
Application Report
C Implementation of Cryptographic Algorithms

Jace H. Hall MSP430 Applications

ABSTRACT

This application report discusses the implementations of the AES, DES, TDES, and SHA-2 cryptographic
algorithms written in the C programming language. These software cryptographic solutions were made for
devices without hardware acceleration for these algorithms. This document does not go into common methods
or practices using these algorithms; however, it does describe how to use the algorithms in program code as well
as the nature of the algorithms themselves. For information on another implementation of AES-128, refer to the
AES128 – A C Implementation for Encryption and Decryption application report.

Project collateral and source code mentioned in this application report can be downloaded from the following
links:

• AES-128
• 3DES
• SHA-256

Note
This document may be subject to the export control policies of the local government.

Table of Contents
1 Software Benchmarks.. 2

1.1 AES Benchmarks... 2
1.2 DES Benchmarks...2
1.3 SHA-2 Benchmarks..2

2 Using Library Functions...3
2.1 AES 128... 3
2.2 DES..4
2.3 3DES..5
2.4 SHA-2...6

3 Overview of Library Functions.. 7
3.1 AES 128... 7
3.2 DES and 3DES.. 8
3.3 SHA-256 and SHA-224.. 10

4 Cryptographic Standard Definitions... 11
4.1 AES.. 11
4.2 DES and 3DES.. 16
4.3 SHA-256 and SHA-224.. 22

5 References.. 24
Revision History...25

Trademarks
MSP430™ is a trademark of Texas Instruments.
IAR Embedded Workbench® is a registered trademark of IAR Systems.
All trademarks are the property of their respective owners.

www.ti.com Table of Contents

SLAA547C – JULY 2013 – REVISED JULY 2021
Submit Document Feedback

C Implementation of Cryptographic Algorithms 1

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/slaa397
http://www.ti.com/tool/AES-128
http://www.ti.com/tool/des_102612
http://www.ti.com/tool/sha-256
https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA547C&partnum=

1 Software Benchmarks
All code was tested and benchmarked on the MSP430™ platform using IAR Embedded Workbench® IDE as the
compiler tool. The optimization columns in the benchmark tables indicate the type of optimization used in IAR.
Table 1-1 describes the settings used.

Table 1-1. Optimization Settings in IAR for Benchmark Testing
Optimized for Optimization Level Aggressive Unrolling Aggressive In-Lining

Size High => Size No No

Speed High => Speed Yes Yes

1.1 AES Benchmarks
Table 1-2. Benchmarks for AES Library Functions Encrypting One 16 Byte Block

AES (ENC/DES Function)
Optimization

AES (ENC Only Function)
Optimization

Speed Size Speed Size

Memory (KB)

RAM (B) 34 34

Memory (KB)

RAM (B) 34 34

Const 0.55 0.55 Const 0.29 0.29

Code 1 0.83 Code 0.67 0.51

Clock Cycles (kilo-cycles) 7.9 12.3 Clock Cycles (kilo-cycles) 7.3 11.3

1.2 DES Benchmarks
Table 1-3. DES Code Size Benchmarks

DES Code Size
Optimization

Speed Size
RAM (B) 288 288

Const (KB) 2.3 2.3

Code (KB) 3.3 2.17

Table 1-4. Performance of Several DES Modes

DES Clock Cycle Count (kilo-cycles)
Optimization

Speed Size
DES (FULL) (One Data Block) 41 42.6

3DES (FULL) (One Data Block) 135.6 143.1

DES Key Scheduler (EN0 or DE1 modes) 34.7 36

DES Key Scheduler (ENDE mode) 69 72

DES Encode/Decode (One Data Block) 2.7 3.8

DES CBC Encode/Decode (2-block chain) 5.5 7.7

3DES CBC Encode/Decode (2-block chain) 139 149.7

1.3 SHA-2 Benchmarks
Table 1-5. Benchmarks for SHA-256 Library Function

SHA-256 (Data < 448 bits) (1)

Optimization
Speed Size

Memory (KB)

RAM 0.328 0.328

Const 0.264 0.328

Code 3.72 1.87

Clock Cycles (kilo cycles) 34.1 (67) 44.3 (86.7)

(1) Values in () indicate a hashing of 448 bits < Data< 960 bits or 2 blocks of data.

Software Benchmarks www.ti.com

2 C Implementation of Cryptographic Algorithms SLAA547C – JULY 2013 – REVISED JULY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA547C&partnum=

2 Using Library Functions
The algorithms were implemented using C. The following sections show how an encryption or decryption can be
calculated using the functions provided in this application report.

2.1 AES 128
2.1.1 Encrypting With AES 128

The following code example shows how an AES encryption can be performed.

#include "msp430xxxx.h"
#include "TI_aes.h"
//#include "TI_aes_encr_only.h" //Alternative method

int main(void)
{
unsigned char state[] = {0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30, 0xd8, 0xcd, 0xb7,
 0x80, 0x70, 0xb4, 0xc5, 0x5a};
unsigned char key[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f};
aes_enc_dec(state, key, 0); // "0" indicates Encryption
//aes_encrypt(state, key); //Alternative Method of Encryption
return 0;

This short program defines two arrays of the type unsigned character. Each array is 16 bytes long. The first one
contains the plaintext and the other one the key for the AES encryption.

After the function aes_enc_dec() returns, the encryption result is available in the array state.

2.1.2 Decrypting With AES 128

Decryption can be done in a similar way to encryption. First, two arrays are defined. When a decryption needs to
be performed, one array contains the key and the other one the cipher text.

After the function aes_enc_dec() returns, the decryption result is available in the array state.

#include "msp430xxxx.h"
#include "TI_aes.h"

int main(void)
{
unsigned char state[] = {0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30,
 0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a};
unsigned char key[] = {0x00, 0x01, 0x02, 0x03, 0x04, 05, 0x06, 0x07,
 0x08, 0x0, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f};
aes_enc_dec(state, key, 1); // "1" indicates Decryption
return 0;
}

www.ti.com Using Library Functions

SLAA547C – JULY 2013 – REVISED JULY 2021
Submit Document Feedback

C Implementation of Cryptographic Algorithms 3

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA547C&partnum=

2.2 DES
2.2.1 Setting the Key Schedule for DES

The following code example shows how to set the key schedule for DES encryption or decryption rounds. This
step must be performed before encryption or decryption can begin.

#include "msp430xxxx.h"
#include "TI_DES.h"

int main(void)
{ des_ctx dc1; // Key schedule structure
 des_ctx dc2; // Key schedule structure

 unsigned char key[8] = {0x01,0x23,0x45,0x67,0x89,0xab,0xcd, 0xfe};

Des_Key(&dc1, key, EN0); // Sets up key schedule for Encryption only
Des_Key(&dc1, key, DE1); // Sets up key schedule for Decryption only
Des_Key(&dc2, key, ENDE); // Sets up key schedule for Encryption and Decryption

return 0;
}

2.2.2 Encrypting and Decryption With DES

The following code example shows a full encryption then decryption process on a single block of data. The key
scheduler is set to populate both key schedules. The results of the operations are stored in the original data
array.

#include "msp430xxxx.h"
#include "TI_DES.h"

int main(void)
{
 des_ctx dc1; // Key schedule structure
 unsigned char *cp;
 unsigned char data[] = {0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0xd4, 0x30};
 unsigned char key[8] = {0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xfe};
 cp = data;

 Des_Key(&dc1, key, ENDE); // Sets up key schedule for Encryption and
 Decryption
 Des_Enc(&dc, cp, 1); //Encrypt Data, Result is stored back into Data
 Des_Dec(&dc, cp, 1); //Decrypt Data, Result is stored back into Data

return 0;
}

Using Library Functions www.ti.com

4 C Implementation of Cryptographic Algorithms SLAA547C – JULY 2013 – REVISED JULY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA547C&partnum=

2.2.3 Encryption and Decryption With DES CBC Mode

The following code example shows a full encryption then decryption process on multiple blocks of data using
Cipher-Block Chaining (CBC). The key scheduler is set to populate both key schedules. The results of the
operations are stored in the original data array.

#include "msp430xxxx.h"
#include "TI_DES.h"

int main(void)
{
 des_ctx dc1; // Key schedule structure
 unsigned char *cp;
 unsigned char data[] = { 0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30,
 0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a};
 unsigned char key[8] = {0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xfe};
 cp = data;
 Des_Key(&dc1, key, ENDE); // Sets up key schedule for Encryption and
 Decryption
 DES_Enc_CBC(&dc, cp, 2); //Encrypt Data, Result is stored back into Data
 DES_Dec_CBC(&dc, cp, 2); //Decrypt Data, Result is stored back into Data
return 0;
}

2.3 3DES
2.3.1 Encrypting and Decrypting With Triple DES

The following code example shows the encryption and decryption process using 3DES with and without CBC.
The key scheduler is set to populate both key schedules. The results of the operations are stored in the original
data array.

#include "msp430xxxx.h"
#include "TI_DES.h"

int main(void)
{
 des_ctx dc1; // Key schedule structure
 unsigned char *cp;
 unsigned char data[] = {0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30, 0xd8,
 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a};
 unsigned char key[8] = {0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07};
 unsigned char key1[8] = {0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xfe};
 unsigned char key2[8] = {0x01,0x23,0x45,0x67,0x89,0xab,0xdc,0xfe};
 cp = data;

 ///First 8 bytes of Data will be Encrypted then Decrypted
 TripleDES_ENC(&dc, cp, 1, key, key1, key2); // 3DES Encrypt
 TripleDES_DEC(&dc, cp, 1, key, key1, key2); // 3DES Decrypt

 /// All 16 Bytes of Data will be Encrypted then Decrypted with CBC
 TripleDES_ENC_CBC(&dc, cp, 2, key, key1, key2); // 3DES Encrypt
 TripleDES_DEC_CBC(&dc, cp, 2, key, key1, key2); // 3DES Decrypt

return 0;
}

www.ti.com Using Library Functions

SLAA547C – JULY 2013 – REVISED JULY 2021
Submit Document Feedback

C Implementation of Cryptographic Algorithms 5

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA547C&partnum=

2.4 SHA-2
2.4.1 Hashing With SHA-256

The following code example shows an example of a data hash using SHA-256.

#include "msp430xxxx.h"
#include "TI_SHA2.h"

uint32_t M[32]; //Message array to be hashed
uint64_t L = 0x0000000000000000; //Bit Length of message to be hashed
uint32_t Ha[8]; // Hash Array to be used during calculation and to store result

int main(void)
{
 M[0] =0x41424344; //Data
 M[1] =0x45464748; //Data
 M[2] =0x494A4B4C; //Data
 L = 0x0000000000000060 //Length == 96 bits or 0x60 bits

 SHA_256(M, L, Ha, 1); // "1" indicates SHA-256 mode

return 0;
}

Although this example does not show full initialization of the array M[], all relevant values have been populated
with meaningful data. M[] must be initialized to sizes equal to a 512-bit block of data or hashing block. If the
message to be hashed exceeds 448 bits within a hashing block, then an additional hashing block must be
reserved. Table 2-1 explains minimum sizes of M[] according to message size.

Table 2-1. Minimum Sizes of M[]
Message Size x (bits) Minimum Size of Array M[]

× < 448 M[16]

448 ≤ × ≤ 512 M[32]

512 < × < 960 M[32]

960 ≤ × < 1024 M[48]

2.4.2 Hashing With SHA-224

The following code example shows a hashing of a message using SHA-224. Although an array of eight 32-bit
words are used for the hashing process, only the first seven 32-bit words are used as the hash result.

#include "msp430x26x.h"
#include "TI_SHA2.h"

uint32_t M[32]; //Message array to be hashed
uint64_t L = 0x0000000000000000; //Bit Length of message to be hashed
uint32_t Ha[8]; // Hash Array to be used during calculation and to store result

int main(void)
{
 M[0] =0x41424344; //Data
 M[1] =0x45464748; //Data
 M[2] =0x494A4B4C; //Data
 L = 0x0000000000000060 //Length == 96 bits or 0x60 bits

SHA_256(M, L, Ha, 0); // "0" indicates SHA-224 mode.

return 0;
}

Using Library Functions www.ti.com

6 C Implementation of Cryptographic Algorithms SLAA547C – JULY 2013 – REVISED JULY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA547C&partnum=

3 Overview of Library Functions
The following sections describe all modes of operation and parameters for the Software Cryptography Library.

3.1 AES 128
Software implementation is of 128-bit AES encryption. This means the algorithm uses a 128-bit key to encrypt
128-bit blocks of data. The library was optimized for memory usage (Flash and RAM). There are two functions
available from the library: aes_enc_dec() and aes_encrypt(). Both functions overwrite the data block given with
its encrypted value.

aes_enc_dec
(unsigned char *state, unsigned char *key, unsigned char dir);

This function can encrypt or decrypt a message using AES. Use this function if both modes are needed. Data
must be in hex form. Function does not convert ASCII text.

Inputs

• Unsigned char *state – Pointer to data block to be encrypted
• Unsigned char *key – Pointer to 128-bit key
• Unsigned char dir – Value that dictates Encryption (‘0’) or Decryption (‘1’)

aes_encrypt
(unsigned char *state, unsigned char *key);

This function only performs AES encryption. Data must be in hex form. Function does not convert ASCII text. It is
possible to decrypt messages while only using the encrypt function. This can be done by encrypting a plain text
message with an AES decrypt action, then feeding that cipher text to the AES encryption function.

Note

A separate header and code file are made specifically for this function; this is intended for code size
sensitive applications.

Inputs

• Unsigned char *state – Pointer to data block to be encrypted
• Unsigned char *key – Pointer to 128-bit key

www.ti.com Overview of Library Functions

SLAA547C – JULY 2013 – REVISED JULY 2021
Submit Document Feedback

C Implementation of Cryptographic Algorithms 7

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA547C&partnum=

3.2 DES and 3DES
Software implementation uses a 64-bit key to encipher 64-bit blocks. The DES takes in a 64-bit key, where every
eighth bit is used for parity. Therefore, the effective key length is 56 bits. 3DES uses three 64-bit keys and,
therefore, has an effective key length of 168-bits.

The DES library functions make use of key structure of type des_ctx defined in the helper file. This structure
stores the key schedule for both encrypt and decrypt functions.

Des_Key
(des_ctx *(Key Structure), unsigned char *pucKey, short sMode);

This function is the key scheduler for the DES. This step must be performed before calling the encrypt or decrypt
function. Key must be in hex form. Function does not convert ASCII text.

Inputs

• des_ctx *Ks -- Pointer to structure that will store the key schedule
• unsigned char *pucKey – Pointer to start of key array in need of scheduling
• short sMode -- Sets operation mode for the key scheduler

– sMode = EN0 : Mode is set to schedule key for encryption
– sMode = DE1: Mode is set to schedule key for decryption
– sMode = ENDE: Mode is set to schedule for both encryption and decryption

Des_Enc
(des_ctx *(Key Structure),unsigned char *pucData, short sBlocks);

This function performs a DES encryption process on data. Key schedules must be created before use. Data
must be in hex form. Function does not convert ASCII text.

Inputs

• des_ctx *Ks -- Pointer to structure containing scheduled keys
• unsigned char *pucData – Pointer to start of data array that will be enciphered
• short sBlocks – Value indicating how many 64-bit blocks need to be enciphered

Des_Dec
(ddes_ctx *(Key Structure), unsigned char *pucData, short sBlocks);

This function performs a DES decryption process on data. Key schedules must be created before use. Data
must be in hex form. Function does not convert ASCII text.

Inputs

• des_ctx *Ks -- Pointer to structure containing scheduled keys
• unsigned char *pucData – Pointer to start of data array that will be deciphered
• short sBlocks – Value indicating how many 64-bit blocks need to be deciphered

DES_ENC_CBC
(des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned char *pucIV);

This function performs a DES encryption process with CBC mode. Key schedule must be created before use.
Data must be in hex form. Function does not convert ASCII text. Updated IV vector is stored starting at location
pucIV.

Inputs

• des_ctx *Ks -- Pointer to structure containing scheduled keys
• unsigned char *pucData – Pointer to start of data array that will be enciphered
• short sBlocks – Value indicating how many 64-bit blocks need to be enciphered
• unsigned char *pucIV – Pointer to start of array of Initialization Vector (IV)

Overview of Library Functions www.ti.com

8 C Implementation of Cryptographic Algorithms SLAA547C – JULY 2013 – REVISED JULY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA547C&partnum=

DES_DEC_CBC
(des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned char *pucIV);

This function performs a DES decryption process with CBC mode. Key schedule must be created before use.
Data must be in hex form. Function does not convert ASCII text. Updated IV is stored starting at location pucIV.

Inputs

• des_ctx *Ks -- Pointer to structure containing scheduled keys.
• unsigned char *pucData – Pointer to start of data array that will be deciphered
• short sBlocks – Value indicating how many 64-bit blocks need to be deciphered
• unsigned char *pucIV – Pointer to start of array of Initialization Vector (IV)

TripleDES_ENC
(des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned char *pucKey1, unsigned char
*pucKey2, unsigned char *pucKey3);

This function performs a 3DES encryption process in the form: Enckey3(Deckey2(Enckey1(Data))). Data and
keys must be in hex form. Function does not convert ASCII text.

Inputs

• des_ctx *Ks -- Pointer to structure that will store the key scheduler
• unsigned char *pucData – Pointer to start of data array that will be enciphered
• short sBlocks – Value indicating how many 64-bit blocks need to be enciphered
• unsigned char *pucKey1 – Pointer to the first key array location
• unsigned char *pucKey2 – Pointer to the second key array location
• unsigned char *pucKey3 – Pointer to the third key array location

TripleDES_DEC
(des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned char *pucKey1, unsigned char
*pucKey2, unsigned char *pucKey3);

This function performs a 3DES encryption process in the form: Dec[key1](Enc[key2](Dec[key3](Data))). Data and
keys must be in hex form. Function does not convert ASCII text.

Inputs

• des_ctx *Ks -- Pointer to structure that will store the key scheduler.
• unsigned char *pucData – Pointer to start of data array that will be deciphered.
• short sBlocks – Value indicating how many 64-bit blocks need to be deciphered.
• unsigned char *pucKey1 – Pointer to the first key location.
• unsigned char *pucKey2 – Pointer to the second key location.
• unsigned char *pucKey3 – Pointer to the third key location.

TripleDES_ENC_CBC
(des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned char *pucKey1, unsigned char
*pucKey2, unsigned char *pucKey3, unsigned char *pucIV);

This function performs a 3DES encryption process in the form: Enckey3(Deckey2(Enckey1(Data))) with CBC
mode enabled. Data and keys must be in hex form. Function does not convert ASCII text. Updated IV is stored
starting at location pucIV.

Inputs

• des_ctx *Ks -- Pointer to structure that will store the key scheduler
• unsigned char *pucData – Pointer to start of data array that will be enciphered
• short sBlocks – Value indicating how many 64-bit blocks need to be enciphered
• unsigned char *pucKey1 – Pointer to the first key array location
• unsigned char *pucKey2 – Pointer to the second key array location
• unsigned char *pucKey3 – Pointer to the third key array location
• unsigned char *pucIV – Pointer to start of array of Initialization Vector (IV)

www.ti.com Overview of Library Functions

SLAA547C – JULY 2013 – REVISED JULY 2021
Submit Document Feedback

C Implementation of Cryptographic Algorithms 9

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA547C&partnum=

TripleDES_DEC_CBC
(des_ctx *(Key Structure), unsigned char *pucData, short sBlocks, unsigned char *pucKey1, unsigned char
*pucKey2, unsigned char *pucKey3, unsigned char *pucIV);

This function performs a 3DES encryption process in the form Dec[key1](Enc[key2](Dec[key3](Data))) with CBC
mode enabled. Data and keys must be in hex form. Function does not convert ASCII text.

Inputs

• des_ctx *Ks -- Pointer to structure that will store the key scheduler
• unsigned char *pucData – Pointer to start of data array that will be deciphered
• short sBlocks – Value indicating how many 64-bit blocks need to be deciphered
• unsigned char *pucKey1 – Pointer to the first key location
• unsigned char *pucKey2 – Pointer to the second key location
• unsigned char *pucKey3 – Pointer to the second key location
• unsigned char *pucIV – Pointer to start of array of Initialization Vector (IV)

3.3 SHA-256 and SHA-224
The software implementation uses a 256-bit hash to hash, a hashing block of 512 bits as described in the
document FIBS PUB 180-3. Data to be hashed must be in hex form. Function does not convert ASCII text.
Message array must be a multiple of a hashing block with array elements being 32 bits in length. Function is
written in C99 notation for portability reasons.

SHA_256
(uint32_t *Message, uint64_t Mbit_Length, uint32_t *Hash, short sMode);

Inputs

• uint32_t *Message – Pointer to array of 32-bit longs to be hashed. Size of array must be a multiple of a
hashing block (512 bits or sixteen 32-bit longs).

• uint64_t Mbit_length -- 64-bit value containing the precise number of bits to be hashed within the Message
array.

Note

If Mbit_Length %(mod) 512 >= 448 bits, then an additional hashing block is needed. You must
allocate the additional 512 bits.

• uint32_t *Hash – Pointer to array of eight 32-bit longs. The final hash value is stored here.
• short sMode – Determines if the algorithm run is SHA-224 or SHA-256.

– Mode is equal to "False", SHA-224 is used. Final Hash == Hash[0-6].
– Mode is equal to "True", SHA-256 is used. Final Hash == Hash[0-7].

Overview of Library Functions www.ti.com

10 C Implementation of Cryptographic Algorithms SLAA547C – JULY 2013 – REVISED JULY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA547C&partnum=

4 Cryptographic Standard Definitions
4.1 AES
The Advanced Encryption Standard (AES) was announced by the National Institute of Standards and
Technology (NIST) in November 2001. It is the successor of Data Encryption Standard (DES), which cannot
be considered as safe any longer, because of its short key with a length of only 56 bits.

To determine which algorithm would follow DES, NIST called for different algorithm proposals in a sort of
competition. The best of all suggestions would become the new AES. In the final round of this competition the
algorithm Rijndael, named after its Belgian inventors Joan Daemen and Vincent Rijmen, won because of its
security, ease of implementation, and low memory requirements.

There are three different versions of AES. All of them have a block length of 128 bits, whereas, the key length is
allowed to be 128, 192, or 256 bits. In this application report, only a key length of 128 bits is discussed.

4.1.1 Basic Concept of Algorithm

The AES algorithm consists of ten rounds of encryption, as can be seen in Figure 4-1. First the 128-bit key is
expanded into eleven so-called round keys, each of them 128 bits in size. Each round includes a transformation
using the corresponding cipher key to ensure the security of the encryption.

Cipher Key

128

128

Round 1

Round 2

Round 10

Cipher Text Block

Round Key 0

Round Key 1

Round Key 2

Round Key 10

K
e
y
 E

x
p

a
n

s
io

n

128

Plain Text Block

Figure 4-1. AES Algorithm Structure

After an initial round, during which the first round key is XORed to the plain text (Add roundkey operation), nine
equally structured rounds follow. Each round consists of the following operations:

• Substitute bytes
• Shift rows
• Mix columns
• Add round key

The tenth round is similar to rounds one to nine, but the Mix columns step is omitted. In the following sections,
these four operations are explained.

www.ti.com Cryptographic Standard Definitions

SLAA547C – JULY 2013 – REVISED JULY 2021
Submit Document Feedback

C Implementation of Cryptographic Algorithms 11

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA547C&partnum=

4.1.2 Structure of Key and Input Data

Both the key and the input data (also referred to as the state) are structured in a 4x4 matrix of bytes. Figure 4-2
shows how the 128-bit key and input data are distributed into the byte matrices.

a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

k0 k4 k8 k12

k1 k5 k9 k13

k2 k6 k10 k14

k3 k7 k11 k15

The State The Key

Figure 4-2. Structure of the Key and the State

4.1.3 Substitute Bytes (Subbytes Operation)

The Subbytes operation is a nonlinear substitution. This is a major reason for the security of the AES. There
are different ways of interpreting the Subbytes operation. In this application report, it is sufficient to consider the
Subbytes step as a lookup in a table. With the help of this lookup table, the 16 bytes of the state (the input data)
are substituted by the corresponding values found in the table (see Figure 4-3).

a
0

a
4

a
8

a
12

a
1

a
5

a
9

a
13

a
2

a
6

a
10

a
14

a
3

a
7

a
11

a
15

b
0

b
4

b
8

b
12

b
1

b
5

b
9

b
13

b
2

b
6

b
10

b
14

b
3

b
7

b
11

b
15

S-box
(table lookup)

a
5

b
5

Figure 4-3. Subbytes Operation

4.1.4 Shift Rows (Shiftrows Operation)

As implied by its name, the Shiftrows operation processes different rows. A simple rotate with a different rotate
width is performed. The second row of the 4x4 byte input data (the state) is shifted one byte position to the left in
the matrix, the third row is shifted two byte positions to the left, and the fourth row is shifted three byte positions
to the left. The first row is not changed.

Cryptographic Standard Definitions www.ti.com

12 C Implementation of Cryptographic Algorithms SLAA547C – JULY 2013 – REVISED JULY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA547C&partnum=

Figure 4-4 illustrates the working of Shiftrows.

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a13

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a13

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

a0,0

a1,0

a2,0

a3,0

a0,0

a3,0

a2,0

a1,0

Figure 4-4. Shiftrows Operation

4.1.5 Mix Columns (Mixcolumns Operation)

Probably the most complex operation from a software implementation perspective is the Mixcolumns step. The
working method of Mixcolumns can be seen in Figure 4-5.

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a13

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

a0,1

a1,1

a2,1

a3,1

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b13

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

b0,1

b1,1

b2,1

b3,1

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

x

Figure 4-5. Mixcolumns Operation

Opposed to the Shiftrows operation, which works on rows in the 4x4 state matrix, the Mixcolumns operation
processes columns.

In principle, only a matrix multiplication needs to be executed. To make this operation reversible, the usual
addition and multiplication are not used. In AES, Galois field operations are used. This document does not go
into the mathematical details, it is only important to know that in a Galois field, an addition corresponds to an
XOR and a multiplication to a more complex equivalent.

The fact that there are many instances of 01 in the multiplication matrix of the Mixcolumns operation makes this
step easily computable.

www.ti.com Cryptographic Standard Definitions

SLAA547C – JULY 2013 – REVISED JULY 2021
Submit Document Feedback

C Implementation of Cryptographic Algorithms 13

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA547C&partnum=

4.1.6 Add Round Key (Addroundkey Operation)

The Addroundkey operation is simple. The corresponding bytes of the input data and the expanded key are
XORed (see Figure 4-6).

a
0

a
4

a
8

a
12

a
1

a
5

a
9

a
13

a
2

a
6

a
10

a
14

a
3

a
7

a
11

a
15 b

0
b

4
b

8
b

12

b
1

b
5

b
9

b
13

b
2

b
6

b
10

b
14

b
3

b
7

b
11

b
15

k
0

k
4

k
8

k
12

k
1

k
5

k
9

k
13

k
2

k
6

k
10

k
14

k
3

k
7

k
11

k
15

b
5

k
5

a
5

Figure 4-6. Addroundkey Operation

Cryptographic Standard Definitions www.ti.com

14 C Implementation of Cryptographic Algorithms SLAA547C – JULY 2013 – REVISED JULY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA547C&partnum=

4.1.7 Key Expansion (Keyexpansion Operation)

As previously mentioned, Keyexpansion refers to the process in which the 128 bits of the original key are
expanded into eleven 128-bit round keys.

To compute round key (n+1) from round key (n) these steps are performed:

1. Compute the new first column of the next round key as shown in Figure 4-7:

k0,0 k0,1 k0,2 k0,3

k1,0 k1,1 k1,2 k13

k2,0 k2,1 k2,2 k2,3

k3,0 k3,1 k3,2 k3,3

k0,4

k1,0

k2,0

k3,0

t0,3

t1,3

t2,3

t3,3

t1,3

t2,3

t3,3

t0,3

RK(n) RK(n+1)

S-Box

S (k)ij

RC1

00

00

00

Rotate

t0,j

t1,j

t2,j

t3,j

k0,0

k1,0

k2,0

k3,0

k0,3

k1,3

k2,3

k3,3

Figure 4-7. Expanding First Column of Next Round Key

First, all bytes of the old fourth column must be substituted using the Subbytes operation. These four bytes
are shifted vertically by one byte position and then XORed to the old first column. The result of these
operations is the new first column.

2. Calculate columns 2 to 4 of the new round key as shown:
a. [new second column] = [new first column] XOR [old second column]
b. [new third column] = [new second column] XOR [old third column]
c. [new fourth column] = [new third column] XOR [old fourth column]

Figure 4-8 illustrates the calculation of columns 2 to 4 of the new round key.

k0,0 k0,1 k0,2 k0,3

k1,0 k1,1 k1,2 k13

k2,0 k2,1
k2,2 k2,3

k3,0 k3,1
k3,2 k3,3

RK(n) RK(n+1)

k0,0

k1,0

k2,0

k3,0

k0,4

k1,4

k2,4

k3,4

k0,5

k1,5

k2,5

k3,5

Figure 4-8. Expanding Other Columns of Next Round Key

www.ti.com Cryptographic Standard Definitions

SLAA547C – JULY 2013 – REVISED JULY 2021
Submit Document Feedback

C Implementation of Cryptographic Algorithms 15

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA547C&partnum=

4.2 DES and 3DES
The Data Encryption Standard (DES) was developed in the 1970s by IBM and adopted as a standard by NIST
by 1976. The DES algorithm itself has since then been declared insecure by NIST; however, it is believed to be
reasonably secure in the form of Triple DES.

The DES algorithm consists of 16 rounds of data manipulation preceded by an initial permutation and followed
by the inverse of the initial permutation. Figure 4-9 has a visual description of the algorithm structure. After
the initial permutation, the data block is split in half into left and right blocks. The right block is sent through a
function block with a round key and then is used as the left block for the next round. The left block is XORed with
the result of the function block, the result of which is used as the right block in the next round. This is continued
until the last round where the left and right blocks do not switch sides. At this point, the data is put through the
inverse of the initial permutation resulting in the wanted cipher text.

Cryptographic Standard Definitions www.ti.com

16 C Implementation of Cryptographic Algorithms SLAA547C – JULY 2013 – REVISED JULY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA547C&partnum=

4.2.1 DES Algorithm Structure

R 16L16

Output, 64 Bit

Inverse Initial Permutation

Initial Permutation

Input, 64 Bit

Left 32 Bits, Right 32 Bits,

F(x,k i)
K1

F(L0, k 1) = R 1R 0 = L 1

F(x,k i)
K2

LN R N

F(x,k i)
KN

R 15L15

K16
F(x,k i)

Figure 4-9. DES Algorithm Structure

www.ti.com Cryptographic Standard Definitions

SLAA547C – JULY 2013 – REVISED JULY 2021
Submit Document Feedback

C Implementation of Cryptographic Algorithms 17

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA547C&partnum=

4.2.2 The Function Block

The function block begins by expanding a 32-bit half block to 48 bits as shown in Figure 4-10.

Expansion Box

Half Block 32 Bits

6 Bits

4 Bits

Permutation Box

S2 S8S1 S3 S4 S5 S6 S7

48 Bits

Round

key
48 Bits

32 Bits

Figure 4-10. DES Function Block

The expanded block is then XORed with the round key. The resultant is the split into 6-bit increments and
passed through eight S-boxes, with the six MSb going through S1 and the six LSb through S8. The S-boxes give
4-bit results which are concatenated (S1+S2+S3+S4+S5+S6+S7+S8) and sent through a 32-bit permutation
box.

4.2.3 Key Schedule

The key schedule for all sixteen rounds of the DES algorithm must be calculated before encryption or decryption
can occur. The key schedule process in this library is the most CPU intensive component of the algorithm.
System speed can be increased by limiting the number of keys to be scheduled. Figure 4-11 describes how the
key schedule is calculated. First, the 64-bit key is sent through a permutation box that reduces the bit count to
56. The result is split evenly and left rotated by 1-2 bits depending on the round. The rotate results are fed into a
second permutation box that gives the round key used in the DES Function block.

Cryptographic Standard Definitions www.ti.com

18 C Implementation of Cryptographic Algorithms SLAA547C – JULY 2013 – REVISED JULY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA547C&partnum=

P2 Box

P2 Box

P2 Box

48 Bits

K 1

K N

K 16

56 Bits

64 Bit Key

P1 Box

Left Rotate, 16

Left Rotate, N

Left Rotate, 1

Left 28 Bits Right 28 Bits

Figure 4-11. Key Schedule Function Diagram

www.ti.com Cryptographic Standard Definitions

SLAA547C – JULY 2013 – REVISED JULY 2021
Submit Document Feedback

C Implementation of Cryptographic Algorithms 19

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA547C&partnum=

4.2.4 Triple DES

Triple DES is a more secure form DES that implements three keys with a series of encodes and decodes. Figure
4-12 illustrates Triple DES Encoding and Decoding. In Triple DES, plain text is run through three alternating
rounds of DES encoding and decoding with each round using a different key.

Key 3

Key 2

Key 1

3DES Decode

Cipher Text

Decode

Decode

Encode

Plain Text

3DES Encode

Plain Text

Key 1

Key 2

Key 3 Encode

Encode

Decode

Cipher Text

Figure 4-12. 3DES Encoding and Decoding Algorithms

Cryptographic Standard Definitions www.ti.com

20 C Implementation of Cryptographic Algorithms SLAA547C – JULY 2013 – REVISED JULY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA547C&partnum=

4.2.5 Cipher Block Chaining (CBC) Mode

CBC is a common method to cipher multiple blocks of data. The mode introduces pseudo-randomness between
cipher blocks to obscure data patterns between plaintext blocks. Figure 4-13 describes DES CBC modes for
encryption and decryption.

Plain Text

Block 1

Plain Text

Block 2

DES

Encode

IV Block

Cipher Text

Block 1

DES

Encode

Cipher Text

Block 2

Plain Text

Block N

DES

Encode

Cipher Text

Block N

IV Block

Plain Text

Block 1

DES

Decode

IV Block

Cipher Text

Block 1

Plain Text

Block 2

DES

Decode

Cipher Text

Block 2

Plain Text

Block N

DES

Decode

Cipher Text

Block N

IV Block

Figure 4-13. DES Encode and Decode in CBC Mode

Encoding in CBC modes begins with an XOR of the IV block and the first Plain text box. The result is encrypted
to give the first block of Cipher text. This cipher text is then XORed with the next block of plaint text, which is
then encoded. This process repeats until all data blocks are enciphered. The IV block is then updated to equal
the last enciphered block.

Decoding in CBC happens in a similar way. In decoding, however, the XOR step happens after the decoding
process. The first cipher text block is decoded then XORed with IV block to get the plain text. Continuing blocks
are XORed with the previous cipher block after decoding, and the last cipher block is taken as the updated IV.

www.ti.com Cryptographic Standard Definitions

SLAA547C – JULY 2013 – REVISED JULY 2021
Submit Document Feedback

C Implementation of Cryptographic Algorithms 21

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA547C&partnum=

Triple DES with CBC works in the same way as DES with CBC. In Figure 4-13, replace the DES Encode module
with 3DES Encode and the DES Decode module with 3DES Decode to have a visualization of the mode.

4.3 SHA-256 and SHA-224
Secure Hash Standard (SHA) 2 is a set of hashing algorithms developed by NIST to replace SHA-1. SHA-2 is a
family of algorithms with message digests of 224, 256, 384 and 512 bits. The 224 and 384 variants are subsets
of the 256 and 512, respectively. This library only implements SHA-256 and SHA-224.

4.3.1 Message Padding and Parsing

In order for a hash to be computed, the message must be padded to a multiple of a 512-bit hashing block.
The last 64-bits of the last block is reserved for the bit count of the message. Figure 4-14 shows how padding
is implemented. At the end of the message to be hashed a single "1" bit is appended followed by zeros. The
zeroes continue until Message + Message Length + "1" + "00…00" = 512 bits.

Message >= 448 bits “1” “00……00” 64 -bit Length

Message < 448 bits “1” “00……00” 64 -bit Length

512 - bit

512 - bit 512 - bit

Figure 4-14. Example of Message Padding

4.3.2 SHA-256 Algorithm

The algorithm starts with an initialization vector of eight 32-bit words. These values are loaded into temp
variables labeled A – H. A set of equations govern how these variables are combined and manipulated. The
algorithm also calls for an array of hash constants (Kt), a message schedule (Wt), and the functions Ch, Ma,
∑0, and ∑1. The equations and functions are given in Section 4.3.3. Figure 4-15 gives a visualization of the
hashing loop. This loop is repeated 64 times until the end of the message schedule. One message schedule
covers only one hashing block of the full message. Once the loop is completed, the resulting temp variables are
XORed with the initialization variables to form the current message digest H0-7. If other message blocks are to
be processed, the temp values are loaded with the current message digest. At the end of the loop, the current
results are XORed with the previous message digest. A full explanation of the algorithm can be found in FIPS
PUB 180-3.

Cryptographic Standard Definitions www.ti.com

22 C Implementation of Cryptographic Algorithms SLAA547C – JULY 2013 – REVISED JULY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA547C&partnum=

B HGFEDCA

B HGFEDCA

∑

∑

W t

Kt

Ch

Ma

1

0

Figure 4-15. Visualization of the Hashing Loop of SHA-256

4.3.3 Equations Found in SHA-256 Algorithm

Symbols in Equations:

! = Bitwise XOR

& = Bitwise AND

A’ = Bitwise Compliment of A

>> = Shift Right

>>> = Rotate Right (1)

www.ti.com Cryptographic Standard Definitions

SLAA547C – JULY 2013 – REVISED JULY 2021
Submit Document Feedback

C Implementation of Cryptographic Algorithms 23

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA547C&partnum=

Functions:

ch(x,y,z) = (x & y) ⊕ (x' & z)

Ma (x, y, z) = (x & y) ⊕ (x & z) ⊕ (y & z)

σ0(x)

() () ()
() () () ()
() () () ()
() () () ()
() () () ()
() () () ()

)

0

1

0

1

t

(

ch x,y,z x & y x '& z

Ma x,y,z x & y x & z y & z

x x 7 A 18 x 3

x x 17 A 19 x 10

A A 2 A 13 A 22

E E 6 A 11 A

0

5

,

2

W
 t£

=

= Å

= Å Å

s = >>> Å >>> Å >>

s = >>> Å >>> Å >>

å = >>> Å >>> Å >>>

å = >>> Å >>> Å >>>

=
i

t
t

M
W

() ()0 2 7 1 15 16

15

, 16 15 t - - - -

ì £ï
í

Å Å Å £ £ïî t t t tσ W W σ W W (2)

Loop Equations:

()

() ()

(, ,)1 1

, ,2 0

h g

g

e

e d T1

d c

c b

b a

a T T1 2

= Å Å Å å Å ¦

= Åå

=

= ¦

¦ =

= Å

=

=

=

= Å

T h K W E Ch e g t t

T Ma a b c A

(3)

4.3.4 SHA-224

SHA-224 is a subset of SHA-256 with a message digest of 224-bits. The algorithm is the same with the
exception of different Hash initialization values. Also, only the first seven 32-bit words (224 bits) of the final
message digest are used.

5 References
1. Announcing the Advanced Encryption Standard (FIPS PUB 197)
2. Data Encryption Standard (DES) (FIPS PUB 46-3)
3. Security Hash Standard (SHS) (FIPS PUB 180-3)
4. AES128 – A C Implementation for Encryption and Decryption
5. DES Modes of Operation (FIPS PUB 81)
6. Schneier, Bruce; Applied Cryptography; John Wiley & Sons; 1996

Cryptographic Standard Definitions www.ti.com

24 C Implementation of Cryptographic Algorithms SLAA547C – JULY 2013 – REVISED JULY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLAA397
https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA547C&partnum=

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (March 2018) to Revision C (July 2021) Page
• Updated the numbering format for tables, figures, and cross references throughout the document..................1
• Added a link to a related application report in the Abstract.. 1

www.ti.com Revision History

SLAA547C – JULY 2013 – REVISED JULY 2021
Submit Document Feedback

C Implementation of Cryptographic Algorithms 25

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAA547C&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Table of Contents
	1 Software Benchmarks
	1.1 AES Benchmarks
	1.2 DES Benchmarks
	1.3 SHA-2 Benchmarks

	2 Using Library Functions
	2.1 AES 128
	2.1.1 Encrypting With AES 128
	2.1.2 Decrypting With AES 128

	2.2 DES
	2.2.1 Setting the Key Schedule for DES
	2.2.2 Encrypting and Decryption With DES
	2.2.3 Encryption and Decryption With DES CBC Mode

	2.3 3DES
	2.3.1 Encrypting and Decrypting With Triple DES

	2.4 SHA-2
	2.4.1 Hashing With SHA-256
	2.4.2 Hashing With SHA-224

	3 Overview of Library Functions
	3.1 AES 128
	aes_enc_dec
	aes_encrypt

	3.2 DES and 3DES
	Des_Key
	Des_Enc
	Des_Dec
	DES_ENC_CBC
	DES_DEC_CBC
	TripleDES_ENC
	TripleDES_DEC
	TripleDES_ENC_CBC
	TripleDES_DEC_CBC

	3.3 SHA-256 and SHA-224
	SHA_256

	4 Cryptographic Standard Definitions
	4.1 AES
	4.1.1 Basic Concept of Algorithm
	4.1.2 Structure of Key and Input Data
	4.1.3 Substitute Bytes (Subbytes Operation)
	4.1.4 Shift Rows (Shiftrows Operation)
	4.1.5 Mix Columns (Mixcolumns Operation)
	4.1.6 Add Round Key (Addroundkey Operation)
	4.1.7 Key Expansion (Keyexpansion Operation)

	4.2 DES and 3DES
	4.2.1 DES Algorithm Structure
	4.2.2 The Function Block
	4.2.3 Key Schedule
	4.2.4 Triple DES
	4.2.5 Cipher Block Chaining (CBC) Mode

	4.3 SHA-256 and SHA-224
	4.3.1 Message Padding and Parsing
	4.3.2 SHA-256 Algorithm
	4.3.3 Equations Found in SHA-256 Algorithm
	4.3.4 SHA-224

	5 References
	Revision History

