
1SLAA703A–May 2016–Revised July 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Software I2C on MSP430™ MCUs

Application Report
SLAA703A–May 2016–Revised July 2018

Software I2C on MSP430™ MCUs

.. MSP430 Applications

ABSTRACT
Hardware and layout limitations often require smaller package sizes that could potentially create a tradeoff
for the number of serial peripherals available to the user. With the I2C protocol, special software can be
created to use a pair of simple GPIO ports to emulate an I2C master or slave device. This allows
programmers to be flexible with pin assignments and enables smaller package devices to overcome the
hardware limitation of scarce number of hardware I2C peripherals. Having a software-emulated I2C
implementation enables programmers to communicate effectively and fully control attached slave devices
without excessive overhead. This application report describes a software-based I2C solution for the
MSP430FR2111 microcontroller (MCU), and the implementation can be expanded to work on any
MSP430™ MCU with a timer. This software solution supports transactions on I2C bus with an SCL clock
frequency of up to 100 kHz for master and slave.

Related software can be downloaded from http://www.ti.com/lit/zip/slaa703.

Contents
1 Introduction ... 2
2 I2C Theory of Operation ... 2

2.1 I2C Overview... 2
2.2 I2C Protocol .. 2

3 Software I2C Implementation ... 3
3.1 Master I2C Software Implementation ... 3
3.2 Slave I2C Software Implementation .. 5

4 Testing Software I2C Master and Slave... 7
4.1 Hardware Setup... 7
4.2 Software Setup.. 7

5 Conclusion .. 8
6 References ... 8

List of Figures

1 START and STOP Conditions ... 2
2 I2C Data Transfer .. 3
3 Structure Configuration ... 4
4 Slave I2C State Machine .. 6
5 Test Platform ... 7
6 Software Master I2C Waveform .. 8
7 Software Slave I2C Waveform.. 8

Trademarks
MSP430, Code Composer Studio are trademarks of Texas Instruments.
IAR Embedded Workbench is a registered trademark of IAR Systems.
All other trademarks are the property of their respective owners.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA703A
http://www.ti.com/lit/zip/slaa703

Introduction www.ti.com

2 SLAA703A–May 2016–Revised July 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Software I2C on MSP430™ MCUs

1 Introduction
I2C communication protocol is widely used in various applications and some applications even require
more than one I2C interface. However, small package, low pin count, and low cost could potentially create
a tradeoff for the number of serial peripherals available to the user. For example, the MSP430FR2111 is
an FRAM-based low-pin-count (16 pins) microcontroller of the MSP430FRx family. Because of its low pin
count, the hardware I2C module is not integrated in this MCU. For this kind of MCU, software I2C using a
pair of GPIOs to emulate I2C master or slave is a good choice for the user. Both software I2C master and
slave solutions are implemented using a small amount of MCU resources. The interface to I2C bus only
uses two GPIO pins, which are quite flexible for users to choose. The software solution supports
transactions on the I2C bus with an SCL clock frequency up to 100 kHz for master and slave. The code
size is small, so that this solution can also be implemented on low memory footprint MSP430 MCUs.

2 I2C Theory of Operation

2.1 I2C Overview
The I2C bus is a two-wire bidirectional serial bus that requires a serial data (SDA) line and a serial clock
(SCL) line to communicate. A pullup resistor is required for each of the lines. When the bus is free, both
lines are high. All connected devices can be either a master or slave device. The master device generates
the serial clock and initiates communication on the bus. The slave device is addressed by master and
responds to communication on the bus. To communicate with a specific device, each slave device must
have an address that is unique on the bus. The I2C bus supports either a 7-bit or a 10-bit address mode,
allowing up to 128 or 1024 devices, respectively, to be on the bus. The frequency of the I2C serial clock
can be up to 100 kHz in standard mode and up to 400 kHz in fast mode.

2.2 I2C Protocol
All I2C transfers begin with a START condition and end with a STOP condition. Figure 1 shows that a
START condition is defined as a high-to-low transition on the SDA line while SCL is high, and a STOP
condition is defined as a low-to-high transition on the SDA line while the SCL is high. When the START
condition occurs on I2C bus, the bus is considered busy and cannot be used by another master until a
STOP condition is detected.

Figure 1. START and STOP Conditions

The START condition is always followed by the address and then by a data direction bit (R/W bit). If the
R/W bit is 0, the master will write to the slave device. If the R/W bit is 1, the master will read from slave
device. After the R/W bit is sent, the master releases the bus and allows the slave to acknowledge (ACK)
the request. The slave device that was addressed acknowledges to the master by holding SDA low for
one clock cycle. Then the master or slave transmits data on the SDA line, depending on the R/W bit value.
The SDA line can change only when SCL is low, and SDA must be stable when SCL is high. Data on the
I2C bus is transferred in 8-bit packets (bytes). There is no limitation on the number of bytes, but each byte
must be followed by an ACK bit. If the slave device does not acknowledge transfer, this means that there
is no more data or that the device is not ready for the transfer yet. The master device must generate either
a STOP or a repeated START condition. For details on the I2C protocol, see the I2C-bus specification and
user manual [4].

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA703A

www.ti.com Software I2C Implementation

3SLAA703A–May 2016–Revised July 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Software I2C on MSP430™ MCUs

Figure 2. I2C Data Transfer

3 Software I2C Implementation

3.1 Master I2C Software Implementation

3.1.1 Software Implementation
Software implementation of the master I2C requires only two GPIOs and one timer. The two GPIOs are
used to emulate SDA and SCL signals. Any ordinary GPIO can be used, and there are no special
requirements such as interrupt capability. The configured pins should be reserved exclusively for I2C
operation. If another peripheral or function uses or reconfigures the selected pins for a different purpose,
the behavior is unreliable. The timer generates the I2C clock. I2C clock frequency relies on the frequency
of the timer clock source. Most MSP430 MCUs integrate Timer_A, but the MSP430FR2111 integrates only
Timer_B. There is no difference between Timer_A and Timer_B for this software I2C application.

It is easy to generate START and STOP conditions with two GPIOs driving the lines high or low. When the
GPIO is set as input, the hardware pullup pulls the line high. When the GPIO is set as output, the GPIO
drives the line low. After a START condition, the master transfers the 7-bit address following by one R/W
bit and then detects the ACK signal. For bit 1, the SDA line is driven high. For bit 0, the SDA line is driven
low. 7 address bits are shifted out one by one. Only 7-bit address mode is supported in the provided code,
but users can change it to 10-bit address mode if needed. Write-in data transfer is similar to address
transfer that the master drives SDA line high or low for each bit. Read-out data transfer is different in that
the master listens to the SDA line and shifts bit 1 or 0 into thr receive data buffer. The number of transfer
bytes is controlled by the master.

3.1.2 Functions Description
The following functions are defined in the master I2C software code (fr2111_swi2c_master.c).

void SWI2C_initI2C(void)
This function initializes the software I2C master. It configures two selected GPIOs to output high on SDA
and SCL lines. For MSP430FR4x2x family MCUs, the GPIO power-on default high-impedance mode
should be disabled to activate configured GPIO settings. This function also initializes Timer CCR register
for SCL clock frequency setting.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA703A

Software I2C Implementation www.ti.com

4 SLAA703A–May 2016–Revised July 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Software I2C on MSP430™ MCUs

bool SWI2C_writeData(…)
This function performs write-in transaction. It sends out address and data to the slave. It also handles ACK
signal from the slave. If there is no ACK, it will stop the transaction. The parameters passed as arguments
are uint8_t addr, uint8_t *outputArray, uint_fast16_t size, and bool sendStop. Parameter addr is the slave
address. The pointer outputArray points to the memory location the data to be sent is stored. Parameter
size is the number of data bytes to be sent. Parameter sendStop controls whether to send out STOP
condition or not.

bool SWI2C_readData(…)
This function performs read-out transaction. It sends out address to the slave and receives data from the
slave. It not only detects ACK of the address but also sends out ACK for received data to the slave. The
parameters passed as arguments are uint8_t addr, uint8_t *inputArray, and uint_fast16_t size. Parameter
addr is the slave address. The pointer inputArray points to the memory location the received data is
stored. Parameter size is the number of data bytes to be received.

bool SWI2C_performI2CTransaction(…)
This function performs write-in transaction firstly and then performs read-out transaction. In this function,
SWI2C_writeData function and SWI2C_readData function are called as subfunctions. The parameter
passed as argument is SWI2C_I2CTransaction *i2cTransaction. SWI2C_I2CTransaction is the
configuration structure for performing an I2C transaction. This structure is used to pass parameters to
SWI2C_writeData and SWI2C_readData functions.

3.1.3 Software Example Code
This application report provides software example code for software master I2C in folder
FR2111_SW_I2C_Master of associated source. There are three files called
FR2111_SW_I2C_Master_main.c, fr2111_swi2c_master.c, and fr2111_swi2c_master.h.
fr2111_swi2c_master.c contains the functions discussed in previous paragraph. fr2111_swi2c_master.h
contains functions and structure declarations and pin definitions. User experience code can be added in
FR2111_SW_I2C_Master_main.c. In this example code, the master writes 5 data bytes into the slave and
then reads 5 data bytes from the slave. Slave address is 0x0A. Figure 3 shows the configuration structure.

Figure 3. Structure Configuration

To migrate this example code into other application code, the configuration structure must be modified to
set slave address and data length. Users also need set target I2C clock frequency which is controlled by
parameter SWI2C_TIMER_PERIOD in fr2111_swi2c_master.h. By changing the pin definitions, this
master I2C can be ported to any other GPIO. Besides pin definitions, the GPIO power-on default high-
impedance mode should be disabled to activate configured GPIO settings in MSP430FR4x2x MCUs. For
some MCUs that integrate only Timer_A, migration from Timer_B to Timer_A should be completed. If the
timer is already used for another function, thr real-time clock (RTC) counter can also be used to generate
I2C SCL clock. This software master I2C solution requires a small memory size (approximately 1KB FRAM
and 160 bytes SRAM) so that it can be easily migrated to other low-end MSP430 MCUs.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA703A

www.ti.com Software I2C Implementation

5SLAA703A–May 2016–Revised July 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Software I2C on MSP430™ MCUs

3.2 Slave I2C Software Implementation

3.2.1 Software Implementation
This application report implements the software slave I2C solution based on a state machine. I2C
transaction is divided into different states. Two GPIOs with interrupt capability are required to monitor the
SDA and SCL lines. In the provided software slave I2C example code, P1.0 pin is defined as the SCL pin,
and P2.0 pin is defined as the SDA pin. The state machine is managed in interrupt routines, and both port
1 and port 2 interrupt vectors are used.

When the master sends the address to the slave, the I2C ISR executes the corresponding sequence of
states to process the master write or read request. The same software routine is used to process both
addresses and write-in data sent by the master. A different sequence of states is used to response to read
command from the master. There are 14 states defined in the example code. Table 1 lists all the states
and the description of each state.

Table 1. State Description

State Triggering
Edge Description

I2C_START ↓ Enable SCL INT, set the rising edge trigger of SDA.
I2C_STOP ↑ Reinitialize GPIOs for START detection. Reset status for address detection.

SCL_W1LH ↑ The most-significant bit, bit 7, is detected and shifted into buffer. Enable SDA rising edge
INT, which enables STOP condition detection.

SCL_W1HL ↓ Disable SDA INT, which disables STOP condition detection.
SCL_W2to6LH ↑ Bit 6 to bit 2 for address and write-in data are shifted into buffer.

SCL_W7LH ↑ Bit 1 is shifted into the buffer and the address is compared.
SCL_W8LH ↑ Bit 0 detect; R/W bit detect; normal write-in data byte received.

SCL_W8HL ↓ Set SDA output for ACK. If a write command is received, record data in buffer. If a read
command is received, go to read-out data states.

SCL_W9HL ↓ Release SDA line.
SCL_R1HL ↓ Set the following SCL ISR trigger to be rising edge. Send out the first bit.

SCL_R1LH ↑

SDA rising edge INT is enabled, which enables the detection of a STOP condition. The
SDA INT is enabled until SCL sends out a falling edge. The state SCL_R2to8HL disables
the SDA INT and continues to read out data. This state provides an alternative way to stop
communication with ACK at the end.

SCL_R2to8HL ↓ Rotate one bit out of a data byte. Set the SDA output according to the bit.

SCL_R9HL ↓ Release control of SDA. Set the rising edge trigger of SCL, prepare for detection of the
ACK bit.

SCL_R9LH ↑

Detect the ACK/NACK bit. If ACK is received, falling edge of SCL is set. Next data is
loaded. If NACK is received, indicating the end of data reading, SCL triggering is set to
rising edge, and next state is set to SCL_W1LH, which enables detection of a STOP
condition

3.2.2 State Machine Description
Figure 4 shows the state machine of the software I2C slave. All states are handled in an interrupt routine.
In I2C_STOP state, the SDA and SCL pins are reinitialized to detect a START condition. At the end of a
write or read transaction, I2C_STOP is entered. If the received address does not match the slave address,
I2C_STOP is entered. Address is detected in SCL_W7LH state. State SCL_W8HL checks the R/W bit and
goes to the corresponding sequence of states for write or read transaction. SCL_W2to6LH and
SCL_R2to8HL are repeated states used to deal with similar bits of the data.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA703A

SCL_W9HL

START
Condition

STOP
Condition

STOP

Condition

Address
Mismatch

Addr/WR
Bit 2 to Bit 6

Address
Matched

Read CMD

Write
 CMD

Read
Bit 2 to Bit 8

NACK
Read

ACK Read SCL_R1HL

SCL_R2to8HL
SCL_W8HL

SCL_R9HL

I2C_START

I2C_STOP

SCL_W8LH

SCL_R1LH

SCL_W7LH

SCL_W2to6LH

SCL_W1HL

SCL_W1LH

SCL_R9LH

Software I2C Implementation www.ti.com

6 SLAA703A–May 2016–Revised July 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Software I2C on MSP430™ MCUs

Figure 4. Slave I2C State Machine

3.2.3 Software Example Code
The software slave I2C state machine is implemented with both C code and assembly code. It is easier to
migrate the C code into user application code, but assembly is more efficient and can achieve higher clock
frequency of the slave I2C. The C code is FR2111_SW_I2C_Slave.c in folder FR2111_SW_I2C_Slave.
The assembly code is FR2111_slave_i2c_isr.s43 in folder FR2111_SW_I2C_Slave _withAssemblyCode.
This assembly code is packaged as function INIT_I2C and called by the C code
FR2111_SW_I2C_Slave_withASMcode.c . This software slave I2C can receive data from master and send
out data to master. A 16-byte buffer is defined in the code for read and write transactions.

To migrate this example code into other application code, the macro definition I2COA must be modified to
set the slave address. Pin definitions SDA and SCL are used to select GPIOs for I2C function. In the
MSP430FR2111 MCU, P1.4, P1.5, P1.6, and P1.7 do not support interrupts, so these four pins cannot be
selected for slave I2C.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA703A

www.ti.com Testing Software I2C Master and Slave

7SLAA703A–May 2016–Revised July 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Software I2C on MSP430™ MCUs

In the software slave I2C example code, MCLK frequency is set at 8 MHz. With 8-MHz MCLK, software
slave I2C can achieve 100-kHz SCL clock frequency using assembly code and 43-kHz SCL clock
frequency using C code. Higher SCL clock frequency can be achieved with higher frequency MCLK. The
FRAM memory size for the C code and the assembly code is different. The C code is approximately
1.5KB of FRAM, while the assembly code is less than 1KB of FRAM. The SRAM size cost for both C code
and assembly code is approximately 180 bytes. Users can choose assembly code or C code based on
application requirements.

4 Testing Software I2C Master and Slave

4.1 Hardware Setup
To validate this software I2C solution, a hardware I2C device is required to communicate with the software
I2C device. This application report uses the MSP430FR2311IPW16, which integrates a hardware I2C
module, to communicate with MSP430FR2111IPW16. The test platform is based on two MSP-
TS430PW20 target socket boards, which support both MSP430FR2311 and MSP430FR2111. A logic
analyzer is used to measure I2C communication waveform. Figure 5 shows the test platform.

The MSP-TS430PW20 target socket board has two 10-kΩ pullup resisters (R7 and R15) for I2C
communication. To enable these two pullup resistors, set jumper JP16 to the I2C side instead of the UART
side. Figure 5 shows how to set jumpers JP17 and JP18. The MSP-TS430PW20 target socket board
supports both PW20 and PW16 packages. Set jumper J11 to the PW16 side, because PW16 package
MCUs are used. The two boards are connected by four wires: two wires for I2C pins and two wires for
power supply and ground pins. See the MSP430 Hardware Tools User’s Guide for MSP-TS430PW20
target socket board schematic and layout.

Figure 5. Test Platform

4.2 Software Setup
This application report provides both MSP430FR2111 software I2C codes and MSP430FR2311 hardware
I2C codes for test. There are five folders that contain I2C source codes for different MCUs in different I2C
modes. MSP430FR2111 code should be used with MSP430FR2311 code by pairs to include one I2C
master and one I2C slave.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA703A
http://www.ti.com/lit/pdf/SLAU278

Conclusion www.ti.com

8 SLAA703A–May 2016–Revised July 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Software I2C on MSP430™ MCUs

For the test of MSP430FR2111 software I2C master mode, code in FR2111_SW_I2C_Master folder and
FR2311_HW_I2C_Slave folder should be programmed into the target MCUs. Figure 6 shows the software
master I2C waveform measured by a logic analyzer. As shown in the waveform, MSP430FR2111 writes
five data into the slave with address 0x0A and then reads out five data from the slave.

Figure 6. Software Master I2C Waveform

For the test of MSP430FR2111 software I2C slave mode, users can choose C code in folder
FR2111_SW_I2C_Slave or assembly code in folder FR2111_SW_I2C_Slave _withAssemblyCode. Use
the MSP430FR2311 as the hardware master device. The hardware master code is in folder
FR2311_HW_I2C_Master. Figure 7 shows the software slave I2C waveform measured by the logic
analyzer. As shown in the waveform, MSP430FR2111 receives four data from the master and then sends
out five data to the master.

Figure 7. Software Slave I2C Waveform

The C code included with this application report compiles without issue on different IDEs such as Code
Composer Studio™ IDE and IAR Embedded Workbench® IDE. The provided assembly code supports only
IAR Embedded Workbench IDE.

5 Conclusion
This application report describes a method to implement software I2C master and slave functionality on an
MSP430FR2111 MCU. Both software I2C master and slave functionality are implemented using a small
amount of MCU resources. The software slave I2C uses only two GPIOs to emulate the SDA and SCL
lines. For software master I2C, just one timer is used to generate the I2C SCL clock in addition to the two
GPIOs. The provided code supports transactions on the I2C bus with an SCL clock frequency up to
100 kHz for software master and software slave when using an 8-MHz MCLK. Higher SCL clock
frequencies can be achieved with higher MCLK frequencies. The code size is approximately 1KB of FRAM
and less than 200 bytes of SRAM for both software master and software slave. Because of the small
resource cost, this software I2C solution can also be implemented on other low-end MSP430 MCUs.

6 References
1. MSP430FR4xx, MSP430FR2xx Family User's Guide
2. MSP430FR211x Mixed-Signal Microcontrollers
3. MSP430 Hardware Tools User's Guide
4. I2C-bus specification and user manual (http://www.nxp.com)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA703A
http://www.ti.com/lit/pdf/SLAU445
http://www.ti.com/lit/pdf/SLASE78
http://www.ti.com/lit/pdf/SLAU278
http://www.nxp.com

www.ti.com Revision History

9SLAA703A–May 2016–Revised July 2018
Submit Documentation Feedback

Copyright © 2016–2018, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from May 19, 2016 to July 2, 2018 .. Page

• Changes throughout document to describe both I2C master and slave implementation... 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA703A

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	Software I2C on MSP430™ MCUs
	1 Introduction
	2 I2C Theory of Operation
	2.1 I2C Overview
	2.2 I2C Protocol

	3 Software I2C Implementation
	3.1 Master I2C Software Implementation
	3.1.1 Software Implementation
	3.1.2 Functions Description
	3.1.3 Software Example Code

	3.2 Slave I2C Software Implementation
	3.2.1 Software Implementation
	3.2.2 State Machine Description
	3.2.3 Software Example Code

	4 Testing Software I2C Master and Slave
	4.1 Hardware Setup
	4.2 Software Setup

	5 Conclusion
	6 References

	Revision History
	Important Notice

