to demo meter
 - Current to live
 - Voltage to voltage

3. Connect demo meter's active energy pulse output pin to the reference meter.

4. Set the signal generator to output 100% Un voltage. Set the signal generator output frequency to 51 Hz and 49 Hz, respectively. Test the meter on the test points shown below (the grey test points are not required). On every test point, three error readings are found from test bench. The final result is the arithmetic average value of the three readings. Final result should be less than 0.2%

<table>
<thead>
<tr>
<th></th>
<th>51Hz</th>
<th>49Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.012</td>
<td>0.004</td>
</tr>
<tr>
<td>0.5L</td>
<td>-0.007</td>
<td>-0.056</td>
</tr>
</tbody>
</table>

5. Connect the signal generator's output to the demo meter in the following manner and redo step 4.
 - Front end to MSP430AFE253
 - L to A1
 - N to A0
 - V to A2
 - Generator to demo meter
 - Current to live
 - Voltage to voltage

CSG firmware passes this test.

6.3.4 Harmony Influence Test

1. Shut down generator.

2. Connect front-end output to MSP430AFE253 in the following manner:
 - Front end to MSP430AFE253
 - L to A0
 - N to A1
 - V to A2
 - Generator to demo meter
 - Current to live
 - Voltage to voltage

3. Connect the demo meter's active energy pulse output pin to the reference meter.

4. Set the signal generator to output 100% Un voltage and 0.5 Imax current. Set the signal generator output frequency to 50 Hz. Feed 10% Un 5th harmony on voltage and 40% Ib 5th harmony on current. Harmony power factor is set to 1.

CSG firmware passes this test.
6.4 Rubust Test

6.4.1 Communication Test

6.4.1.1 Setting
Connect front-end output to MSP430AFE253 in the following manner:
• Front end to MSP430AFE253
 – L to A0
 – N to A1
 – V to A2
• Generator to demo meter
 – Current to live
 – Voltage to voltage

Connect the demo meter's active energy pulse output pin to the reference meter.

6.4.1.2 Corrupted Data Test
Host MCU MSP430F4481 send package is shown in Figure 13.

![Figure 13. Corrupted Data Through SPI](image)

In this package, the command area (1st byte) always contains 0xBD, which denotes this is a software reset command. In a valid software reset command packet, the data area (from 2nd byte to 5th byte) should contain 0x00990099. For the sake of checking AFE's response to a packet containing invalid data, send 0xBD, 0x00, 0x99, 0x00 on the 1st, 2nd, 3rd and 4th byte, respectively, but on the 5th byte (marked as variable a on Figure 13) send a number not equal to 0x99 to form an invalid packet.

The invalid package is sent for 255 times. Every time the value of the 5th byte adds one comparing to the 5th byte of the last package that is sent, but never equal to 0x99. In this way, you are able to check AFE's response to different invalid packages. The time gap between two packages is 10 ms. CSG firmware should indentify the invalid package and keep running in measurement mode. See if CSG firmware reset or other unexpected function is triggered.

CSG firmware passes this test.
6.4.1.3 **Corrupted Clock Test**

- The Host MCU MSP430F4481 send package is shown in Figure 14. An illegal clock is inserted between command and data. Keep sending this package 10 times. The time gap between two packages is 10 ms. CSG firmware should keep running in measurement mode. See if CSG firmware gets reset or any unexpected function is triggered.

![Figure 14. Corrupted Clock - Additional Clock](image1)

- Host MCU MSP430F4481 send package is shown in Figure 15. One clock for first data is missing. Keep sending this package 10 times. The time gap between the two packages is 10 ms. CSG firmware should keep running in measurement mode. See if CSG firmware gets reset or if any unexpected function is triggered.

![Figure 15. Corrupted Clock - Missed Clock](image2)

CSG firmware passes these two tests.
6.4.1.4 Random Noise Test

Program MSP430F4481 to output-random sequence on SPI interface, then check to see if meter accuracy is influenced.

CSG firmware passes this test.

6.4.2 Zero Load Test

1. Shut down generator.
2. Connect front-end output to MSP430AFE253 in the following manner:
 • Front end to MSP430AFE253
 – L to A0
 – N to A1
 – V to A2
 • Generator to demo meter
 – Current to live
 – Voltage to voltage
3. Connect the demo meter's active energy pulse output pin to the reference meter.
4. Set the signal generator to output 100% voltage and 0A current. Set output frequency to 50 Hz.
5. Switch on the generator for 1 minute and see if unexpected energy pulse is generated, then shut down the generator. Repeat this test 20 times.

CSG firmware passes this test.

6.4.3 Power Sequence Test

1. Power up MSP430F4481 first. Wait 10 seconds and slowly power up MSP430AFE253, as shown in Figure 16. See if MSP430AFE253 is dead.

![Figure 16. Power-On Sequence](image)

2. Power up MSP430F4481 first. Program MSP430F4481 to keep sending packages on SPI interface.
 Then power up MSP430AFE253.
4. Repeat step 2) and 3) 10 times.

CSG firmware passes this test.

7 References

• MSP430x2xx Family User's Guide (SLAU144)
• MSP430AFE2x3, MSP430AFE2x2, MSP430AFE2x1 Mixed Signal Microcontroller Data Sheet (SLAS701)
Appendix A MSP430F4481 Communication Protocol

A.1 Communication Protocol

Communication between GUI and F4481 follows DL/T645 protocol, which is widely used in China’s current automatically metered reading system.

DL/T645 protocol defined packet format as shown below:

<table>
<thead>
<tr>
<th>F_start</th>
<th>Address</th>
<th>F_start</th>
<th>C_code</th>
<th>Length</th>
<th>Packet_body</th>
<th>CS</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x68</td>
<td>0x99</td>
<td>0x68</td>
<td>0x23</td>
<td>len of bytes</td>
<td>len+10</td>
<td>len+11</td>
<td></td>
</tr>
</tbody>
</table>

- F_start: Frame start notification, always be 0x68
- Address: Device address, 0x999999999999 denote broadcasting address
- C_code: Customer defined message type. 0x23 denote the message type for TI demo e-meter
- Length: Packet body length, in bytes
- Packet_body: Contain message body
- CS: Checksum, it equates to algorithm sum from 0 to len+9 in the frame
- End: Frame end notification, always 0x16

There is detailed description on frame format in 《DL/T645—2007 Multi-function watt-hour meter communication protocol. In this report, the focus is on Packet_body part, which was used to contain GUI requests packet and F4481 feedback packet.

A.2 GUI Request Format

GUI request packet and F4481 feedback packets have similar format, which is composed of three parts:

- H_CMD: GUI command, 1 byte
- nR/W: Notify command direction, 1 byte. 0x80 denotes a command from GUI to F4481, 0x00 denotes F4481 feedback to GUI
- Data: Command parameters. Its length depends on which command is issued.

The command sets and corresponding parameters are:

- HOST_CMD_GET_READINGS_PHASE_1 = 0x61,
- HOST_CMD_GET_READINGS_NEUTRAL = 0x64,
- HOST_CMD_GET_CSG_REGISTER = 0x65,
- HOST_CMD_GET_CSG_CALIBRATION = 0x66,
- HOST_CMD_SET_CSG_CALIBRATION = 0x67,
- HOST_CMD_SET_CSG_REGISTER = 0x68,
- HOST_CMD_SET_CSG_SOFTRESET = 0x69,
A.2.1 GUI Read Out Metering Parameters

GUI to F4481

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>0x61/0x64</td>
<td>0x00</td>
</tr>
</tbody>
</table>

F4481 to GUI

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>0x61/0x64</td>
<td>0x80</td>
<td>Vrms I rms</td>
<td>ActPowerH</td>
<td>ActPowerL</td>
<td>RctPowerL</td>
<td>RctPowerL</td>
<td>AppPowerH</td>
<td>AppPowerH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This command reads out all CSG parameter registers except active and reactive energy pulse counter registers. For more information of CSG firmware parameter registers, see Section B.2.

A.2.2 GUI Get CSG Firmware Register Value

GUI to F4481

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>0x65</td>
<td>0x00</td>
</tr>
</tbody>
</table>

F4481 to GUI

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>0x65</td>
<td>0x80</td>
<td>sysconf afeconf</td>
<td>power const</td>
<td>start current</td>
<td>IE</td>
<td>status</td>
<td>checksum</td>
<td>meter status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This command reads out all CSG system registers. For more information of CSG firmware system registers, see Section B.2.2.

A.2.3 GUI Set CSG Firmware Register Value

GUI to F4481

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>0x68</td>
<td>0x00</td>
<td>sysconf afeconf</td>
<td>power const</td>
<td>start current</td>
<td>IE</td>
<td>checksum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F4481 to GUI

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>0x68</td>
<td>0x80</td>
</tr>
</tbody>
</table>

This command updates all CSG system registers. For more information of CSG firmware system registers, see Section B.2.
A.2.4 GUI Get CSG Firmware Calibration Factors

GUI to F4481

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>0x66</td>
<td>0x00</td>
</tr>
</tbody>
</table>

F4481 to GUI

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|
| Ox66 | 0x80 | COffset0 | CGain0 | PGain0 | PPhase0 | POffset0 | QOffset0 | COffset1 | CGain1 |
| 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | PGain1 | PPhase1 | POffset1 | QOffset1 | VGain |

This command reads out all CSG calibration registers. For more information of CSG firmware calibration registers, see Section B.2.4.

A.2.5 GUI Set CSG Firmware Calibration Factors

GUI to F4481

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|
| Ox67 | 0x00 | COffset0 | CGain0 | PGain0 | PPhase0 | POffset0 | QOffset0 | COffset1 | CGain1 |
| value | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | PGain1 | PPhase1 | POffset1 | QOffset1 | VGain |

F4481 to GUI

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>0x67</td>
<td>0x80</td>
</tr>
</tbody>
</table>

This command updates all CSG calibration registers. For more information of CSG firmware calibration registers, see Section B.2.4.
Appendix B CSG Firmware Access and Operation

B.1 CSG Firmware Access and Operation

CSG firmware performs metering calculation independently of the host MCU. It can be accessed by the host MCU through SPI interface. The host MCU can read and set CSG registers to set the firmware working mode, to read energy metering parameters and to calibrate the meter.

B.1.1 SPI Interface

CSG firmware supports self-adaptable 3-wire or 4-wire SPI interface. Four pins are used: CS(4-wire only), SCLK, DIN, and DOUT. CSG firmware polls the CS pin approximately 2 ms after MSP430AFE253 start up. If CS pin is high, CSG firmware sets SPI to 4-wire mode; otherwise, firmware sets SPI to 3-wire mode.

Figure 17 shows SPI timing in working mode:

![SPI Timing Diagram]
B.1.2 CSG Firmware Communication Package

CSG firmware communication packet is composed of command, data, and checksum area. Input packet and output packet are defined as Figure 18 shows:

All SPI transmitting and receiving are done in 8-bit format.

Command has the following format:
- Bit7, Bit6: 01 host read command
- Bit7, Bit6: 10 host write command
- Bit5 to Bit0: register address

The date area is in double words format in both the input and output packet. For those 16-bit registers access, higher word and lower word of the data area in communication packets should be the same content.
The checksum area is only used in the output packet. It contains the sum of command and all 4 bytes data. For example, if host MCU wants to read channel 1 active power, it can send command 0x60 to MSP430AFE253, in which 0x40 denotes a read command and 0x20 is the address of channel 1 active power register in CSG firmware.

If the current active power reading is 2200 W, MSP430AFE253 sends a packet of 5 bytes back: 0x60, 0x5B, 0x03, 0x00, 0xBE; where, 0x00035B60 denotes 220000 in 10-mW step and 0xBE is the check sum of all previous 4 bytes. The host MCU can choose to read checksum or omit it.

B.1.3 SPI Timing

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>min</th>
<th>max</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>write</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t1</td>
<td>CS falling edge to SCLK falling edge</td>
<td>20</td>
<td></td>
<td>us</td>
</tr>
<tr>
<td>t2</td>
<td>Width of SCLK high</td>
<td>500</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t3</td>
<td>Width of SCLK low</td>
<td>500</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t4</td>
<td>Data hold time</td>
<td>250</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t5</td>
<td>Data setup time</td>
<td>200</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t6</td>
<td>Byte time</td>
<td>30</td>
<td></td>
<td>us</td>
</tr>
<tr>
<td>t7</td>
<td>Interval between data bytes</td>
<td>20</td>
<td></td>
<td>us</td>
</tr>
<tr>
<td>t8</td>
<td>CS hold time after SCLK falling edge</td>
<td>3</td>
<td>3</td>
<td>us</td>
</tr>
<tr>
<td>read</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t9</td>
<td>Interval between read command and data</td>
<td>40</td>
<td></td>
<td>us</td>
</tr>
<tr>
<td>t10</td>
<td>Interval between data bytes</td>
<td>20</td>
<td></td>
<td>us</td>
</tr>
<tr>
<td>t13</td>
<td>Data bus release time after CS leading edge</td>
<td>3</td>
<td></td>
<td>us</td>
</tr>
<tr>
<td>packet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interval between packet</td>
<td>1</td>
<td></td>
<td>ms</td>
</tr>
</tbody>
</table>

B.2 Firmware Registers

B.2.1 Register Arrangement

MSP430AFE2xx CSG firmware provides three groups for register: system, parameter, and calibration register.

Calibration register:

<table>
<thead>
<tr>
<th>address</th>
<th>Name</th>
<th>RW</th>
<th>Length(Byte)</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>1RMS_OFFSET</td>
<td>R&W</td>
<td>2</td>
<td>0</td>
<td>Channel1 IRMS offset</td>
</tr>
<tr>
<td>0x01</td>
<td>2RMS_OFFSET</td>
<td>R&W</td>
<td>2</td>
<td>0</td>
<td>Channel2 IRMS offset</td>
</tr>
<tr>
<td>0x02</td>
<td>1RMS_GAIN</td>
<td>R&W</td>
<td>2</td>
<td>last written</td>
<td>Channel1 IRMS slope</td>
</tr>
<tr>
<td>0x03</td>
<td>2RMS_GAIN</td>
<td>R&W</td>
<td>2</td>
<td>last written</td>
<td>Channel2 IRMS slope</td>
</tr>
<tr>
<td>0x04</td>
<td>P1_GAIN</td>
<td>R&W</td>
<td>2</td>
<td>last written</td>
<td>Channel1 active power slope</td>
</tr>
<tr>
<td>0x05</td>
<td>P2_GAIN</td>
<td>R&W</td>
<td>2</td>
<td>last written</td>
<td>Channel2 active power slope</td>
</tr>
<tr>
<td>0x06</td>
<td>P1_PHASE</td>
<td>R&W</td>
<td>2</td>
<td>0</td>
<td>Channel1 phase shift</td>
</tr>
<tr>
<td>0x07</td>
<td>P2_PHASE</td>
<td>R&W</td>
<td>2</td>
<td>0</td>
<td>Channel2 phase shiff</td>
</tr>
<tr>
<td>0x08</td>
<td>P1_OFFSET</td>
<td>R&W</td>
<td>2</td>
<td>0</td>
<td>Channel1 active power offset</td>
</tr>
<tr>
<td>0x09</td>
<td>P2_OFFSET</td>
<td>R&W</td>
<td>2</td>
<td>0</td>
<td>Channel2 active power offset</td>
</tr>
<tr>
<td>0x0A</td>
<td>Q1_OFFSET</td>
<td>R&W</td>
<td>2</td>
<td>0</td>
<td>Channel1 reactive power offset</td>
</tr>
<tr>
<td>0x0B</td>
<td>Q2_OFFSET</td>
<td>R&W</td>
<td>2</td>
<td>0</td>
<td>Channel2 reactive power offset</td>
</tr>
<tr>
<td>0x0C</td>
<td>VRMS_FACTOR</td>
<td>R&W</td>
<td>2</td>
<td>0</td>
<td>Voltage RMS slope</td>
</tr>
</tbody>
</table>
Parameter register:

<table>
<thead>
<tr>
<th>address</th>
<th>Name</th>
<th>R/W</th>
<th>Length(Byte)</th>
<th>Default</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x20</td>
<td>P1.ACT</td>
<td>R</td>
<td>4</td>
<td>0x0000</td>
<td>Channel 1 active power</td>
</tr>
<tr>
<td>0x21</td>
<td>P2.ACT</td>
<td>R</td>
<td>4</td>
<td>0x0000</td>
<td>Channel 2 active power</td>
</tr>
<tr>
<td>0x22</td>
<td>P1.REACT</td>
<td>R</td>
<td>4</td>
<td>0x0000</td>
<td>Channel 1 reactive power</td>
</tr>
<tr>
<td>0x23</td>
<td>P2.REACT</td>
<td>R</td>
<td>4</td>
<td>0x0000</td>
<td>Channel 2 reactive power</td>
</tr>
<tr>
<td>0x24</td>
<td>P1.AFP</td>
<td>R</td>
<td>4</td>
<td>0x0000</td>
<td>Channel 1 apparent power</td>
</tr>
<tr>
<td>0x25</td>
<td>P2.AFP</td>
<td>R</td>
<td>4</td>
<td>0x0000</td>
<td>Channel 2 apparent power</td>
</tr>
<tr>
<td>0x26</td>
<td>VRMS</td>
<td>R</td>
<td>2</td>
<td>0x0000</td>
<td>VRMS</td>
</tr>
<tr>
<td>0x27</td>
<td>FREQ</td>
<td>R</td>
<td>2</td>
<td>0x0000</td>
<td>Line Frequency</td>
</tr>
<tr>
<td>0x28</td>
<td>I1RMS</td>
<td>R</td>
<td>2</td>
<td>0x0000</td>
<td>Channel 1 IRMS</td>
</tr>
<tr>
<td>0x29</td>
<td>I2RMS</td>
<td>R</td>
<td>2</td>
<td>0x0000</td>
<td>Channel 2 IRMS</td>
</tr>
<tr>
<td>0x2A</td>
<td>PF1</td>
<td>R</td>
<td>2</td>
<td>0x0000</td>
<td>Channel 1 power factor</td>
</tr>
<tr>
<td>0x2B</td>
<td>PF2</td>
<td>R</td>
<td>2</td>
<td>0x0000</td>
<td>Channel 2 power factor</td>
</tr>
<tr>
<td>0x2C</td>
<td>EP.ACT</td>
<td>R</td>
<td>2</td>
<td>0x0000</td>
<td>active energy pulse counter</td>
</tr>
<tr>
<td>0x2D</td>
<td>EP.RACT</td>
<td>R</td>
<td>2</td>
<td>0x0000</td>
<td>reactive energy pulse counter</td>
</tr>
<tr>
<td>0x2E</td>
<td>EP.NEG.ACT</td>
<td>R</td>
<td>2</td>
<td>0x0000</td>
<td>negative active energy pulse counter</td>
</tr>
<tr>
<td>0x2F</td>
<td>EP.NEG.RACT</td>
<td>R</td>
<td>2</td>
<td>0x0000</td>
<td>negative reactive energy pulse counter</td>
</tr>
</tbody>
</table>

System register:

<table>
<thead>
<tr>
<th>address</th>
<th>Name</th>
<th>R/W</th>
<th>Length(Byte)</th>
<th>Default</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x34</td>
<td>SYSCONF</td>
<td>R&W</td>
<td>2</td>
<td>0x0004</td>
<td>system config register</td>
</tr>
<tr>
<td>0x35</td>
<td>CSGCONF</td>
<td>R&W</td>
<td>2</td>
<td>0x1063</td>
<td>CSG function config register</td>
</tr>
<tr>
<td>0x36</td>
<td>POWER_CONST</td>
<td>R&W</td>
<td>2</td>
<td>0x0640</td>
<td>power constant</td>
</tr>
<tr>
<td>0x37</td>
<td>START_CURRENT</td>
<td>R&W</td>
<td>2</td>
<td>0x00DC</td>
<td>Start power threshold</td>
</tr>
<tr>
<td>0x38</td>
<td>IE</td>
<td>R&W</td>
<td>2</td>
<td>0x0001</td>
<td>CSG interrupt enable</td>
</tr>
<tr>
<td>0x39</td>
<td>IFG</td>
<td>R</td>
<td>2</td>
<td>0x0000</td>
<td>CSG interrupt flag</td>
</tr>
<tr>
<td>0x3A</td>
<td>STATUS</td>
<td>R</td>
<td>2</td>
<td>0x0000</td>
<td>CSG status</td>
</tr>
<tr>
<td>0x3B</td>
<td>CheckSum1</td>
<td>R</td>
<td>2</td>
<td>0x0000</td>
<td>checksum for calibration registers</td>
</tr>
<tr>
<td>0x3C</td>
<td>WREN</td>
<td>R&W</td>
<td>2</td>
<td>0x0000</td>
<td>write enable</td>
</tr>
<tr>
<td>0x3D</td>
<td>SRST</td>
<td>W</td>
<td>2</td>
<td>--</td>
<td>software reset</td>
</tr>
<tr>
<td>0x3E</td>
<td>USI RX</td>
<td>R</td>
<td>2</td>
<td>0x0000</td>
<td>Last SPI received value</td>
</tr>
<tr>
<td>0x3F</td>
<td>USI TX</td>
<td>R</td>
<td>2</td>
<td>0x0000</td>
<td>Last SPI transmitted value</td>
</tr>
</tbody>
</table>
B.2.2 System Registers

System register is used to configure MSP430AFE2xx CSG firmware functions.

B.2.2.1 ADC Gain Setting

MSP430AFE2xx integrated thee independent SD24 modules, each of them has a PGA with up to 32 times gain options. CSG firmware allows you to choose different gain for every channel. The gain control is implemented through SYSCONF register.

GAINV/GAIN1/GAIN2 denote the gain setting for channel 1, 2, and 3, respectively. They are in SYSCONF register from BIT0 to BIT8.

RSV denotes reserved for future usage.

B.2.2.2 CSG Function Register

CSG function register configure CSG firmware functions.

SOFF—
1: switch off apparent power measurement. Apparent power always read 0
0: switch on apparent power measurement

QOFF—
1: switch off reactive power measurement. Apparent power always read 0
0: switch on reactive power measurement

CSEL— energy pulse selection
00: energy pulse generate from large current channel
01: energy pulse generate from channel 1
10: energy pulse generate from channel 2
Firmware Registers

EMOD— negative energy accumulate mode
- 00: accumulate negative energy
- 01: do not accumulate negative energy, if $P<0, P=0$
- 10: accumulate absolute value for negative energy, if $P<0, P=-P$

DCFILTER— DC filter selection
- 00: IIR filter on V channel, no filter for I channel
- 01: IIR filter for both V and I channel
- 10: average filter on V channel, no filter for I channel
- 11: average filter for both V and I channel

FPEN—
- 1: fast energy pulse enable
- 0: fast energy pulse disable

FPF— Fast pulse ratio. When FPEN is set, FPF decide the ratio between fast energy pulse and normal energy pulse
- 00: $\times 1$
- 01: $\times 2$
- 10: $\times 4$
- 11: $\times 8$

QPEN—
- 1: enable reactive energy pulse
- 0: disable reactive energy pulse

PPEN—
- 1: enable active energy pulse
- 0: enable active energy pulse

B.2.2.3 Power Constant

POWER_CONST register contains the number of energy pulse for 1-kWh energy. Its default value is 1600.

B.2.2.4 Start Energy

START_CURRENT register contains the threshold below which CSG firmware stops accumulate energy. It is in 10-mW steps, and the default value of 220 denotes 2.2 W.

B.2.2.5 Event and Interrupt

CSG firmware has seven event sources.

<table>
<thead>
<tr>
<th>IE</th>
<th>WFS</th>
<th>ZX</th>
<th>QEO</th>
<th>PEO</th>
<th>QF</th>
<th>PF</th>
<th>NEWLOG</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>IFG</td>
<td>WFS</td>
<td>ZX</td>
<td>QEO</td>
<td>PEO</td>
<td>QF</td>
<td>PF</td>
<td>NEWLOG</td>
</tr>
<tr>
<td>default</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

WFS— waveform sample event is triggered every time SD24 sample ready.

ZX— cross zero event is triggered on the leading zero cross point on voltage.

QEO— reactive energy pulse overflow event is triggered every 65536 reactive energy pulses.

PEO— active energy pulse overflow event is triggered every 65536 active energy pulses.
Firmware Registers

- **QF**— reactive energy pulse event is triggered every reactive energy pulse
- **PF**— active energy pulse event is triggered every active energy pulse
- **NEWLOG**— parameter register update event is triggered when parameter registers are updated by CSG firmware. It indicate the right time to read out parameter registers

Every event source has a corresponding enable mask in the IE register and a flag in the IFG register. Set mask in the IE register enables interrupt for that event. If one event is triggered and the corresponding IE mask set, CSG firmware sends out an interrupt on pin P1.1.

The event flag is always set when the corresponding event is triggered, no matter whether the corresponding IE bit is set or not. The flag remains set unless the IFG register is read by the host through SPI. The read IFG register will reset all flags.

Note: The frequency of the WFS (nominal 4 kHz) and ZX (nominal 50 Hz) events is very fast; make sure the host MCU has enough bandwidth to process them before you set those events in IE.

B.2.2.6 CSG Status

STATUS contains CSG firmware status; it is a read-only register.

<table>
<thead>
<tr>
<th>STATUS</th>
<th>Bit15</th>
<th>Bit14</th>
<th>Bit13</th>
<th>Bit12</th>
<th>Bit11</th>
<th>Bit10</th>
<th>Bit9</th>
<th>Bit8</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>RSV</td>
<td>RSV</td>
<td>UNBAL</td>
<td>M_REV</td>
<td>RSV</td>
<td>RSV</td>
<td>CH2_USED</td>
<td>I2_REV</td>
</tr>
<tr>
<td>Bit7</td>
<td>Bit6</td>
<td>Bit5</td>
<td>Bit4</td>
<td>Bit3</td>
<td>Bit2</td>
<td>Bit1</td>
<td>Bit0</td>
<td></td>
</tr>
</tbody>
</table>

- **UNBAL**—
 1: current unbalance between neutral and live
 0: current balance between neutral and live
 The threshold of unbalance is: If absolute active power is larger than 2000 W, 6.25% error between neutral and live. If absolute active power is less than 2000 W, 25% error between neutral and live.

- **M_REV**—
 1: current reversed (either live or neutral)
 0: current not reversed

- **CH2_USED**—
 1: Channel 2 used to generate energy pulse
 0: Channel 1 used to generate energy pulse

- **I2_REV**—
 1: Channel 2 reversed
 0: Channel 2 not reversed

- **I2_OR**—
 1: Channel 2 over range
 0: Channel 2 in range

- **I1_REV**—
 1: Channel 12 reversed
 0: Channel 12 not reversed

- **I1_OR**—
 1: Channel 12 over range
 0: Channel 12 in range
Firmware Registers

I1_OK
- 1: Channel 1 over range
- 0: Channel 1 in range

V_OK
- 1: Channel V over range
- 0: Channel V in range

EOF
- 1: Active energy pulse counter reach 65536 and reset
- 0: Active energy pulse counter does not reach 65536

I2POS
- 1: Channel 2 on positive half
- 0: Channel 2 on negative half

I1POS
- 1: Channel 1 on positive half
- 0: Channel 1 on negative half

VPOS
- 1: Channel V on positive half
- 0: Channel V on negative half

B.2.2.7 Check Sum
The CheckSum1 register contains the checksum for all calibration registers at addresses 0x00 to 0x0C. CheckSum1 is updated by CSG firmware every time the calibration registers is modified by the host.

B.2.2.8 Write Enable
System registers at addresses 0x34 to 0x38 and all calibration registers are write protected and cannot be modified until a special code is written to the WREN register.
- Write 0x00CA to the WREN register to enable writing to the calibration registers.
- Write 0xC500 to the WREN register to enable writing to the system registers.
- Write 0xC5CA to enable writing to both the system and calibration registers.
- Write any value other than 0x00CA, 0xC500, or 0xC5CA to the WREN register to disable writing to the system and calibration registers.

NOTE: Each write to the system or calibration registers clears the corresponding write enable in the WREN register.

B.2.2.9 Software Reset
Writing 0x0099 to the SRST register will reset MSP430AFE2xx CSG firmware.

B.2.2.10 SPI Data Buffer
USI_RX and USI_TX registers store the last received data and transmitted date from SPI, respectively.
B.2.3 Metering Parameters

B.2.3.1 Active Power

The calculated active energy for the last 4096 ADC measurements (1 second) is stored in \(P_x_{\text{ACT}} \), where \(x = 1 \) or 2 for I1 and I2, respectively. The active power calculation formula is shown Equation 1.

\[
P_x_{\text{ACT}} = K P_x \left(\frac{1}{N} \sum_{k=1}^{N} v(k) \times i(k) \right) - P_x_{\text{offset}} \quad [10\text{mW}]
\]

- \(N = 4096 \)
- \(K P_x \) is the slope value for power, which is stored in the \(P_x_{\text{GAIN}} \) calibration register.
- \(P_x_{\text{offset}} \) is the active power offset, which is stored in the \(P_x_{\text{OFFSET}} \) calibration register.
- \(P_x_{\text{ACT}} \) is in 10-mW steps.
- The addresses of \(P1_{\text{ACT}} \) and \(P2_{\text{ACT}} \) are 0x20 and 0x21.

<table>
<thead>
<tr>
<th>register</th>
<th>address</th>
<th>resolution</th>
<th>format</th>
<th>Range</th>
<th>step</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P1_{\text{ACT}})</td>
<td>0x20</td>
<td>32bit signed</td>
<td>31.0</td>
<td>0x80000000~0x7FFFFFFF</td>
<td>10mW</td>
</tr>
<tr>
<td>(P2_{\text{ACT}})</td>
<td>0x21</td>
<td>32bit signed</td>
<td>31.0</td>
<td>0x80000000~0x7FFFFFFF</td>
<td>10mW</td>
</tr>
</tbody>
</table>

B.2.3.2 Reactive Power

The calculated reactive energy for the last 4096 ADC measurements (1 second) is stored in \(P_x_{\text{REACT}} \), where \(x = 1 \) or 2 for I1 and I2, respectively. The reactive power calculation formula is shown in Equation 2:

\[
P_x_{\text{REACT}} = K P_x \left(\frac{1}{N} \sum_{k=1}^{N} v(k) \times i(k) \right) - Q_x_{\text{offset}} \quad [10\text{mW}]
\]

- \(N = 4096 \)
- \(K P_x \) is the slope value for power, which is stored in the \(P_x_{\text{GAIN}} \) calibration register.
- \(Q_x_{\text{offset}} \) is the reactive power offset, which is stored in the \(Q_x_{\text{OFFSET}} \) calibration register.
- \(P_x_{\text{REACT}} \) is in 10-mW steps.
- The address of \(P1_{\text{REACT}} \) and \(P2_{\text{REACT}} \) are 0x22 and 0x23.

<table>
<thead>
<tr>
<th>register</th>
<th>address</th>
<th>resolution</th>
<th>format</th>
<th>Range</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P1_{\text{REACT}})</td>
<td>0x22</td>
<td>32bit signed</td>
<td>31.0</td>
<td>0x80000000~0x7FFFFFFF</td>
<td>10mW</td>
</tr>
<tr>
<td>(P2_{\text{REACT}})</td>
<td>0x23</td>
<td>32bit signed</td>
<td>31.0</td>
<td>0x80000000~0x7FFFFFFF</td>
<td>10mW</td>
</tr>
</tbody>
</table>

B.2.3.3 Apparent Power

The apparent power calculation formula is shown in Equation 3:

\[
P_x_{\text{APP}} = \sqrt{P_x_{\text{ACT}}^2 + P_x_{\text{REACT}}^2} \quad [10\text{mW}]
\]

- \(P_x_{\text{APP}} \) is in 10-mW steps.
- The addresses of \(P1_{\text{APP}} \) and \(P2_{\text{APP}} \) are 0x24 and 0x25.

<table>
<thead>
<tr>
<th>register</th>
<th>address</th>
<th>resolution</th>
<th>format</th>
<th>Range</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P1_{\text{APP}})</td>
<td>0x24</td>
<td>32bit signed</td>
<td>31.0</td>
<td>0x00000000~0x7FFFFFFF</td>
<td>10mW</td>
</tr>
<tr>
<td>(P2_{\text{APP}})</td>
<td>0x25</td>
<td>32bit signed</td>
<td>31.0</td>
<td>0x00000000~0x7FFFFFFF</td>
<td>10mW</td>
</tr>
</tbody>
</table>
B.2.3.4 Power Factor

The power factor calculation formula is shown in Equation 4:

\[
\cos \varphi = \text{sign}(P) \times \frac{\text{abs}(P)}{\text{abs}(S)}
\]

(4)

- The address of PF1 and PF2 are 0x2A and 0x2B.

<table>
<thead>
<tr>
<th>register</th>
<th>address</th>
<th>resolution</th>
<th>format</th>
<th>range</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF1</td>
<td>0x2A</td>
<td>16bit signed</td>
<td>15.0</td>
<td>0x8000~0x7FFF</td>
<td>NA</td>
</tr>
<tr>
<td>PF2</td>
<td>0x2B</td>
<td>16bit signed</td>
<td>15.0</td>
<td>0x8000~0x7FFF</td>
<td>NA</td>
</tr>
</tbody>
</table>

B.2.3.5 IRMS

The IRMS calculation formula is shown in Equation 5:

\[
I_{xRMS} = K_I \times \sqrt{\frac{1}{N} \sum_{k=1}^{N} (i(k))^2 - I_{x\text{offset}}} \text{[mA]}
\]

(5)

- \(N = 4096 \)
- \(K_I \) is the slope value for current, which is stored in the IxRMS_GAIN calibration register.
- \(I_{x\text{offset}} \) is the current offset, which is stored in the IxRMS_OFFSET calibration register.
- \(I_{xRMS} \) is in 1-mA steps.
- The addresses of I1RMS and I2RMS are 0x28 and 0x29.

<table>
<thead>
<tr>
<th>register</th>
<th>address</th>
<th>resolution</th>
<th>format</th>
<th>range</th>
<th>step</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1RMS</td>
<td>0x28</td>
<td>32bit unsigned</td>
<td>32.0</td>
<td>0x00000000~0xFFFFFFFF</td>
<td>1mA</td>
</tr>
<tr>
<td>I2RMS</td>
<td>0x29</td>
<td>32bit unsigned</td>
<td>32.0</td>
<td>0x00000000~0xFFFFFFFF</td>
<td>1mA</td>
</tr>
</tbody>
</table>

B.2.3.6 VRMS

The VRMS calculation formula is shown in Equation 6:

\[
V_{\text{RMS}} = K_V \times \sqrt{\frac{1}{N} \sum_{k=1}^{N} (v(k))^2} \text{[10mV]}
\]

(6)

- \(N = 4096 \)
- \(K_V \) is the slope value for voltage, which is stored in the VRMS_GAIN calibration register.
- \(VRMS \) is in 1-mV steps.
- The address of VRMS is 0x26.

<table>
<thead>
<tr>
<th>register</th>
<th>address</th>
<th>resolution</th>
<th>format</th>
<th>range</th>
<th>step</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRMS</td>
<td>0x26</td>
<td>16bit unsigned</td>
<td>16.0</td>
<td>0~0xFFF</td>
<td>10mV</td>
</tr>
</tbody>
</table>

B.2.3.7 Frequency

- Frequency is stored in 0x27.

<table>
<thead>
<tr>
<th>register</th>
<th>address</th>
<th>resolution</th>
<th>format</th>
<th>range</th>
<th>step</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREQ</td>
<td>0x27</td>
<td>16bit unsigned</td>
<td>16.0</td>
<td>0~0xFFF</td>
<td>0.001Hz</td>
</tr>
</tbody>
</table>
B.2.3.8 Energy Counter

CSG firmware provides four registers to store energy:

- **EP_ACT**: counter for positive active energy pulse
- **EP_REACT**: counter for positive reactive energy pulse
- **EP_NEG_ACT**: counter for negative active energy pulse
- **EP_NEG_REACT**: counter for negative reactive energy pulse

All energy counters overflow after reaching 65536.

<table>
<thead>
<tr>
<th>register</th>
<th>address</th>
<th>resolution</th>
<th>format</th>
<th>range</th>
<th>step</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP_ACT</td>
<td>0x2C</td>
<td>16bit unsigned</td>
<td>16.0</td>
<td>0~0xFFFF</td>
<td>1 pulse</td>
</tr>
<tr>
<td>EP_REACT</td>
<td>0x2D</td>
<td>16bit unsigned</td>
<td>16.0</td>
<td>0~0xFFFF</td>
<td>1 pulse</td>
</tr>
<tr>
<td>EP_NEG_ACT</td>
<td>0x2C</td>
<td>16bit unsigned</td>
<td>16.0</td>
<td>0~0xFFFF</td>
<td>1 pulse</td>
</tr>
<tr>
<td>EP_NEG_REACT</td>
<td>0x2D</td>
<td>16bit unsigned</td>
<td>16.0</td>
<td>0~0xFFFF</td>
<td>1 pulse</td>
</tr>
</tbody>
</table>

B.2.4 Meter Calibration

B.2.4.1 Calibration Registers

B.2.4.1.1 Power Slope

<table>
<thead>
<tr>
<th>register</th>
<th>address</th>
<th>resolution</th>
<th>range</th>
<th>Normal range</th>
<th>initiation</th>
<th>step</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1_GAIN</td>
<td>0x04</td>
<td>16bit signed</td>
<td>0~0x7FFF</td>
<td>0x1000~0x7000</td>
<td>0x3000</td>
<td>NA</td>
</tr>
<tr>
<td>P2_GAIN</td>
<td>0x05</td>
<td>16bit signed</td>
<td>0~0x7FFF</td>
<td>0x1000~0x7000</td>
<td>0x3000</td>
<td>NA</td>
</tr>
</tbody>
</table>

B.2.4.1.2 Phase Shift

<table>
<thead>
<tr>
<th>register</th>
<th>address</th>
<th>resolution</th>
<th>range</th>
<th>Normal range</th>
<th>initiation</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1_PHASE</td>
<td>0x04</td>
<td>16bit signed</td>
<td>0x8000~0x7FFF</td>
<td>0xFF8C~0x01D2</td>
<td>0</td>
<td>PRELOAD</td>
</tr>
<tr>
<td>P2_PHASE</td>
<td>0x05</td>
<td>16bit signed</td>
<td>0x8000~0x7FFF</td>
<td>0xFF8C~0x01D2</td>
<td>0</td>
<td>PRELOAD</td>
</tr>
</tbody>
</table>

B.2.4.1.3 Active Power Offset

<table>
<thead>
<tr>
<th>register</th>
<th>address</th>
<th>resolution</th>
<th>range</th>
<th>Normal range</th>
<th>initiation</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1_OFFSET</td>
<td>0x08</td>
<td>16bit signed</td>
<td>0x8000~0x7FFF</td>
<td>0xFF9C~0x064</td>
<td>0</td>
<td>10mW</td>
</tr>
<tr>
<td>P2_OFFSET</td>
<td>0x09</td>
<td>16bit signed</td>
<td>0x8000~0x7FFF</td>
<td>0xFF9C~0x064</td>
<td>0</td>
<td>10mW</td>
</tr>
</tbody>
</table>

B.2.4.1.4 Reactive Power Offset

<table>
<thead>
<tr>
<th>register</th>
<th>address</th>
<th>resolution</th>
<th>range</th>
<th>Normal range</th>
<th>initiation</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1_OFFSET</td>
<td>0x0A</td>
<td>16bit signed</td>
<td>0x8000~0x7FFF</td>
<td>0xFF9C~0x064</td>
<td>0</td>
<td>10mW</td>
</tr>
<tr>
<td>Q2_OFFSET</td>
<td>0x0B</td>
<td>16bit signed</td>
<td>0x8000~0x7FFF</td>
<td>0xFF9C~0x064</td>
<td>0</td>
<td>10mW</td>
</tr>
</tbody>
</table>

B.2.4.1.5 Current Slope

<table>
<thead>
<tr>
<th>register</th>
<th>address</th>
<th>resolution</th>
<th>range</th>
<th>Normal range</th>
<th>initiation</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1RMS_GAIN</td>
<td>0x02</td>
<td>16bit signed</td>
<td>0~0x7FFF</td>
<td>0x1000~0x7000</td>
<td>0x2000</td>
<td>NA</td>
</tr>
<tr>
<td>I2RMS_GAIN</td>
<td>0x03</td>
<td>16bit signed</td>
<td>0~0x7FFF</td>
<td>0x1000~0x7000</td>
<td>0x2000</td>
<td>NA</td>
</tr>
</tbody>
</table>
B.2.4.1.6 Current AC Offset

<table>
<thead>
<tr>
<th>register</th>
<th>address</th>
<th>resolution</th>
<th>range</th>
<th>Normal range</th>
<th>initiation</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>11RMS_OFFSET</td>
<td>0x00</td>
<td>16bit signed</td>
<td>0x8000~0x7FFF</td>
<td>0xFF9C~0x064</td>
<td>0</td>
<td>1mA</td>
</tr>
<tr>
<td>12RMS_OFFSET</td>
<td>0x01</td>
<td>16bit signed</td>
<td>0x8000~0x7FFF</td>
<td>0xFF9C~0x064</td>
<td>0</td>
<td>1mA</td>
</tr>
</tbody>
</table>

B.2.4.1.7 Voltage Slope

<table>
<thead>
<tr>
<th>register</th>
<th>address</th>
<th>resolution</th>
<th>range</th>
<th>Normal range</th>
<th>initiation</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRMS_FACTOR</td>
<td>0x0C</td>
<td>16bit signed</td>
<td>0~0x7FFF</td>
<td>0x1000~0x7000</td>
<td>0x4000</td>
<td>NA</td>
</tr>
</tbody>
</table>

B.2.4.2 Calibration Approach

Calibration is done by modifying the calibration registers. A simple way to calibrate the demo meter is by calculating metering errors with the approaches described in the following sections and updating those errors to the demo e-meter through the GUI, which was introduced in Section 3. Another way is writing those errors directly to AFE253 firmware through communication between the host MCU and AFE253.

B.2.4.2.1 Slope and Offset Calibration

Single-point and dual-point meter calibration are possible using the MSP430AFE2xx CSG firmware. When single point calibration is used, the slope (P1_GAIN and P2_GAIN) is calibrated. When dual-point calibration is required, the offset is calculated in addition to the slope (P1_OFFSET and P1_OFFSET are used for active power, and Q1_OFFSET and Q1_OFFSET are used for reactive power).

The calibration sequence for active power is (repeat for two-point calibration):

1. Configure system registers, select right ADC gain for voltage and current, chose right channel to output energy pulse
2. Set Px_OFFSET to 0, if it is modified by customer code. Read out Px_GAIN value before you modify it and recode it as Px_GAINn.
3. Set power factor to unity, read active power measurement errors E_H and E_L on two test points: 100% Ib and 5% Ib.
4. Calculate the new Px_GAIN_{n+1} according to Equation 7. Here, N_{H2L} denotes the rate between the large current and small current. N_{H2L}=100%Ib / 5%Ib = 20

\[
P_{x_GAIN}_{n+1} = \frac{P_{x_GAIN}_n \times (N_{H2L} - 1)}{N_{H2L} \times (1+E_H) - (1+E_L)}
\]

(7)

5. Calculate Px_OFFSET_{n+1} according to Equation 8. Here, N_{H2L} denotes the rate between the large and small current. P_{GEN} denotes the genuine active power sourced from the generator in small current points.

\[
P_{x_OFFSET}_{n+1} = \frac{(E_H - E_L) \times N_{H2L} \times P_{GEN} \times 100}{N_{H2L} \times (1+E_H) - (1+E_L)}
\]

(8)

6. Update new Px_GAIN and new Px_OFFSET to MSP430AFE253 through SPI interface.

The calibration sequence for reactive power is similar to active power calibration. Note: reactive power and active power share the same slope parameter. If active power is already calibrated, reactive power calibration should start from step 5.
For example, if single point calibration is used and $E_{1} = 0.5\%$, original $P1_GAIN_n = 10000$. Then the new $P1_GAIN_{n+1} = 10000/(1+0.5\%) = 9950$. To calibrate the CSG firmware, you can use either way:

- Use GUI: Type 0.5 on the Active Gain edit box, and press the Update Calibration button on the meter configuration window.
- Send the calibration command to AFE253 to modify the $P1_GAIN$ register to 9950 with packet: 0x84DE26DE26

B.2.4.2.2 Phase Calibration

Phase calibration is implemented through SD24's preload register. Setting preload on the current channel induces extra delays between current and voltage, therefore, compensating original phase shift yield from circuits.

Figure 19. CSG Firmware Phase Calibration

Phase shift can be calculated using **Equation 9**:

$$\theta = \frac{360 \times f_M}{OSR \times f_s} = \frac{360 \times \frac{f_M}{f_m}}{f_M}$$

(9)

f_M is ADC clock frequency, f_m is mains' frequency. If $f_m = 50$ Hz, and $f_M = 256 \times 4096 = 1$ MHz, the step of phase shift is 0.017°.

Phase calibration should be done after slope and offset calibration. The calibration sequence is:

1. Configure system registers, select right ADC gain for voltage and current, chose the right channel to output energy pulse.
2. Read out old Px_PHASE value before modifying it and recode it as Px_PHASE_n.
3. Set generate to output 100% I_b current and set power factor to 0.5L, read active power measurement errors E.
4. Calculate the new Px_PHASE_{n+1}, according to **Equation 10**:

$$Px_PHASE_{n+1} = Px_PHASE_{n} + \frac{256 \times 4096}{2 \times \pi \times 50} \times \left(\arccos \frac{1 + E}{2} - \frac{\pi}{3}\right)$$

(10)
5. Update the new Px_PHASE to MSP430AFE253 through SPI interface.

For example, if calculated E = 0.3%, original P1_PHASE\textsubscript{n} = 6, then the new P1_PHASE\textsubscript{n+1} = 10 + 6 = 16.

To calibrate the CSG firmware, you can use either way:

- Use GUI: Type 6 on the Phase Shift edit box, and press the Update Calibration button on the meter configuration window.
- Send the calibration command to AFE253 to modify the P1_PHASE register to 16 with packet: 0x8610001000

\section*{B.2.4.2.3 VRMS Calibration}

VRMS calibration sequence is:

1. Configure system registers, select right ADC gain for voltage and current, chose the right channel to output energy pulse.

2. Read out old VRMS_FACTOR value before modifying it and recode it as VRMS_FACTOR\textsubscript{n}.

3. Set generate to output 100\% Ib current and set power factor to unity, read generator’s output VRMS_GEN and measured value VRMS_measure.

4. Calculate the new VRMS_FACTOR\textsubscript{n+1} according to Equation 11:

\[VRMS_FACTOR_{n+1} = VRMS_FACTOR_{n} \times \frac{VRMS_GEN}{VRMS_measure} \]

5. Update new VRMS_FACTOR to MSP430AFE253 through SPI interface.

For example, if VRMS_GEN = 220 V and measured VRMS_measure = 219 V, original VRMS_FACTOR\textsubscript{n} = 2000, then the error on VRMS E = 219/220-1=-0.45\% and the new VRMS_FACTOR\textsubscript{n+1} = 2000\times220/219=2099.

To calibrate the CSG firmware, you can use either way:

- Use GUI: Type -0.45 on the Voltage Gain edit box, and press the Update Calibration button on the meter configuration window.
- Send the calibration command to AFE253 to modify the VRMS_FACTOR register to 2099 with packet: 0x8C097D097D.

\section*{B.2.4.2.4 IRMS Calibration}

Single-point and dual-point meter calibration on IRMS are possible using the MSP430AFE2xx CSG firmware. When single point calibration is used, the slope (I1RMS_GAIN and I2RMS_GAIN) is calibrated. When dual-point calibration is required, the offset (I1RMS_OFFSET and I2RMS_OFFSET) is calculated in addition to the slope.

IRMS calibration sequence is:

1. Configure system registers, select right ADC gain for voltage and current, chose the right channel to output energy pulse.

2. Set IxRMS_OFFSET to 0 if it is modified by customer code. Read out old IxRMS_GAIN value before modifying it and recode it as IxRMS_GAIN\textsubscript{n}.

3. Set power factor to unity, read IxRMS measurement errors E\textsubscript{H} and E\textsubscript{L} on two test points: 100\% Ib and 5\% Ib.

4. Calculate new IxRMS_GAIN\textsubscript{n+1} according to Equation 12. Here, N_{H2L} denotes the rate between the large and small current, N_{H2L}=100\% Ib / 5\% Ib = 20.

\[IxRMS_GAIN_{n+1} = \frac{IxRMS_GAIN_{n} \times (N_{H2L} - 1)}{N_{H2L} \times (1 + E_{H}) - (1+E_{L})} \]

\[(12) \]
5. Calculate the new IxRMS_OFFSET\textsubscript{n+1} according to Equation 13. Here, N\textsubscript{H2L} denotes the rate between the large and small current. I\textsubscript{GEN} denotes the genuine IRMS sourced from the generator in small current points.

\[IxRMS_OFFSET\textsubscript{n+1} = \frac{(E_H - E_L) \times N_{H2L} \times I_{GEN} \times 100}{N_{H2L} \times (1+E_H) - (1+E_L)} \]

(13)

6. Update the new IxRMS_GAIN and IxRMS_OFFSET to MSP430AFE253 through SPI interface

For example, if the single point calibration is used and E\textsubscript{H} = 0.5\%, original I1RMS_GAIN\textsubscript{n} = 10000, then the new I1RMS_GAIN\textsubscript{n+1} = 10000/(1+0.5\%) = 9950. To calibrate the CSG firmware, you can use either way.

- Use GUI: Type 0.5 on the Current Gain edit box, and press the Update Calibration button on the meter configuration.
- Send the calibration command to AFE253 to modify the I1RMS_FACTOR register to 9950 with packet: 0x82DE26DE26.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal and regulatory requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in automotive applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>DSP</td>
<td>Industrial</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Medical</td>
</tr>
<tr>
<td>Interface</td>
<td>Security</td>
</tr>
<tr>
<td>Logic</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Transportation and Automotive</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td>Wireless</td>
</tr>
<tr>
<td>RF/IF and ZigBee® Solutions</td>
<td></td>
</tr>
</tbody>
</table>

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated