ABSTRACT

Current and Voltage sense (IV sense) tracking is critical to the speaker protection algorithm in a smart audio amplifier. When IV Sense data is both accurate and responds linearly, then the speaker load resistance calculation will improve and allow the most power to be delivered into the speaker without damaging it. The speaker protection algorithm relies on this accurate sensing of current and voltage.

In order to characterize the electrical performance and ensuing accurate speaker protection algorithm can be built around the device, it is necessary to measure IV sense accuracy reliably and precisely. This article focuses on how to measure IVsense accuracy and linearity/gain error of pilot tone across audio signal power level and audio signal frequency using industry accepted instruments.

Table of Contents

Trademarks ... 1
1 Equipment Setup .. 2
2 Perform Measurements ..5
3 Linearity Calculations ...9
4 Summary ... 10
5 References ... 11

Trademarks

All other trademarks are the property of their respective owners.
1 Equipment Setup

Typically bench measurements are performed using Audio Precision Analyzers. In the case of the AP2700 family of analyzers, there will be a Programmable Serial Interface Adapter (PSIA) which is used to drive and receive I²S data. When monitoring the Class-D outputs of audio amplifiers, it is also necessary to use a filter to assist the analyzer by resolving the output switching waveform.

When selecting a load, it is critical to use a resistor capable of easily handling the full-scale output voltage of the amplifier. Any changes in nominal resistance due to heating will reduce measurement accuracy. Additionally, wires used to connect the load need to be selected to minimize resistive losses at high output power.

Please refer to Figure 1-1 for a typical hardware setup:

![Figure 1-1. Typical Hardware Setup](image)

After connecting the AP analyzer as shown above, configure the analyzer software to use the following settings:
Once the analyzer is setup, configure the amplifier to generate IV sense data. This requires you to enable IV sense and then configure the I²S outputs to transmit both Isense and Vsense data. This can be easily done using the Pure Path Console 3 software associated with the EVM.

![Enable V-Sense and I-Sense](Enable_IV_Sense.png)

Figure 1-3. Enable IV Sense Functions - Pure Path Console 3
<table>
<thead>
<tr>
<th>Channel 1</th>
<th>Slot</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-Sense Transmit</td>
<td>0, 1</td>
</tr>
<tr>
<td>V-Sense Transmit</td>
<td>4, 5</td>
</tr>
</tbody>
</table>

Figure 1-4. Transmit IV Sense Data - Pure Path Console 3
2 Perform Measurements

It is critical to the reliability of this test that the load resistance be a known calibrated value. It is best to measure this using a 4-wire connection for the most accurate value. Several calculations will depend on the accuracy of this value.

The test will proceed in a stepwise manner across output power. At each power level of concern, the following data should be recorded:

\[
\begin{align*}
V_R &= \text{Voltage across the Resistor Only (CH B)} \\
V_L &= \text{Voltage across the complete R+L Load (CH A)} \\
V_{\text{dig}} &= \text{Voltage Sense Digital Value (CH B)} \\
I_{\text{dig}} &= \text{Current Sense Digital Value (CH A)} \\
R &= \text{Calibrated Resistance}
\end{align*}
\]

Measuring both Voltages and Digital inputs require changing the AP Input source between the HiRes A/D Converter and the Digital inputs.
Audio Signal Frequency
Pilot Tone Frequency
Ratio which sets Pilot tone Amplitude relative to Primary tone amplitude
Measure V_R here
Bandpass fixed at Pilot tone Frequency
Measure V_L here

Figure 2-1. Measuring Analog Voltages - Use HiRes A/D
Proceed to capture each of the above values, step the output power to the next amplitude, and repeat until the full output range under test is captured. However, in this configuration, the pilot tone amplitude is a scalar ratio of the fundamental. You only want to increase the magnitude of the fundamental, so this ratio will require adjustment at each step. Setting the ratio and the amplitude in units of dB will allow for easy adjustments. As long as the sum of the ratio and amplitude is kept constant, the pilot tone amplitude should remain fixed.

Once data collection is complete, you can perform calculations for each output level to determine accuracy.
It is necessary to determine the full scale voltage and current values from the data sheet of the amplifier being used. For example, you can pull this information for TAS2562 in Figure 2-3:

\[V_{FS} = \text{Full Scale Voltage} \]
\[I_{FS} = \text{Full Scale Current} \]
\[I_{actual} = \frac{V_R}{R}
\]
\[\frac{V_{\text{dig}}}{2} = \frac{I_{\text{dig}}}{2} \]
\[\text{Accuracy (\%)} = \frac{(V_S - V_L) \times 100}{V_L} \]
\[\frac{(I_S - I_{\text{actual}}) \times 100}{I_{\text{actual}}} \]

CURRENT SENSE

<table>
<thead>
<tr>
<th>DNR</th>
<th>Dynamic range</th>
<th>Un-Weighted, Relative to 0 dBFS</th>
<th>69</th>
<th>dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD+N</td>
<td>Total harmonic distortion + noise</td>
<td>(R_L = 8 \Omega + 33 \mu H, f_n = 1 \text{kHz}, P_{OUT} = 1 \text{W})</td>
<td>-56</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>(R_L = 4 \Omega + 33 \mu H, f_n = 1 \text{kHz}, P_{OUT} = 1 \text{W})</td>
<td>-57</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Full-scale input current</td>
<td>2.0</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current-sense accuracy</td>
<td>(R_L = 8 \Omega + 33 \mu H, I_{OUT} = 354 \text{mA}{RMS}) (P{OUT} = 1 \text{W})</td>
<td>(\pm 1)</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Current-sense gain error over temperature</td>
<td>0°C to 70°C, 8 \Omega, using a 60Hz -40dB pilot tone</td>
<td>(\pm 1)</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Current-sense gain error over output power</td>
<td>50mW to 0.1% THD+N level, (f_n = 1 \text{kHz}, 8 \Omega,) using a 60Hz -40dB pilot tone</td>
<td>(\pm 1.5)</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>LPF passband corner</td>
<td>(f_s = 8 \text{kHz}) to 48 kHz</td>
<td>0.417</td>
<td>fs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(f_s = 96 \text{kHz})</td>
<td>0.208</td>
<td>fs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(f_s = 192 \text{kHz})</td>
<td>0.104</td>
<td>fs</td>
</tr>
<tr>
<td></td>
<td>LPF passband ripple</td>
<td>-0.05</td>
<td>0.05</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>LPF stopband attenuation</td>
<td>0.55 fs</td>
<td>60</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>LPF group delay</td>
<td>DC to 0.417 fs</td>
<td>5.7</td>
<td>1/fs</td>
</tr>
</tbody>
</table>

VOLTAGE SENSE

<table>
<thead>
<tr>
<th>DNR</th>
<th>Dynamic range</th>
<th>Un-Weighted, Relative to 0 dBFS</th>
<th>69</th>
<th>dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD+N</td>
<td>Total harmonic distortion + noise</td>
<td>(R_L = 8 \Omega + 33 \mu H, f_n = 1 \text{kHz}, P_{OUT} = 1 \text{W})</td>
<td>-60</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>(R_L = 4 \Omega + 33 \mu H, f_n = 1 \text{kHz}, P_{OUT} = 1 \text{W})</td>
<td>-60</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Full-scale input voltage</td>
<td>14</td>
<td>(V_{FS})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voltage-sense accuracy</td>
<td>(R_L = 8 \Omega + 33 \mu H, I_{OUT} = 354 \text{mA}{RMS}) (P{OUT} = 1 \text{W})</td>
<td>(\pm 0.5%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voltage-sense gain error over temperature</td>
<td>0°C to 70°C, 8 \Omega, using a 60Hz -40dB pilot tone</td>
<td>(\pm 0.5%)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2-3. TAS2562 Full Scale Values
3 Linearity Calculations

Linearity, or Gain Error, can be easily calculated for each accuracy measurement in Section 2. To do this, a reference value should be selected from the set of data. It is typical to use the condition of 1 W, 1 kHz, and 25°C. Linearity for each data point is then the difference from its respective reference value.

\[
\text{Linearity} = \text{Accuracy} - \text{Ref}
\]

\[
\text{Linearity} = \text{Accuracy} - \text{Ref}
\]

\[
\text{Load Linearity} = \text{Load Accuracy} - \text{Load Ref}
\]

These values can then be plotted to show the changes in accuracy relative to the reference for each calculation. Fixed offsets to this data can be calculated out easily, but it is most desirable to see this line be flat and centered at zero for the best speaker protection performance. Figure 3-1 sample plot.

![Figure 3-1. Sample Plot](image-url)
4 Summary

The test flow for evaluating IV Sense linearity and accuracy is a typical part of the design validation and characterization. It is helpful to know the overall expected accuracy. Many devices available from TI.com such as TAS2562, TAS2563, TAS2564, and TAS2770 are able to meet 1% accuracy or better across power and temperature. This allows the SmartAmp algorithm to provide superior speaker protection while maximizing output power into small speakers.
5 References

- TAS2562 Digital Input Mono Class-D Audio Amplifier with Speaker IV Sense Data Sheet
- TAS2563 6.1-W Boosted Class-D Audio Amplifier with Integrated DSP and IV Sense Data Sheet
- TAS2564 7-W Boosted Class-D Audio Amplifier with <10 μV Noise and IV Sense Data Sheet
- TAS2770 20-W Digital Input Mono Class-D Audio Amplifier with Speaker IV Sense Data Sheet
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.