Programmable low-side current sink circuit

Garrett Satterfield

Design Goals

<table>
<thead>
<tr>
<th>VCC</th>
<th>DAC Output Voltage</th>
<th>Output Current</th>
<th>Error</th>
<th>Maximum Resistive Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>5V</td>
<td>0mV – 510mV</td>
<td>0mA – 100mA</td>
<td><0.25% FSR</td>
<td>44.9Ω</td>
</tr>
</tbody>
</table>

Design Description

The programmable low-side current sink sets the current through a load based on the DAC output voltage. The current is sensed through R_{SET} and the op amp biases a transistor regulate the current through the load. Components C_F, R_{ISO}, and R_{FB} provide compensation to ensure stability of the circuit.

Design Notes

1. Choose a DAC with low offset error, gain error, and drift. RRIO op amps should be used to reduce error near the rails and maximize resistive load drive. An op amp with low offset voltage should be chosen to minimize error.
2. Use a high-precision, low-drift resistor for R_{SET} for accurate current regulation.
3. R_{SET} should be minimized for efficiency and power dissipation. Most of the power dissipation should occur through R_{LOAD}.
4. To drive large R_{LOAD}, a separate high voltage supply may be used for driving the current to the load.
Design Steps

1. Calculate the R_{SET} value for the maximum DAC output voltage and desired maximum output current.
\[
R_{SET} = \frac{V_{DAC,\text{max}}}{I_{OUT,\text{max}}} = \frac{510\text{mV}}{100\text{mA}} = 5.1\Omega
\]

2. The maximum resistive load is given by:
\[
R_{LOAD,\text{max}} = \frac{V_{cc} - I_{SET,\text{max}} R_{SET}}{I_{SET,\text{max}}} = \frac{5V - 100\text{mA} \times 5.1}{100\text{mA}} = 44.9\Omega
\]

3. Ensure Q1 is rated for the power dissipation at maximum current.
\[
P_{\text{Diss,Q2}} = V_{cc} \times I_{SET,\text{max}} - I_{SET,\text{max}}^2 \times (R_{LOAD} + R_{SET}) = 5V \times 100\text{mA} - 100\text{mA}^2 \times (25\Omega + 5.1\Omega) = 0.2W
\]

4. The output error can be approximated based on DAC TUE, amplifier offset voltage, resistor tolerance, and reference initial accuracy using root sum square (RSS) analysis.
\[
\text{Output TUE(%FSR)} = \sqrt{TUE_{DAC}^2 + \left(\frac{V_{OS,\text{Amplifier}}}{FSR} \times 100\right)^2 + TOL_{\text{SET}}^2 + \text{Accuracy}_{\text{Ref}}^2} = \sqrt{0.1^2 + \left(\frac{0.3\text{mV}}{510\text{mV}} \times 100\right)^2 + 0.1^2 + 0.1^2} = 0.183\% \text{ FSR}
\]
AC Loop Gain Analysis

Gain (dB)

Phase [deg]

Phase margin: 63.77 at frequency (Hz): 6.30MEG

Gain (dB)

Phase [deg]

Frequency (Hz)

10 100 1k 10k 100k 1MEG 10MEG 100MEG

Phase margin: 63.77 at frequency (Hz): 6.30MEG
Devices

<table>
<thead>
<tr>
<th>Device</th>
<th>Key Features</th>
<th>Link</th>
<th>Other Possible Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>DACs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAC8830</td>
<td>16-bit resolution, single channel, ultra-low power, unbuffered output, 1 LSB INL, SPI, 2.7-V to 5.5-V supply</td>
<td>http://www.ti.com/product/DAC8830</td>
<td>http://www.ti.com/pdacs</td>
</tr>
<tr>
<td>Amplifiers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLV9061</td>
<td>Ultra-Small, 0.3-mV Offset, Rail-to-Rail I/O, 1.8-V to 5.5-V supply</td>
<td>http://www.ti.com/product/TLV9061</td>
<td>http://www.ti.com/opamps</td>
</tr>
</tbody>
</table>

Design References

See [Analog Engineer's Circuit Cookbooks](http://www.ti.com) for TI's comprehensive circuit library.

Links to Key Files

- **TI Precision Labs - Op Amps: Stability 6**

For direct support from TI Engineers use the E2E community

- e2e.ti.com

Other Links

- **Precision DAC Learning Center**
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated