
Application Note
MSPM0 Live Firmware Update (LFU) Bootloader
Implementation

Gary Gao and Luke Chen

ABSTRACT

This application note provides a method to do the firmware update without suspend the application code. It is
based on MSPM0G3507 and using FreeRTOS to do the tasks handling. It also provides a PC GUI as the host
and can help to generate using files for this demo.

Project collateral and source code discussed in this document can be downloaded using this URL: https://
www.ti.com/lit/zip/slaaec9.

Table of Contents
1 Introduction...2
2 LFU Bootloader Features Overview..2
3 Hardware and Software Setup ..2

3.1 Hardware Requirement.. 2
3.2 Software Setup...2

4 LFU Bootloader Implementation .. 3
4.1 LFU Bootloader and Application Projects.. 3
4.2 Memory Allocation..3
4.3 LFU Bootloader Implemented.. 4
4.4 LFU Application Code Implementation...5
4.5 Invoke Firmware Upgrade Process..5

5 Host GUI Tool Introduction.. 5
5.1 LFU Firmware Update..6
5.2 Application Project Link Files Generation.. 6
5.3 Non-Main Flash Configuration Firmware Generation...7

6 LFU Bootloader Protocol .. 10
6.1 Packet Format and Core Commands...10
6.2 Special Commands in LFU Bootloader.. 10
6.3 Host Device Firmware Upgrade Flow...11

7 Migration to Other MSPM0 Devices.. 12
8 References.. 12

List of Figures
Figure 4-1. Memory Arrangement..3
Figure 4-2. Bootloader Code Progress Diagram... 4
Figure 5-1. Steps to Update Firmware With the GUI... 6
Figure 5-2. Steps to Generate Link Files With the GUI... 7
Figure 5-3. Steps to Modify Password With the GUI... 8
Figure 5-4. Board Detected by the Uniflash...8
Figure 5-5. Change Erase Method.. 9
Figure 5-6. Download Non-Main Flash Firmware.. 9
Figure 5-7. Verify the Firmware in the Memory Readback.. 9
Figure 6-1. LFU Host Operation Flow.. 11
Figure 6-2. Unaligned Firmware...11
Figure 6-3. Aligned Firmware...11

www.ti.com Table of Contents

SLAAEC9 – JULY 2023
Submit Document Feedback

MSPM0 Live Firmware Update (LFU) Bootloader Implementation 1

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com/lit/zip/slaaec9
https://www.ti.com/lit/zip/slaaec9
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEC9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEC9&partnum=

List of Tables
Table 4-1. Projects Needed in This Demo... 3
Table 4-2. The Tasks in LFU Bootloader..4
Table 6-1. LFU BSL Core Commands... 10
Table 6-2. LFU BSL Special Commands... 10
Table 6-3. Application State Flags... 10

Trademarks
FreeRTOS™ is a trademark of Benchmarq.
Code Composer Studio™ is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.

1 Introduction
MSPM0 devices support ROM-based BSL (Boot-Strap Loader), flash-based bootloader and plug-in interface that
can be used for firmware upgrade. However, these bootloaders will occupy CPU during the firmware upgrade
period of time, means that the executing application code is suspended until the firmware upgrade process is
completed.

In some applications, suspending application code during firmware upgrade process is not allowed. This
application report provides a method not suspend the application code during firmware upgrade period. When
firmware upgrade process is completed, power cycle the device and newer version of firmware will be executed.

2 LFU Bootloader Features Overview
Key features of the LFU Bootloader include:

• Communicates with Host via universal asynchronous receiver/transmitter (UART) port
• FreeRTOS™-based software example
• Software BSL invoke
• Password protection enabled
• Easy to use Windows Host GUI
• Automatic linker and header files generation, easy to migrate to other MSPM0 devices
• Non-main flash modification solution provided
• The code size of this bootloader is less than 16 KB in size.

3 Hardware and Software Setup

3.1 Hardware Requirement
• LP-MSPM0G3507 Launchpad
• PC with windows
• Miro USB type cable

3.2 Software Setup
• Code Composer Studio™ (CCS) 12.3 or later
• Uniflash 8.3 or later
• MSPM0 SDK

UART Interface setting

• Baud rate 9600 bps
• Data width - 8 bit
• One stop bit
• No parity

Trademarks www.ti.com

2 MSPM0 Live Firmware Update (LFU) Bootloader Implementation SLAAEC9 – JULY 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEC9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEC9&partnum=

4 LFU Bootloader Implementation

4.1 LFU Bootloader and Application Projects
In this application note, three projects are used as described in Table 4-1.

Table 4-1. Projects Needed in This Demo
CCS Projects Description
LFU Bootloader This is a FreeRTOS based bootloader software and is around 16 KB in size, it is allocated to

the starting address of main Flash memory.
On a new device, this bootloader needs to be programmed via SWD interface first before
starting firmware upgrade process.

Application code 1 This is application code 1 for firmware upgrade demo, it uses application space 1 (0x04000 -
0x11FFF) for function.

Application code 2 This is application code 2 for firmware upgrade demo, it uses application space 2 (0x12000 -
0x1FFFF) for function.

4.2 Memory Allocation
The main Flash memory is divided into three parts:

LFU bootloader:

The first 16 KB (0x0000 - 0x3FFF) of main flash memory is reserved for LFU bootloader, the other main flash
space is assigned to application code.

Application code:

This memory space is divided into application space 1 and application space 2, only one version of application
code is executed, the other application code space is used for new firmware upgrade purpose.

The first 4 KB (0x2020000 - 0x20200FFF) of RAM space is reserved for bootloader and the other memory space
can be used for application code.

1
2
8
 K

 M
a

in
 F

la
s
h

0x0000

0x4000

0x12000

0x20000

Bootloader

Size:0x4000

Application 1

0xE000

Application 2

0xE000

3
2
 K

 R
A

M

0x20200000

0x20201000

0x20208000

Bootloader

Size:0x1000

Application 1/2

0x7000

Figure 4-1. Memory Arrangement

www.ti.com LFU Bootloader Implementation

SLAAEC9 – JULY 2023
Submit Document Feedback

MSPM0 Live Firmware Update (LFU) Bootloader Implementation 3

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEC9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEC9&partnum=

4.3 LFU Bootloader Implemented
One task switch management tool is needed so that the application code keeps executing during firmware
upgrade process. In this application note, FreeRTOS is used to handle this job and create four tasks for this
demo.

Table 4-2. The Tasks in LFU Bootloader
Tasks Name Priority Description
Bootloader Task 2 Task to handle firmware upgrade. This task is suspended if

application code is executing.

LED0 Toggle Task 1 Task to toggle LED every 500ms, this is used to show that
FreeRTOS is working without problems.

Application task 1 Task to execute application code.

Idle 0 Default task when no any other task is pending for execution.

On a new device, the bootloader firmware needs to be programmed via SWD interface first, so that bootloader
communicates with the host (PC GUI or the host MCU) and update the application code. The application code
can also be programmed along with bootloader firmware via SWD.

When the device boots up and there is no application code, the bootloader waits for the firmware upgrade
command from the host.

Figure 4-2 illustrates the bootloader flow diagram.

Start

Hardware initilization

Tasks Created

Start Sceheduler

Start

Create Bootloader task

Create a queue

Create LED0 Toggle task

Create App1 task Create App2 task

Check witch App is exist
App1 exist

App2 exist

END

No App exist

Start

Wait for Quene massage

send from UART ISR

No massage

Package the data

Get massage

Whole package received

Deal with the commend in the

package

Yes

No

Figure 4-2. Bootloader Code Progress Diagram

The bootloader supports below commands. For detailed information, see Section 6.

• CMD_UNLOCK_BSL
• CMD_FLASH_RANGE_ERASE
• CMD_PROGRAM_DATA
• CMD_START_APPLICATION

LFU Bootloader Implementation www.ti.com

4 MSPM0 Live Firmware Update (LFU) Bootloader Implementation SLAAEC9 – JULY 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEC9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEC9&partnum=

4.4 LFU Application Code Implementation
There are two application projects: the application code 1 and application code 2 in different flash areas. These
two projects toggle different LED. The application code can be called by the FreeRTOS in bootloader as a task
thread. You must use the delay function defined in FreeRTOS for time delay purpose in the application code.
In this demo example, the bootloader project put the FreeRTOS delay function's start address at fixed flash
address 0x3FF0 to approximately 0x3FFF that is called shared area, the application project code can just to call
the delay function just pick the start address in the shared area.

4.4.1 The Linker Command File for Application

Linker command file is used by linker during the project building process, the PC GUI tool can automatic
generate this file, no need to take care of this linker command file for the projects.

4.4.2 Peripheral and Interrupt Initialization

The bootloader initializes some modules like clock module, UART0 and power modules. It is recommended not
to reinitialize those modules already initialized by bootloader, otherwise, the settings by bootloader could lost.

The below function is used to register interrupt. It copies the interrupt table to SRAM and modify the ISR start
address based on the input parameters.

void DL_Interrupt_registerInterrupt(uint32_t exceptionNumber, void (*intHandler)(void));

4.4.3 Debug for Application Project

The application projects cannot be downloaded and executed by CCS directly due to below reasons:

• The interrupt vector table in generated linker command (cmd) file is not assigned to default address 0x0000
for device bootup.

• No device module initialization function in application projects.
• No FreeRTOS delay function can be used in the flash shared area.

Here is the recommended workaround to debug application projects.

• Use the default cmd file in the SDK examples that interrupt vector table is assigned to address 0x0000 for
bootup.

• Use sysconfig tool to generate peripheral initialization code for application projects.
• Replace FreeRTOS delay function with the function delay_cycles(); that is defined in SDK.

4.5 Invoke Firmware Upgrade Process
There are two cases when you want to start firmware upgrade process:

• If there is only bootloader code executed in the device, the bootloader task waits for the firmware upgrade
command from host, so no extra action is required before starting firmware upgrade process in this case.

• If there are both bootloader and application code executed in the device, the bootloader task is suspended
when application code is executed. In this case, you need to force bootloader task status from suspend to
active before starting firmware upgrade process, you can send one byte invoke command 0xAA via UART to
achieve this goal.

5 Host GUI Tool Introduction
The host can be one MCU, processor or PC that sending the commands via UART port. For detailed host
commands information, see Section 6.

In this demo, use the on-board emulator XDS110 to handle the USB to UART function, so that you can use
the PC as the host and send UART commands via USB port. The Python created PC GUI tool is used to send
UART commands, there are three functions of this GUI tool.

• LFU firmware grade.
• Application project linker command file generation.
• Non-main flash configuration firmware generation.

www.ti.com LFU Bootloader Implementation

SLAAEC9 – JULY 2023
Submit Document Feedback

MSPM0 Live Firmware Update (LFU) Bootloader Implementation 5

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEC9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEC9&partnum=

5.1 LFU Firmware Update
Confirm the items below before starting LFU firmware upgrade process:

• Make sure bootloader firmware already programmed into device via SWD interface.
• Build application project and generate the .txt file needed for firmware upgrade. Suggest generating both

application code 1 and application code 2 for evaluation purpose.
• Prepare .txt format BSL password file.

Now you can launch PC GUI tool by double-click the file MSPM0_LFU_BSL_GUI.exe at the folder “…\MSPM0
LFU Bootloader Implementation v1.1\BSL_GUI_EXE”. The following steps describe how to perform firmware
upgrade process:

1. Check application code status, which application code is executed or no application code in the device.
2. Select application code for firmware upgrade evaluation.

a. If no application code in the device, you can select either application code 1 or application code 2 for
firmware upgrade.

b. If application code 1 is executed in the device, select application code 2 for firmware upgrade.
c. If application code 2 is executed in the device, select application code 1 for firmware upgrade.

3. Choose a password file based on the format of the default one in the input folder.
4. Click the download button to do the firmware update.

Figure 5-1. Steps to Update Firmware With the GUI

5.2 Application Project Link Files Generation
If you would like to migrate this example project to any other MSPM0 devices, you need a different linker
command file of application code for the specific device. The GUI tool can do this, automatic generate the cmd
files according to the MSPM0 part number you input. Use MSPM0G3507 as an example and follow the steps
below to generate the needed files:

1. In GUI tool, click the More Option menu and select the option - create linker files.
2. Enter MSPM0 part number, for example MSPM0G3507.
3. Select one folder to save the generated files.
4. Click the Generate button to generate the files.

Host GUI Tool Introduction www.ti.com

6 MSPM0 Live Firmware Update (LFU) Bootloader Implementation SLAAEC9 – JULY 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEC9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEC9&partnum=

Figure 5-2. Steps to Generate Link Files With the GUI
5. The following three files are generated:

a. mspm0g3507_App1.cmd, this is the cmd file for application code 1.
b. mspm0g3507_App2.cmd, this is the cmd file for application code 2.
c. device.h, this is the needed file for bootloader and both application codes.

5.3 Non-Main Flash Configuration Firmware Generation
The NONMAIN is a dedicated region of flash memory which stores the configuration data used by the BCR(boot
configuration routine) and BSL to boot the device. The password used in this example project can also be used
for BSL, if you want to change the password, you need to modify NONMAIN flash configuration.

The GUI tool supports not only BSL password modification, but also all the NONMAIN flash configuration
options.

5.3.1 Steps to Generate the Non-Main Flash Configuration Firmware

Below are the steps to modify the password with the GUI:

1. Click the More Option menu and select the option - Create non-main flash txt firmware.
2. Click change button if need change to other device family.
3. Click the BSLPW button.
4. Enter your new BSL password.
5. Click the OK button to save your new password, then close this dialog window.
6. Enter your new version number for this modification.
7. Click the Generate button and generate NONMAIN flash configuration data and password file.

www.ti.com Host GUI Tool Introduction

SLAAEC9 – JULY 2023
Submit Document Feedback

MSPM0 Live Firmware Update (LFU) Bootloader Implementation 7

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEC9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEC9&partnum=

Figure 5-3. Steps to Modify Password With the GUI

There are two generated files saved at the default output folder as follows:

• Non_main_flash_firmware_v1.txt
• BSL_Password_v1.txt

You can use UNIFLASH tool to program the Non_main_flash_firmware_v1.txt into device via SWD interface,
configure the NONMAIN flash region. The BSL_Passward_v1.txt file is used for GUI tool firmware upgrade
process.

5.3.2 UNIFLASH Tool to Program the NONMAIN Flash Configuration Data

1. Connect LP-MSPM0G3507 to PC and launch UNIFLASH tool.
2. Manually select the EVM or leave UNIFLASH to detect the part number automatically.

Figure 5-4. Board Detected by the Uniflash

Host GUI Tool Introduction www.ti.com

8 MSPM0 Live Firmware Update (LFU) Bootloader Implementation SLAAEC9 – JULY 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEC9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEC9&partnum=

3. Select Settings and Utilities option, then check Erase main and non-main memory.

Figure 5-5. Change Erase Method
4. Select Program option, browse the generated file Non_main_flash_firmware_v1.txt and then click Load

Image button.(If enabled the static flash protection, recommend to add the images need to download the
area that be static protected).

Figure 5-6. Download Non-Main Flash Firmware
5. Select Memory option, enter 0x41C00000 in Address field and read the data from device, check whether or

not you successfully programmed the new configuration data.

Figure 5-7. Verify the Firmware in the Memory Readback

www.ti.com Host GUI Tool Introduction

SLAAEC9 – JULY 2023
Submit Document Feedback

MSPM0 Live Firmware Update (LFU) Bootloader Implementation 9

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEC9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEC9&partnum=

6 LFU Bootloader Protocol
This section discusses bootloader protocol, how to uses UART commands and completes the firmware upgrade
process.

6.1 Packet Format and Core Commands
The packet format of LFU bootloader is identical with ROM-based BSL. For more details, see the MSPM0
Bootloader User's Guide. LFU bootloader supports the core commands listed in Table 6-1.

Table 6-1. LFU BSL Core Commands
LFU BSL Command Protected CMD Start Address Data(bytes) Core Response
CMD Unlock Bootloader No 0x21 - D1…D32(Password) Yes

CMD Flash Range Erase Yes 0x23 A1...A4 A1...A4 (End address) Yes

CMD Program Data Yes 0x20 A1...A4 D1…Dn Yes

CMD Start application No 0x40 - - No

6.2 Special Commands in LFU Bootloader
There are some special commands different from the ROM-based BSL commands, they are one-byte
commands and are listed in Table 6-2.

Table 6-2. LFU BSL Special Commands
LFU BSL Special Commands Packet Response (package format)
Get App state 0x55 Yes (8 bytes: 0x51 + app state flag (1 byte) + app1 area start

address (3 bytes) + app2 area start address (3 bytes))

Resume bootloader task 0xAA Yes (1 byte: 0xBB)

• Get App state command:

This command is used to get the application code execution status, to see if application code 1 or application
code 2 is executed, or no application code in the device. Table 6-3 describes the application state flags.

Table 6-3. Application State Flags
Variable Value Description

App state flag 0 No application running

1 App1(application in app1 area) is running

2 App2(application in app2 area) is running

This command also returns the start address of application space 1 and space 2. This information can be
used to do system integrity verification before starting firmware upgrade process

• Resume bootloader task command:

Bootloader task is suspended when device is executing application code, this command is used to force
bootloader task back to active status before starting firmware upgrade process.

LFU Bootloader Protocol www.ti.com

10 MSPM0 Live Firmware Update (LFU) Bootloader Implementation SLAAEC9 – JULY 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/slau887
https://www.ti.com/lit/pdf/slau887
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEC9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEC9&partnum=

6.3 Host Device Firmware Upgrade Flow

Start

Send 0x55 to check

app state

Send 0x11 to check

bootlaoder state

Get ACK value 0x51?
Send 0xAA to resume

Bootloader task
No

Send BSL password

Erase flash area that need to

be downloaded

Send new application

frimware

Start new application code

End

Yes

Figure 6-1. LFU Host Operation Flow

Below are two steps need to be performed before starting firmware upgrade process:

1. Send one-byte command 0x55 to check application code execution status, so that you know which
application code need to be upgraded.

2. Send one-byte command 0x11 to check bootloader status, if device responds 0x51, means that bootloader is
in active status and is ready for firmware upgrade. Otherwise, you need to send one-byte command 0xAA to
force bootloader from suspend to active status first.

When you are sure bootloader is in active status, send the password to unlock the device first, then erase the
needed flash space and program new application code.

Here are tips to send the application code.

• Make sure the application code .txt file is 16-byte aligned. The host software is responsible to fill unused
space with dummy data bytes, make sure the .txt file is 16-byte aligned, see Figure 6-2 and Figure 6-3.

Figure 6-2. Unaligned Firmware

Figure 6-3. Aligned Firmware
• Send the first line (first 16 bytes in the firmware) of the new application’s firmware in the end. This is to avoid

the case an uncompleted firmware be executed unexpected. For current bootloader just to check if the first 8
bytes are all 0xFF to check if the application firmware exist, it will not check if the firmware to be completed.
If you send the first line of the firmware in the end, that makes sure that the whole firmware has been sent
successfully.

After programming new application code, send the command CMD start application to execute new application
code.

www.ti.com LFU Bootloader Protocol

SLAAEC9 – JULY 2023
Submit Document Feedback

MSPM0 Live Firmware Update (LFU) Bootloader Implementation 11

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEC9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEC9&partnum=

7 Migration to Other MSPM0 Devices
To migration the demos to other devices, both bootloader projects and application projects need to be modified.
The GUI in this demo can help to generate the linker files and device.h header file for application and
bootloader projects. Besides that, the low level peripheral configuration (ti_msp_dl_config.c and .h files) and
the communication interface (uart.c and .h files) need to be modified based on the specific device.

8 References
• Texas Instruments: MSPM0 Bootloader User's Guide
• MSPM0 G-Series 80-MHz Microcontrollers Technical Reference Manual
• Texas Instruments: MSPM0 Bootloader (BSL) Host Implementation

Migration to Other MSPM0 Devices www.ti.com

12 MSPM0 Live Firmware Update (LFU) Bootloader Implementation SLAAEC9 – JULY 2023
Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLAU887
https://www.ti.com/lit/pdf/SLAU846
https://www.ti.com/lit/pdf/slaae88
https://www.ti.com
https://www.ti.com/lit/pdf/SLAAEC9
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAAEC9&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Introduction
	2 LFU Bootloader Features Overview
	3 Hardware and Software Setup
	3.1 Hardware Requirement
	3.2 Software Setup

	4 LFU Bootloader Implementation
	4.1 LFU Bootloader and Application Projects
	4.2 Memory Allocation
	4.3 LFU Bootloader Implemented
	4.4 LFU Application Code Implementation
	4.4.1 The Linker Command File for Application
	4.4.2 Peripheral and Interrupt Initialization
	4.4.3 Debug for Application Project

	4.5 Invoke Firmware Upgrade Process

	5 Host GUI Tool Introduction
	5.1 LFU Firmware Update
	5.2 Application Project Link Files Generation
	5.3 Non-Main Flash Configuration Firmware Generation
	5.3.1 Steps to Generate the Non-Main Flash Configuration Firmware
	5.3.2 UNIFLASH Tool to Program the NONMAIN Flash Configuration Data

	6 LFU Bootloader Protocol
	6.1 Packet Format and Core Commands
	6.2 Special Commands in LFU Bootloader
	6.3 Host Device Firmware Upgrade Flow

	7 Migration to Other MSPM0 Devices
	8 References

