
Application Report
SLOA213–December 2014

MIFARE DESFire EV1 AES Authentication With TRF7970A

Ralph Jacobi and Josh Wyatt.............................................. Safety and Security (S2) NFC/RFID Applications

ABSTRACT
MIFARE® DESFire® EV1 is an ISO14443A RFID transponder and an NFC Type 4A Tag Platform that is
used in many NFC and RFID security applications due to the ability it has to operate in the clear or
operate as a secure transponder using any one of three different types of encryption: Single DES, Triple
DES, or AES.

In general, AES is viewed as the most secure level of encryption of the methods listed above, and
therefore TI has developed a software library for demonstrating the use of AES encryption in RFID
applications.

Using this library along with an MSP430G2553 LaunchPad™ Development Kit combined with a
DLP‑7970ABP BoosterPack™ Plug-in Module, TI can now provide a demonstration of a cost-effective
reader system solution for AES authentication applications that use MIFARE DESFire EV1 tags. Common
application examples are digital door locks, access control, closed- or open-loop authentication systems,
and prepayment or micropayment systems.

Sample code described in this document can be downloaded from http://www.ti.com/lit/zip/sloa213.

LaunchPad, BoosterPack are trademarks of Texas Instruments.
MIFARE, DESFire are registered trademarks of NXP Semiconductors.
All other trademarks are the property of their respective owners.

1SLOA213–December 2014 MIFARE DESFire EV1 AES Authentication With TRF7970A
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com/lit/zip/sloa213
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLOA213


www.ti.com

Contents
1 Introduction ................................................................................................................... 3
2 Near Field Communication/Radio Frequency Identification (NFC/RFID)............................................. 3
3 AES Authentication .......................................................................................................... 6
4 Hardware Description ....................................................................................................... 8
5 MIFARE DESFire EV1 AES Authentication Firmware .................................................................. 8
6 AES Authentication Demonstration ...................................................................................... 16
7 Conclusion .................................................................................................................. 19
8 References .................................................................................................................. 19

List of Figures

1 Communication Structure................................................................................................... 3
2 ISO 14443 Type A Anticollision ............................................................................................ 4
3 Frame Format for Data Exchange Commands Using DESFire APDUs .............................................. 5
4 AES Authentication Communication Sequence ......................................................................... 7
5 MSP430G2553 LaunchPad and DLP-7970ABP BoosterPack......................................................... 8
6 Software Flowchart for TI's AES Authentication Example Code ...................................................... 9
7 MSP430G2553 LaunchPad ............................................................................................... 17
8 Hardware Configuration ................................................................................................... 18

List of Tables

1 DESFire Commands ........................................................................................................ 5
2 AES Code Benchmarks..................................................................................................... 7
3 Overall Memory Use ....................................................................................................... 16
4 Flash Memory Use ......................................................................................................... 16
5 RAM Memory Use.......................................................................................................... 16
6 TRF7970ABP + MSP430G2553 LaunchPad Hardware Connection ................................................ 16

2 MIFARE DESFire EV1 AES Authentication With TRF7970A SLOA213–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLOA213


www.ti.com Introduction

1 Introduction
The MIFARE DESFire EV1 (MFDFEV1) tags are ISO14443A transponders / NFC Type 4A Tag Platforms.
They can function with three different modes of encryption: Single DES (DES), Triple DES (3DES), and
Advanced Encryption Standard (AES). The 3DES method can use one, two, or three keys as well (3DES,
2K3DES, and 3KDES respectively).

Since AES has is viewed to have superior safety and security due to its encryption method, this report will
cover how to implement an AES authentication process for MFDFEV1 tags. The provided firmware will not
support the authentication of a MFDFEV1 tag that is not functioning in AES mode. Any such tags would
need to be personalized and placed into AES mode to be used for this specific design.

2 Near Field Communication/Radio Frequency Identification (NFC/RFID)
To communicate over the air with any MIFARE DESFire EV1 tags, an NFC or RFID transceiver module is
required. All NFC/RFID communication from the reader to the tag occurs at a frequency of 13.56 MHz.

The MFDFEV1 tags follow the ISO14443A standard, which specifies how to go through the tag detection,
anticollision, and selection processes for such tags. Figure 1 shows the basic flow of the example
firmware.

Figure 1. Communication Structure

The tag detection and anticollision processes (layer 3) are handled according to the ISO/IEC 14443-3
standard, and the selection process (layer 4) is handled according to the ISO/IEC 14443-4 standard.
When the selection process is completed, the data is exchanged between the NFC Reader using the
frame format defined in the ISO/IEC 14443-4 standard, using commands from ISO/IEC 7816-4 or the
DESFire APDU frame format.

2.1 TRF7970A Reader Mode
The TRF7970A can be used as an NFC Reader for bitrates of 106 kbps (fc/128), 212 kbps (fc/64),
424 kbps (fc/32), and 848 kbps (fc/16). When the transceiver is in default mode [which is ISO mode (see
the TRF7970A data sheet Section 5.9.6 Direct Mode for more information)] only the decoded data is
available to the MCU, and it can be accessed through the FIFO.

Because the TRF7970A supports higher bitrates as a Reader, and the MFDFEV1 tags all support those
higher bitrates as well, it is important to understand that as the bitrate speeds increase, the read range for
the tag decreases. To maximize the range at which a MFDFEV1 tag can be read, it is recommended to
leave the bitrate at 106 kbps, which is done in this application. If the use of a higher bitrate is desired, then
it must be set through the use of the PPS command during the selection process.

2.2 Tag Detection/Polling
To poll for any Type 4A tag platforms either a REQA (also called SENS_REQ) or a WUPA (also called
ALL_REQ) must be issued. When a reply (ATQA or SENS_RES) is received, the anticollision process
begins.

2.3 Anticollision
The anticollision process serves two main purposes. One is for the Reader to place a single tag into an
activated state if multiple tags are placed in the vicinity, and the second is to acquire the Unique Identifier
(UID) and Select Acknowledge (SAK) of that tag. There are three cascade levels used for the ISO14443A
anticollision process in order to resolve any collisions and determine the UID of the tag. After the SAK
response is received, the tag is in an activated state but has not been fully selected yet. See Figure 2 for
the flow diagram of the anticollision process.

3SLOA213–December 2014 MIFARE DESFire EV1 AES Authentication With TRF7970A
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLOA213


Field On

Send REQA or WUPA

Receive ATQA

Anticollision Loop

ATS

available?

Use

ISO/IEC 14443-4

protocol?

Send RATS

Receive ATS

PPS

Supported?

Parameter

change?
Send PPS Request

Receive PPS Response

Date Exchange

Send Deselect Request

Receive Deselect 

Response

Not ISO/IEC 14443-4 

Compliant

Send HLTA

Send WUPA

Yes

Yes Yes

No

Yes

No

No No

ISO/IEC 14443-4

ISO/IEC 14443-3

Near Field Communication/Radio Frequency Identification (NFC/RFID) www.ti.com

2.4 Selection
The selection process is what finalizes the selection of a tag that has been placed in an activated state.
This is done by issuing a Request for Answer to Select (RATS) command. If a reply (ATS) is received,
then the tag is now fully selected and ready to exchange data with the Reader module. After the tag is in
the selected state, a PPS command can be issued to change the data rate of the communication between
the reader and the tag.

Figure 2. ISO 14443 Type A Anticollision

4 MIFARE DESFire EV1 AES Authentication With TRF7970A SLOA213–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLOA213


PCB
CID 

(optional)
NAD 

(optional)

Legend

Handled by MCU

Handled by TRF7970A

DESFire 
Command 

Code

Data Bytes
(optional)

CRC CRC

www.ti.com Near Field Communication/Radio Frequency Identification (NFC/RFID)

2.5 Data Exchange
After the anticollision and selection processes are completed the data exchange layer is entered. For
MIFARE MFDFEV1 tags, commands can be delivered based on either the DESFire APDU frame format,
or the ISO/IEC 7816-4 frame format. The format of the first APDU received determines the subsequent
frame formatting. For the provided example firmware, the DESFire APDU frame format is used and will be
the only format covered in detail.

2.5.1 Frame Format for DESFire APDUs
The frame format for DESFire APDUs is based on only the ISO 14443-4 specifications for block formats.
This is the format used by the example firmware, and seen in Figure 3.
• PCB – Protocol Control Byte, this byte is used to transfer format information about each PDU block.
• CID – Card Identifier field, this byte is used to identify specific tags. It contains a 4 bit CID value as well

as information on the signal strength between the reader and the tag.
• NAD – Node Address field, the example firmware does not support the use of NAD.
• DESFire Command Code – This is discussed in the next section.
• Data Bytes – This field contains all of the Data Bytes for the command.

Figure 3. Frame Format for Data Exchange Commands Using DESFire APDUs

2.5.2 DESFire Commands
There are a number of command codes used by MFDFEV1 tags in order to modify them, but as they are
application dependent only the AES Authenticate command has been implemented in the example
firmware. Table 1 contains a short summary of other useful DESFire commands that may be implemented
on an application specific basis. The actual command codes are provided within the MFDFEV1
specifications.

Table 1. DESFire Commands

Command Function Summary
AES Authenticate Used to begin AES Authentication process
Change Key Setting Used to change the master key settings
Change Key Used to change the stored keys and the encryption mode that is used
Get Application IDs Used to fetch the Application ID's for all applications within the tag
Select Application Used to select a specific application
Get File IDs Used to fetch the File ID's for all files in the currently selected application.
Read Data Used to read data from a specific file in the tag
Write Data Used to write data to a specific file in the tag

5SLOA213–December 2014 MIFARE DESFire EV1 AES Authentication With TRF7970A
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLOA213


AES Authentication www.ti.com

3 AES Authentication
The AES authentication process is a multiple step sequence in which the NFC/RFID Reader and the
MFDFEV1 tag exchange encrypted data to verify that they share the same key. During this process, a
session key will be created which is used for certain commands such as the Change Key command.
Figure 4 shows a summary of the AES authentication process.

MFDFEV1 tags can have multiple keys stored within them. One of the keys stored is known as the master
key, and there are some DESFire commands which require that the master key is used for the
authentication process.

3.1 Authentication Process
1. The Reader will issue the AES authentication command along with a key number. This will tell the

MFDFEV1 tag which AES key to use. A key number of 0x00 is used to indicate the master key.
2. The tag will select the AES key indicted by the command, generate a 16 byte Random Number B

(RndB), and encrypt RndB with the selected AES key. It will then reply to the command by transmitting
the encrypted data packet.

3. The Reader will receive the reply and go through the following process:
(a) Decrypt the reply with the AES key, which gives the Reader/Write the RndB that was generated by

the tag.
(b) Generate a 16 byte Random Number A (RndA), or use a pre-generated RndA.
(c) Rotate RndB to the left by 8 bits (1 byte), which gets RndB'.
(d) Concatenates RndA and RndB' together to create a new 32 byte value.
(e) Encrypt the resulting 32 byte value with the AES key.
(f) Transmit the resulting packet to the MFDFEV1 tag.

4. The tag will receive the command and go through the following process:
(a) Decrypt the command with the AES key.
(b) Split the 32 byte value to get the separate 16 byte values for RndA and RndB'.
(c) Generate RndB' by rotating the RndB the tag generated to the left by 8 bits.
(d) Compare the received RndB' to the generated RndB'.

If they match, then the packet was received correctly and the tag now has the RndA that was
generated by the Reader.

(e) Rotate RndA to the left by 8 bits (1 byte), which gets RndA'.
(f) Encrypt the 16 byte RndA' value with the AES key.
(g) Transmit the resulting packet back to the Reader.

5. The Reader will receive the reply and go through the following process:
(a) Decrypt the reply with the AES key, acquiring the RndA' value.
(b) Generate RndA' by rotating the RndA that was generated to the left by 8 bits.
(c) Compared the received RndA' to the generated RndA'. If they match, then the authentication

process is considered to be successful.
(d) At this time, a 16 byte AES session key is generated using the bytes of RndA, RndA', RndB, and

RndB':

6 MIFARE DESFire EV1 AES Authentication With TRF7970A SLOA213–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLOA213


READER (PCD) TAG  (PICC)

Issue authentication command for 
AES with key number Process the command to get the 

key number. Select the indicated 
AES key. Generate Random 

Number B (RndB). Encrypt RndB 
with the AES key.

AES Auth 
Command 

Code
Key #

Reply with 0xAF and encrypted 
RndB

0XAF

Decrypt the reply with AES key to 
get RndB. Generate Random 

Number A (RndA). Rotate RndB 
left by 8 bits (1 byte) WR�JHW�5QG%¶. 
&RQFDWHQDWH�5QG$�DQG�5QG%¶�DQG�

encrypt the result.

Issue command with 0xAF and 
encrypted RndA+5QG%¶

0XAF ekNo(RndA+5QG%¶)

Decrypt the command. Split RndA 
DQG�5QG%¶. *HQHUDWH�D�5QG%¶�E\�

rotating the original RndB left by 8 
bits. &RPSDUH�WKH�UHFHLYHG�5QG%¶�
WR�WKH�JHQHUDWHG�5QG%¶. If they 

match, JHQHUDWH�5QG$¶�E\�VKLIWLQJ�
RndA left 8 bits. (QFU\SW�5QG$¶.

Reply with 0xAF and encrypted 
5QG$¶

0XAF ekNo(5QG$¶)

ekNo(RndB)

Decrypt the reply with AES key. 
&RPSDUH�WKH�UHFHLYHG�5QG$¶�

DJDLQVW�D�JHQHUDWHG�5QG$¶.
If they match then:

Authentication Successful!
Generate AES Session Key

www.ti.com AES Authentication

Figure 4. AES Authentication Communication Sequence

3.2 AES Code Benchmarks
The AES encryption and decryption processes are being performed within software for this application.
However, when AES encryption is done through a hardware implementation, the speed typically increases
by at least a tenfold. Since the MSP430G2553 microcontroller does not have the hardware required for an
AES hardware implementation on it natively, the software process illustrated here does sacrifice some
speed but it is a very cost effective solution.

In order to provide a clear picture of the resources that the hardware implementation uses, benchmarks
have been run to determine the speed and size constraints of the AES software that is included with the
firmware example. The results of these benchmarks are included in Table 2.

Table 2. AES Code Benchmarks

AES (ENC/DEC Function) Optimization
Speed Size

Memory: Data 34 bytes 34 bytes
Memory: Constants 0.55 KB 0.55 KB

Memory: Code 1 KB 0.83 KB
Clock Cycles (in kilocycles) 7.9 12.3

7SLOA213–December 2014 MIFARE DESFire EV1 AES Authentication With TRF7970A
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLOA213


Hardware Description www.ti.com

4 Hardware Description
MSP- EXP430G2
The MSP-EXP430G2 LaunchPad is an easy-to-use flash programmer and debugging tool for the
MSP430G2xx Value Line microcontrollers. It features everything you need to start developing on an
MSP430 microcontroller device. It has on-board emulation for programming and debugging and features a
14/20-pin DIP socket, on-board buttons and LEDs & BoosterPack-compatible pinouts that support a wide
range of plug-in modules for added functionality such as wireless, displays, and more.

DLP-7970ABP
The third party provider DLP Design NFC/RFID BoosterPack (DLP-7970ABP) is an add-on board
designed to fit all of TI's MCU LaunchPads. This BoosterPack allows the software application developer to
get familiar with the functionalities of TRF7970A Multi-Protocol Fully Integrated 13.56-MHz NFC/HF RFID
IC on their Texas Instruments Embedded microcontroller platform of choice without having to worry about
developing the RF section.

The TRF7970A device is an integrated analog front end and data-framing device for a 13.56-MHz RFID
and Near Field Communication (NFC) system. Built-in programming options make the device suitable for a
wide range of applications for proximity and vicinity identification systems.

Figure 5. MSP430G2553 LaunchPad and DLP-7970ABP BoosterPack

5 MIFARE DESFire EV1 AES Authentication Firmware
The software that is provided is structured as shown by the flow chart in Figure 1. The Nfc_runAesAuth
Application Programming Interfaces (API) is used to run through anticollision, ISO 14443 layer 4
commands, and then the AES authentication sequence. The entire flow of the software, including the
initialization process, can be seen in Figure 6.

Due to memory size constraints with the hardware, the provided firmware does not support the storage of
multiple AES keys in RAM on the G2553. However, although RAM is limited, it is possible to store many
different keys within Flash memory. Therefore, in order to use multiple custom AES keys the
Nfc_setAesKey API is provided as a method to dynamically modify the contents of the key array that is
used in the AES authentication process.

8 MIFARE DESFire EV1 AES Authentication With TRF7970A SLOA213–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLOA213


MCU Initialization

TRF Initialization

Set AES Key 

(optional)

Polling

Anti-Collision

ISO14443 Layer 4

AES Authentication

Nfc_runAesAuth

www.ti.com MIFARE DESFire EV1 AES Authentication Firmware

Figure 6. Software Flowchart for TI's AES Authentication Example Code

9SLOA213–December 2014 MIFARE DESFire EV1 AES Authentication With TRF7970A
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLOA213


MIFARE DESFire EV1 AES Authentication Firmware www.ti.com

5.1 Available Application Programming Interfaces (APIs)
This section is an overview of the APIs that are provided to communicate with MIFARE DESFire EV1 tags,
including the function that runs the AES authentication process.

5.1.1 Nfc_runAesAuth
This function is configured to run through the whole AES authentication sequence from tag detection all
the way through authentication. It should be called within the while(1) loop in the main application.

Prototype:
void Nfc_runAesAuth(void)

Parameters:
None

Return:
None

Description:
This function is setup to call all of the APIs that are needed to go through an entire AES authentication
process for MFDFEV1 tags. It will start with the initial polling commands and go all the way through to the
AES authentication sequence. It follows the flow diagram that is shown in Figure 6.

5.1.2 Nfc_setAesKey
This function is used to overwrite the current AES key used for authentication.

Prototype:
void Nfc_setAesKey(const u08_t * pui8AESKey, u08_t ui8AESKeyLength)

Parameters:
pui8AESKey must be a pointer to an array which contains the new AES key that will be used for the
authentication sequence.

ui8AESKeyLength is the length of the new AES key.

Return:
None

Description:
This function allows the user to overwrite the current AES key and replace it with a new one. This should
be used to dynamically change which AES key is used for authentication without having multiple arrays
declared in RAM, especially when using microcontrollers which have limited RAM resources.

The AES key should always be 16 bytes long. In order to prevent an AES key that is not 16 bytes to be
written in, the length is always passed through and verified.

10 MIFARE DESFire EV1 AES Authentication With TRF7970A SLOA213–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLOA213


www.ti.com MIFARE DESFire EV1 AES Authentication Firmware

5.1.3 Iso14443aAnticollision
This function handles polling for Type 4A tags, and the subsequent anticollision sequence once a tag has
been detected.

Prototype:
void Iso14443aAnticollision(u08_t ui8Command)

Parameters:
ui8Command is the polling command to transmit.

Return:
None

Description:
This function issues the polling commands for the detection of ISO14443A transponders / NFC Type 4A
Tag Platforms. If a reply is received, then it will call the anticollision process to begin the selection
process.

When calling the API the user must provide which polling command will be issued:
• REQA (also called SENS_REQ), pre-defined as 0x26.
• WUPA (also called ALL_REQ), pre-defined as 0x52.

The API call for the anticollision function should therefore be one of the following:
• Iso14443aAnticollision(REQA);
• Iso14443aAnticollision(WUPA);

If a tag replies to the polling command, the function will then call the Iso14443aLoop to handle the
anticollision process.

5.1.4 Iso14443aLoop
This function handles the anticollision loop for Type 4A tags.

Prototype:
void Iso14443aLoop(u08_t ui8CascadeLevel, u08_t ui8NVB, u08_t * pui8UID)

Parameters:
ui8CascadeLevel is the cascade level of the anticollision sequence that shall be executed by the
Iso14443aLoop function.

ui8NVB is the Number of Valid Bits value that shall be sent out by each Select command.

pui8UId is a pointer to an array which contains the UID of the tag.

Return:
None

Description:
This function will check the current cascade level and issue the Select command based on the cascade
level specified in the function call. If any collisions occur, typically due to multiple tags are detected by the
reader, then the function will proceed to go through an anticollision sequence to resolve the collisions.
During the anticollision sequence, the NVB is used to track how many bytes and bits have been received
by the reader.

This function will call itself recursively when it goes through anticollision sequences, up to three additional
times (one for each cascade layer).

11SLOA213–December 2014 MIFARE DESFire EV1 AES Authentication With TRF7970A
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLOA213


MIFARE DESFire EV1 AES Authentication Firmware www.ti.com

5.1.5 Iso14443aLayer4
This function is used to handle the ISO 14443-4 activation sequence.

Prototype:
u08_t Iso14443aLayer4(void)

Parameters:
None

Return:
STATUS_SUCCESS or STATUS_FAIL

Description:
This function will transmit the layer 4 (ISO 14443-4) commands that are required before the tag can be
authenticated. This API should be called after the anticollision process is complete in order to enter data
exchange.

The function will first transmit a RATS command. If the received ATS response properly matches with the
expected response based on the MIFARE DESFire EV1 tag specifications, then a PPS request will be
transmitted next. If the received PPS response is correct, then STATUS_SUCCESS will be returned. If
either of the responses were erroneous, then STATUS_FAIL will be returned.

Because the function will return either STATUS_SUCCESS or STATUS_FAIL to indicate whether or not
the layer 4 commands were successful, it is recommended to verify that the returned value is
STATUS_SUCCESS before proceeding to the AES authentication process.

5.1.6 Iso14443aPollingCommand
This function is used to transmit ISO14443A polling commands.

Prototype:
void Iso14443aPollingCommand(u08_t ui8Command)

Parameters:
ui8Command is the byte of the ISO14443A command being transmitted.

Return:
None

Description:
This function will transmit the polling command that is specified in the input parameter. The polling
commands that should be issued for Type 4A tags are:
• REQA (also called SENS_REQ), pre-defined as 0x26.
• WUPA (also called ALL_REQ), pre-defined as 0x52.

12 MIFARE DESFire EV1 AES Authentication With TRF7970A SLOA213–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLOA213


www.ti.com MIFARE DESFire EV1 AES Authentication Firmware

5.1.7 Iso14443aSelectCommand
This function is used to transmit the ISO14443A Select command.

Prototype:
void Iso14443aSelectCommand(u08_t ui8Select, u08_t ui8NVB, u08_t * pui8UID)

Parameters:
ui8Select is the Select command byte that shall be transmitted.

ui8NVB is the Number of Valid Bits value that shall be sent out by each Select command.

pui8UId is a pointer to an array which contains the UID of the tag.

Return:
STATUS_SUCCESS or STATUS_FAIL

Description:
This function will transmit the Select command based on the inputs given to it, and it will determine
whether or not to transmit with CRC based on the value of the ui8NVB provided in the function call.

5.1.8 Iso14443aHalt
This function is used to transmit the ISO14443A halt command.

Prototype:
void Iso14443aHalt(void)

Parameters:
None

Return:
None

Description:
This function will transmit the halt command for ISO14443A transponders / NFC Type 4A Tag Platforms
as specified in the ISO/IEC 14443-3 specifications.

13SLOA213–December 2014 MIFARE DESFire EV1 AES Authentication With TRF7970A
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLOA213


MIFARE DESFire EV1 AES Authentication Firmware www.ti.com

5.1.9 Aes_authenticate
This function handles the AES authentication process for MIFARE DESFire EV1 tags.

Prototype:
u08_t Aes_authenticate(u08_t * pui8SessionKey, u08_t * pui8RndA, u08_t * pui8Key)

Parameters:
pui8SessionKey must be a pointer to an array that can store the resulting 16 byte session key of the
authentication sequence.

pui8RndA must be a pointer to an array that contains a 16 byte random number used for the
authentication sequence.

pui8Key must be a pointer to an array which contains the 16 byte key that is being used for the
authentication sequence.

Return:
STATUS_SUCCESS or STATUS_FAIL

Description:
This function handles the sequence of transmissions and receptions during the AES authentication
process. If the authentication process is successful, then it will return a STATUS_SUCCESS along with
the session key for that sequence. The session key is required for certain commands, including the
Change Key command. The random number that is provided should be generated by a random number
generator (RNG), but due to memory constraints it is a static hard coded value in the example software
that is being provided.

14 MIFARE DESFire EV1 AES Authentication With TRF7970A SLOA213–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLOA213


www.ti.com MIFARE DESFire EV1 AES Authentication Firmware

5.2 Example Application With Required Initializations
In addition to the listed APIs, there is a specific set of commands that must be executed to initialize the
MCU and the TRF7970A prior to any application. In the following example, the MCU is initialized by
setting the MSP430G2553 main clock frequency to 8 MHz. Then the TRF7970A is initialized by setting the
SPI Slave Select high, then the TRF's Enable pin high, and then waiting 5 milliseconds before going
through the initialization functions. Lastly, the global interrupts are enabled so that the IRQ interrupt
service routine becomes functional. After these initializations have been completed, any application-based
initializations can be run. See Example 1 for a summary of the initializations.

Example 1. Required Initialization Sequence

#include "mcu.h"
#include "nfc.h"
// Initialize global variables
u08_t buf[127]; // Transmit/Receive Buffer
u08_t i_reg = 0x01; // Interrupt Register
u08_t irq_flag = 0x00; // Flag for the IRQ Status Register
s08_t rxtx_state = 1; // Used for transmit receive byte count

void main (void)
{

// Stop the Watchdog timer
WDTCTL = WDTPW + WDTHOLD;

// Select DCO to be 8 MHz
McuOscSel(0x00);
McuDelayMillisecond(10);

// Set the SPI SS high
SLAVE_SELECT_PORT_SET;
SLAVE_SELECT_HIGH;

// Set TRF Enable Pin high
TRF_ENABLE_SET;
TRF_ENABLE;

// Wait until TRF system clock started
McuDelayMillisecond(5);

// Initialize SPI settings for communication with TRF
Trf797xCommunicationSetup();

// Set up TRF initial settings
Trf797xInitialSettings();

// Enable global interrupts
__bis_SR_register(GIE);

// End of Initialization

// Infinite loop for application
while (1)
{

// Runs Authentication sequence
Nfc_runAesAuth();

}
}

15SLOA213–December 2014 MIFARE DESFire EV1 AES Authentication With TRF7970A
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLOA213


MIFARE DESFire EV1 AES Authentication Firmware www.ti.com

5.3 Memory Size Benchmarks
This section contains a summary of the code sizes for the AES authentication example firmware that is
included. The code sizes that are listed below were achieved by applying level three Code Composer
Studio optimizations, for both speed and size, to the firmware.

The results show that there is a significant amount of Flash memory space available (Table 3 and Table 4)
for user-specific applications that can supplement the AES authentication portion of the firmware.
However, the RAM space (Table 3 and Table 5) is fairly limited in the MSP430G2553 (maximum size: 512
bytes) and 128 bytes of it is used for the buffer that handles the transmitted and received NFC/RFID
communication data.

Table 3. Overall Memory Use

Memory Type Optimized for Optimized for
Size (bytes) Speed (bytes)

Flash (Max: 16KB) 6074 8454
RAM (Max: 512B) 408 408

Table 4. Flash Memory Use

Memory Sector Optimized for Optimized for
Size (bytes) Speed (bytes)

Code (.text) 5420 7800
Variables (.const) 554 554

Initializations (.cinit) 100 100

Table 5. RAM Memory Use

Memory Sector Optimized for Optimized for
Size (bytes) Speed (bytes)

Variables (.bss) 228 228
Stack (.stack) 180 180

6 AES Authentication Demonstration
The example software is configured for use with the MSP430G2553 Value Line LaunchPad along with the
DLP-7970A BoosterPack. The connections between the MSP430G2553 and the TRF7970ABP that are
utilized by the firmware example are shown in Table 6.

Table 6. TRF7970ABP + MSP430G2553 LaunchPad
Hardware Connection

TRF7970ABP Pins MSP-EXP430G2553LP Pins
MOSI P1.7
MISO P1.6
CLK P1.5

Slave Select P2.1
EN1 P2.2
IRQ P2.0

ISO 14443B LED P2.3
ISO14443A LED P2.4
ISO15693 LED P2.5

16 MIFARE DESFire EV1 AES Authentication With TRF7970A SLOA213–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLOA213


www.ti.com AES Authentication Demonstration

Figure 7. MSP430G2553 LaunchPad

6.1 AES Key Setup
The authentication of a MFDFEV1 tag requires that the proper AES key be used. In order to setup the
AES key that will be used by the Reader for the authentication process, it is necessary to modify the main
file of the AES authentication project. Since there are limited RAM resources on the MSP430G2553, it is
advised to place all AES keys within Flash memory to save some RAM space. To do this, declare a 16
byte array as a global variable with the 'const' keyword and initialize it upon declaration with the values for
the AES key (see Example 2). The 'static' keyword can also be used to keep the array localized to the file
it has been declared in.

Example 2. Declaring AES Key Arrays in main.c

const static u08_t CustomKey1[16] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

const static u08_t CustomKey2[16] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66,
0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF};

const static u08_t CustomKey3[16] = {0x79, 0x70, 0x25, 0x53, 0x79, 0x70, 0x25,
0x53, 0x79, 0x70, 0x25, 0x53, 0x79, 0x70, 0x25, 0x53};

When the AES keys are loaded into Flash memory, it is possible to change which key is used for
authentication by the application. To do this, use the Nfc_setAesKey API to load the correct AES key first,
and then use the Nfc_runAesAuth API to run the authentication process. The Nfc_runAesAuth API will use
the newest key that was loaded, or a default key (all bytes = 0x00) if no AES key has been set. The
example code shown in Example 3 is structured to demonstrate an application that will attempt to
authenticate using three different AES keys by cycling between them prior to each Nfc_runAesAuth
function call. This example is one possible method that can be implemented to avoid using up the limited
RAM resources while still authenticating MFDFEV1 tags with a variety of preprogrammed AES keys.

17SLOA213–December 2014 MIFARE DESFire EV1 AES Authentication With TRF7970A
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLOA213


AES Authentication Demonstration www.ti.com

Example 3. Cycling Between AES Keys in a while(1) Loop

while(1)
{

// Set AES Key to a custom key stored in Flash Memory
Nfc_setAesKey(CustomKey1,16);
// Runs Authentication sequence
Nfc_runAesAuth();

// Repeat for the remaining keys
Nfc_setAesKey(CustomKey2,16);
Nfc_runAesAuth();

Nfc_setAesKey(CustomKey3,16);
Nfc_runAesAuth();

}

6.2 Demonstration
To demonstrate the AES authentication firmware, follow these steps:
1. Connect the DLP-7970ABP to the MSP430G2553 LaunchPad.
2. Put a jumper in Position 2 on the DLP-7970ABP board (see Figure 8).
3. Connect a USB cable to the onboard USB Emulator (top left corner, see Figure 7).
4. Open Code Composer Studios V6.0.1.
5. Import the AES authentication project (download the firmware from http://www.ti.com/lit/zip/sloa213).
6. Go to main.c and add arrays for the AES key(s) for each tag that will be authenticated.
7. Modify the while loop as needed to use Nfc_setAesKey and Nfc_runAesAuth to run through the AES

authentication process for each key that has been loaded.

8. Click the "Debug" button to load the firmware.
9. After the code had finished downloading, click Stop.
10. Reset the board by either power cycling it or pressing the reset button.

Figure 8. Hardware Configuration

18 MIFARE DESFire EV1 AES Authentication With TRF7970A SLOA213–December 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/http://www.ti.com/lit/zip/sloa213
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLOA213


www.ti.com Conclusion

11. Now present a MIFARE DESFire EV1 tag that has been configured for AES mode. The bottom 3
LEDs will light up to give the user feedback about which portions of the code have been successful.
They represent the following:
• ISO 14443B LED (Blue) – Received a reply from REQA/WUPA
• ISO14443A LED (Red) – Successful ISO14443A Anticollision
• ISO15693 LED (Green) – Successful AES Authentication

If one of the keys that was loaded into the firmware and used by the authentication process matches with
the key contained inside of the MFDFEV1 tag, then the green LED will be lit to signify a successful
authentication process.

7 Conclusion
The combination of the MSP430G2553 Value Line microcontroller and the TRF7970A NFC transceiver
can be used along with the included firmware to provide a cost-effective solution for authenticating
MIFARE DESFire EV1 tags in AES mode. The MSP430G2553 also provides enough Flash memory for
additional user applications, as well as the storage of many different AES keys, allowing for more robust
and customized applications.

8 References
1. TRF7970A Multi-Protocol Fully Integrated 13.56-MHz RFID and NFC Transceiver IC (SLOS743)
2. MSP430G2x53, MSP430G2x13 Mixed-Signal Microcontrollers (SLAS735)
3. C Implementation of Cryptographic Algorithms (SLAA547)
4. ISO/IEC 7816-4:2005(E)

(http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=54550)
5. ISO/IEC 14443-3:2009(E)

(http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=50942)
6. ISO/IEC 14443-4:2008(E)

(http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=50648)
7. MF3ICD81 MIFARE DESFire EV1 (http://www.nxp.com/)

19SLOA213–December 2014 MIFARE DESFire EV1 AES Authentication With TRF7970A
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLOS743
http://www.ti.com/lit/pdf/SLAS735
http://www.ti.com/lit/pdf/SLAA547
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=54550
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=50942
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=50648
http://www.nxp.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLOA213


IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	MIFARE DESFire EV1 AES Authentication With TRF7970A
	1 Introduction
	2 Near Field Communication/Radio Frequency Identification (NFC/RFID)
	2.1 TRF7970A Reader Mode
	2.2 Tag Detection/Polling
	2.3 Anticollision
	2.4 Selection
	2.5 Data Exchange
	2.5.1 Frame Format for DESFire APDUs
	2.5.2 DESFire Commands


	3 AES Authentication
	3.1 Authentication Process
	3.2 AES Code Benchmarks

	4 Hardware Description
	5 MIFARE DESFire EV1 AES Authentication Firmware
	5.1 Available Application Programming Interfaces (APIs)
	5.1.1 Nfc_runAesAuth
	5.1.2 Nfc_setAesKey
	5.1.3 Iso14443aAnticollision
	5.1.4 Iso14443aLoop
	5.1.5 Iso14443aLayer4
	5.1.6 Iso14443aPollingCommand
	5.1.7 Iso14443aSelectCommand
	5.1.8 Iso14443aHalt
	5.1.9 Aes_authenticate

	5.2 Example Application With Required Initializations
	5.3 Memory Size Benchmarks

	6 AES Authentication Demonstration
	6.1 AES Key Setup
	6.2 Demonstration

	7 Conclusion
	8 References

	Important Notice

