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ABSTRACT

In higher power applications to utilize the full line power and reduce line current harmonics PFC
Pre-regulators are generally required. In these high power applications interleaving PFC stages can
reduce inductor volume and reduce input and output capacitor ripple current. This results in smaller overall
magnetic volume and filter capacitor volume increasing the converters overall power density. This is made
possible through distributing the power over two interleaved boost converters and the inductor ripple
current cancellation that occurs with interleaving, reference [5]. This application note will review the design
of a 300W two-phase interleaved power factor corrected (PFC) pre-regulator. This power converter
achieves PFC with the use of the UCC28070 interleaved PFC controller, reference [7].

1 Design Goals
The specifications for this design were chosen based on the power requirements of a medium power LCD

TV.
Table 1. Design Specifications
PARAMETER MIN TYP MAX UNITS
. 85 265
V RMS input voltage
™ P g (VIN_MIN) (VIN_MAX) Vv
Vour Output voltage 390
Line frequency 47 Hz 63 Hz
(fLINE)
PF Power factor at maximum load 0.90
Pour Output power 300 w
n Full load efficiency 90%
fs Individual phase switching frequency 200 kHz
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2 Schematic
UCC28070 PFC controller in a two-phase average current mode control interleaved PFC pre-regulator.

Ds

>

L m ;{ VOUL

ouT

™

-
¢
g;: el
Ay
)\T;U ’
A
[ ]
e
+—H

Seas! D2
B UCC28070 —D—+
CDR DMAX —>

12V 10 21V | @ | CB,.J_

—— RSYNTH | Rez 1.2nF
.-n csB

C

COR ——

o
|
1

R

Rycs Roca §
Co1 — Coy == R

— RRDM§ R > Cer Ces Css RRT§ anxg Cres == Coor ==
1.2nF SYN p— pr— p—

Ry g Roce 0.1uF 0.1uF CZCBT Cronm=

Figure 1. Typical Average Current Mode Interleaved PFC Pre-Regulator
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3 Inductor Selection

One of the benefits of interleaved PFC boost pre-regulators is inductor ripple current reduction that is seen
at the input of the converter. The following equations and Figure 2 show the ratio of input ripple current
(Al,) to individual inductor ripple current (Al ,) in a two-phase interleaved PFC as a function of duty cycle
(D). Because of this inductor ripple current cancellation, the designer can allow each inductor to have
more inductor ripple current than in a single stage design.
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Figure 2. Input Inductor Ripple Current Cancellation

The boost inductors (L1 and L2) are selected based on the maximum allowable input ripple current. In
universal applications (e.g., 85 V to 265 V RMS input) the maximum input ripple current occurs at the
peak of low line and for this design the maximum input ripple current was set to 30% of the peak nominal
input current at low line.
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The following calculations are used to select the appropriate inductance for L1 and L2. Where, variable
D, is the converter’'s duty cycle at the peak of low line operation. Variable K(Dp,,) is the ratio of input
current to inductor ripple current at the peak of low line operation. AIL is the boost inductor ripple current
at the peak of low line based on the converters input ripple current requirements.

Vout _VIN_MIN\/§:390V — 85V42

DPLL = ~0.69
Vour 390 V
4

2 x 0.69 - 1
K(DPLL) = W =0.55
AlL = __Pour xJ2x03  _ 300W x 2 x 0.3 < 30A

\/lN_MlN X T] X K(DPLL) 85V X 0.90 X 0.55

V 2 xD

[1=L2= IN_MINX[X PLL=85VX\/§XO'69z140uH

AL x f 2.96A x 200 kHz

®)
The following equation can be used to calculate total inductor RMS current (I ; gus and I, gys)-

2

Pout 2 VIN_MIN\/ESin(e)X Vour —V|N_M|N\/§3i”(9)
1 jws = o rus = || o—2—— | *+ 11} L1 xJs Vour
- - VIN_mIN XM ™o J12
(6)
2
300W 2 85V+/2sin(0) 390V —85V+/2sin(6)
| - _ 2 +| (|1 140uH x 200kHz 390V oA
L1 RMs = lL2 rus 85V 0.90 | 72 ~

™

A 140-pH boost inductor from Cooper Electronic Technologies part number CTX16-18060 was chosen for
the design. The inductance during normal operation will swing from 140uH to 350uH.

LN = L2y = 140 uH

(8)
Lyax = L2yax = 350 uH

9)

The average inductance is calculated for current loop compensation purposes. This will be used in the
current loop compensation section of the application note:

Lfyn + L1 140 uH + 350 uH
Llave = L2pyg = —N_—MAX - = 245 uH
2 2
(10)
4 UCC28070 300-W Interleaved PFC Pre-Regulator —Design Review SLUA479B-August 2008 —Revised July 2010

Copyright © 2008-2010, Texas Instruments Incorporated



13 TEXAS
INSTRUMENTS

www.ti.com Output Capacitor Selection

4 Output Capacitor Selection
The output capacitor (Coq) is selected based on holdup requirements.

2 x Pour 2 x 300W
Cour = . June - = 4rHz ___ ~192uF
Vour” ~(Vour x 0.75)°  (390V)* —(292.5V)
(11)
Two 100-uF capacitors were used in parallel for the output capacitor.
COUT =200 UF
(12)
For this size capacitor the output peak to peak voltage ripple (VgippLe) IS:
2x300W
2 x P 1
VRIPPLE - ouT - 0.90 ~14.5V
n Vour x 21 x 2fiine * Cour 390V x 21 x 2 x 47Hz x 200 pF
(13)
In addition to holdup requirements, a capacitor must be selected so that it can withstand both the
low-frequency RMS current (lcour ) and the high-frequency RMS current (lcoyr ). High-voltage
electrolytic capacitors generally have both low frequency (100 Hz to 120 Hz) and high frequency RMS
current ratings on their data sheets.
P, 300W
| = _OUT_ = ~ 0.604A
COUT LR ™ Vourv2  0.90 x 390V x 2
(14)
2
lcout_HF = Pour 19 x Vour -n* | =(icour Lr )2
- nVout \| 6 x VIN_MIN\/E -
(15)
2
300W 16 x 390V 2 2
I = —(0.90 —(0.604)" ~1.0A
COUT_HF \/(0_90 390V \/67: < 85V (0.90) J ( )
(16)
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5

Power Semiconductor Selection (Q1, Q2, D1, D2)

The selection of Q1, Q2, D1, and D2 are based on the power requirements of the design. Application note
(SLUA369), UCC28528 350-W Two Phase Interleaved PFC Pre-regulator, explains how to select power
semiconductor components for interleaved PFC pre-regulators using average current mode control
techniques, reference [4]. To meet the power requirements of this design IRFB11N50A N channel FETs
from IR were chosen for Q1 and Q2. To reduce reverse recovery losses SiC diodes CSD10060G from
CREE were chosen for the design.

Boost Diode (D1, D2) and FET (Q1, Q2) peak current (I.gax) calculation:
A factor of 1.2 was added to the equation for added design margin.

Y T V2 Ay, [ 300W x V2 287AY, o,
17)
Q1 and Q2 RMS current (lys) calculation:
Pout 300W
. n , 16 VinownY2 _ pg0 \/2_ 16 x 85VV2 ooy
2« V|N_|\/||N\/E 3xm xVour 2 x 85V42 3 x 1 x 390V '
(18)
D1 and D2's average current calculation (Ip):
I = Pour _ _300W 4 394
(19)
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6 Current Sense Transformers Setup and Selection (T1, T2, Dg,, Dgg)

The current sense transformer is selected to handle l.c.« and have a peak current sense signal (Igs) of
roughly 100 mA.

Ner = Ns  leak - 1A _gy
Np lrs 1A
(20)
For this design a current sense transformer with a turns ratio (N.;) of 50 was chosen for the design.
Nct =50
(21)

The magnetizing inductance (L) of the current sense transformer should be selected or designed so the
magnetizing current is less than 2% of the maximum current sense signal. The following equation
calculates the minimum L, where V4 is the maximum current sense signal voltage. For this design a
current sense transformer was designed by Cooper Electronic Technologies (CTX16-18294) with a
magnetizing inductance of 8.25 mH.

Vout — Vin_minv2 _
Lu = 1 Vs QUL NN 3.7V L 390V =85VY2 ooy
PPEAK 0,02 £, Vour A 0.02x200kHz 390V
Ner 50
(22)
Ly = 8.25 mH
(23)

Selection of the current sense resistors (Rg, and Rgg ) is based on the peak current limit signal (V) and
the peak current on the secondary side of the current sense transformer. A factor of 0.9 was multiplied by
the current sense signal to leave room for the 10% PWM ramp that is used to make this design more
noise immune at lighter loads.

_09xVg _ 09 x 37V x50

Rsa =Rgg = [ = 01024 ~ 3250
Ner
(24)
Select a standard resistor for the design:
Rg =33.20Q
(25)
Resistor Ry is used to reset the current sense transformer:
Ry > Rs x Duax _ 33.2Q x0.97 - 1kO
1 — Dmax 1-0.97
(26)

Current sense transformer’s rectifying diodes (Dg) need to be designed to withstand the current sense
transformers reset voltage (Vg):
N 5.1A x 1kQ
Vg =1 x P xRg=""—" - > 103V
R = IPEAK Ns R 50

(27)
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To improve noise immunity at extremely light loads, a PWM ramp with a dc offset is recommended to be
added to the current sense signals. Electrical components R+,, Rrs, Cta, Ctg, Dpaty Dpazs Dpgi, @nNd Dpg,
form a PWM ramp that is activated and deactivated by the gate drive outputs of the UCC28070. Resistor
Ros and Ry add a DC offset to the CS resistors (Rg, and Rgg).

When the inductor current becomes discontinuous the boost inductors ring with the parasitic capacitances
in the boost stages. This inductor current rings through the CTs causing a false current sense signal.
Refer to the following graphical representation of what the current sense signal looks like when the
inductor current goes discontinuous. Note that the inductor current and Vg5, may vary from this graphical
representation depending on how much inductor ringing is in the design when the unit goes discontinuous.

GDA

IL1
0A

Vv
RSA VGF
T oo

|
Figure 3. False Current Sense Signal
8 UCC28070 300-W Interleaved PFC Pre-Regulator —Design Review SLUA479B-August 2008 —Revised July 2010

Copyright © 2008-2010, Texas Instruments Incorporated



13 TEXAS
INSTRUMENTS

www.ti.com Current Sense Transformers Setup and Selection (T1, T2, Dg,, Dgg)

To properly select the offset (Vo) just requires adjusting resistors Ry, and Ry to add a dc offset to the
current sense resistors, that is high enough to block Dg, and Dgg from conducting when a false current
sense signals is present. This occurs when the inductors are operating with discontinuous inductor current
and was described above in detail. Setting the offset to 200 mV is a good starting point and may need to
be adjusted based on individual design criteria and the amount of noise and parasitic elements present in

the system.
Vo =0.2V
(28)
Roa = Rog = (chc - VOFF)RSA _ (13v - 0.2V) x 33.2 ~ 21K
Vorr 0.2v
(29)
Select a standard resistor for the design:
Roa =2.05kQ
(30)
Rya=Rrg= (chc = (V5 x0.1= Vorp +Vppao )RSA _ (13v —(3.7V><0.1—0.2V)+0.6V)>< 33.2 ~2.62 kO
Vg x0.1-Vorr 3.7Vx0.1-0.2V
(31)
Chose a standard resistor for the design:
Rta = Rig =2.49 kQ
(32)
Cia =Cig = m ~ 50 nF
(33)
A standard capacitor needs to be chosen for the design:
Ctp =47 nF
(34)
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7 Setting Up Peak Current Limiting (RPK1, RPK2)
The UCC28070 has an adjustable peak current limit comparator that can be set up by selecting Rp,, and
calculating the required Rgg,. For this design to keep the reset voltage of the current sense transformer
manageable the peak current sense signal (Vg) was set to 3.7 V.
Reg = Vs x Rpgq _ 3.7V x 3.65 kQ ~ 5.9 kQ
Vrer — Vs 6V - 3.7V
(35)
Converter Timing and Maximum Duty Cycle Clamp
Resistor Rgr and Ry set up converter timing and the maximum PWM duty cycle clamp:
9 9
Rgr = 7.5 x10°Q x Hz _ 7.5x10” Qx Hz =375 kO
fs 200 kHz
(36)
A standard resistor was selected for the design:
RRT =37.4 kQ
(37)
Resistor Ry Was selected to set the maximum duty cycle clamp (Dyax) to 0.97:
(38)
Chose a standard resistor for the design:
RDMX =34.8 kQ
(39)
8 Programming VOUT
Resistor R, is selected to minimize the error due to VSENSE input bias current and to minimize loading on
the power line when the PFC is disabled. Construct resistor R, from two or more resistors in series to
meet high voltage requirements. Resistor R is sized to program the converters output voltage (Vgyy).
R, =3MQ
(40)
VREF < R
_ 2 A 3V x 3MQ
Rg = = ~ 23.3 kQ
Ty VREF ~ 390V - 3V
ouT = 5
(41)
A standard resistor was chosen for the design.
Rg =23.2 kQ
(42)
The resistor divider formed by R, and Ry from the output voltage to the VSENSE pin also sets the over
voltage protection threshold (Vgyp).
+
Vovp =3.18V Ra *Rg _ 3.18V 3MQ +23.2kQ ~ 414V
Rg 23.2 kQ
(43)
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9 VINAC Divider Setup

The UCC28070 also requires sensing the line input for proper operation. This requires a divider from the
rectified line voltage to the VINAC pin of the UCC28070. For simplicity the UCC28070 was designed to
use the same resistor divider values as the VSENSE pin. Resistors R, and R; need to be the same ratio
for the VINAC voltage divider as thouse in the VSENSE voltage divider to ensure the UCC28070 controller
operates correctly. Please refer to the applications schematic for proper component placement.

10 Voltage Loop Configuration

The methodology used to compensate the voltage loop is based on the compensation methodology
developed by Lloyd Dixon. A detailed explanation of this compensation scheme written by Mr. Dixon can
be found in the 1990 Unitrode Power Supply Design SEM700, High Power Factor Switching Pre-regulator
Design Optimization, Topic 7, reference [2].

Capacitor C,, is sized to attenuate low frequency ripple to less than 3% of the voltage amplifier output
range. This will ensure good power factor and low input current harmonic distortion.

Voltage Amplifier Transconductance Amplifier gain:

gmy =70 uS
(44)
Voltage Divider Feedback Gain:
H= M = i ~ 0.0077
Vout 390V
(45)

Output impedance (Z,) is required to attenuate the low frequency boost capacitor output ripple (Vgppe) tO
less than 3% of the effective voltage amplifier output range (AVAO). This impedance is set by properly
selecting feedback capacitor Cp,:

AVAO x 0.03 _ 3.2V x 0.03

Zgy = = ~12.3 kQ
Vripple X H x gmy  14.5V x 0.0077 x 70 uS

(46)

Cpy = L = ! ~ 138nF

21 x 2 x fiiNe X Zp 2m x 2 x 47THz x 12.3kQ
(47)
Choose as standard capacitor for the design:

Cpy =150 nF

(48)
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For the highest possible power factor the voltage loop crossover frequency (f.,) needs to be set based on
the following equation:

AVAO =32V
(49)
Pout 1
Jov ={H x gmy, x d XJXZTCXCOUTX L
AVAO VOUT 2 X T X CPV
(50)
300W
foy =1/0.0077x70pSx-9:90_ ! x ! ~11Hz
3.2V 2xm x200uFx390V 2x7 x150nF
(51)
Voltage compensation resistor R, is then sized to put a pole at the converter’s voltage loop crossover
frequency:
1 1
RZV = = ~ 964 kQ
2n x foy x Cpy 21 x 10.6Hz x 150nF
(52)
Select a standard resistor for the design:
RZV =100 kQ
(53)

Voltage compensation capacitor C,, is used to increase the dc gain of the voltage loop and gives some
added phase margin before crossover. The zero added to the voltage loop needs to be set at 1/10" the
crossover frequency.

1 1
Cyy = = ~ 1.5 uF
2v Jov 11Hz !
2n x x Rzy 21 x x 100 kQ
10 10
(54)
12 UCC28070 300-W Interleaved PFC Pre-Regulator —Design Review SLUA479B-August 2008 —Revised July 2010
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The following equations can be used to estimate voltage compensation network gain, voltage loop power
stage gain and voltage loop gain. These equations can also be used to graphically check loop stability.

Voltage Compensation Network Gain (G,(f)) as function of frequency:
jx2n xf x Rzy x Czy +1

Gev () = H > gmy x ;
AVout (J <20 % f x (sz +CPV))(J x 21 x f x Rzy x Czy x Cpy +1J
Czv*+Cpy
(55)
Voltage Loop Power Stage Gain (Gpg\(f)) as function of frequency:
Pout ( 1
~_ AV, jx2n xfxC
Cosv()= ol = Ao v =
VAO out
(56)
Voltage Loop Gain in dB (TvdB(f)) as function of frequency:
TvdB( /) = 20log([Gpsy (/) *x Gev(/))
(57)

Figure 4 shows the theoretical loop gain (TvdB(f)) as a function of frequency and Figure 5 shows the
theoretical loop phase (0v(f)) as a function of frequency. From these figures it can be observed that the
voltage loop crossed over at roughly 9 Hz with a phase margin of 60 degrees. Compensating the voltage
loop is not an exact science and should be checked with a network analyzer and adjusted if necessary.

90 90
90 90
60 75
30 6 T 1T
\\\
T~
TvdB() 0
— I . Bv(fMs
\\\ 1
30 = T~
30
-60 \“‘---k
h‘““"“\. ™N
—90 15 N
=90
1 10 100 1-10° 0 \‘H-...-______-
0
L f 1x10%, 1 10 100 110°
i L f Ax10°,
Figure 4. Theoretical Voltage Loop Gain (TvdB(f)) Figure 5. Theoretical Voltage Loop Phase (Bv(f))
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11  Current Loop Compensation
Setting up the current synthesizer is accomplished by correctly selecting Rgyy:

The inductor used in this design example swings from 350 uH to 140 pH from no load to maximum load.
When calculating Rgyy the highest inductance value (L1,,,x) should be used.

R
Ner x L1MAXﬁ 50 x 350 pH x 23.2kQ
R - A B - 3 MQ +23.2 kQ ~ 405 kO
SYN ~ 40.
Rs x 0.1 nF 33.2Q x 0.1nF
(58)
Chose a standard resistor:

Rgyn = 38.3 kQ

(59)

The IMO resistor needs to be set with the following equation to center the digitized multiplier for universal
line applications:

17 x 10°A x Vinac (Vaomax —1V) _ 17 x 10°A x 0.76V (5V -1V)

IMO = 5 ~ 130 pA
Kvee 0.398V
(60)
_ 076V x (Ry +Rg) _ 0.76V x (3MQ + 23.2kQ)
\/I = = ~ 70V
Rg x 2 23.2kQ x 2
(61)
v, 1P N2 1 4 S00WN2 A s o s asgy
2xm xV1 N, 2 0.92x72v 50
(62)
RlMO = i = m ~ 18.9kQ
IMO 130 pA
(63)
Choose a standard resistor close to the calculated value:
R|MO = 196 kQ
(64)

The current loop in a PFC converter is generally designed to crossover at between 1/10" and 1/6" the
converter’s switching frequency. The current loop in this design example is going to be designed to
crossover at 1/10" of the single stage’s switching frequency. In order to properly compensate the current
loop it is required to calculate the current loop's power stage gain (Gps) at the current loop's crossover and
properly select passive components Ry, Czci, @and Cpcypo:

1
Vour x Rs x & 390 V x 3320 x -
G - CT - 50 ~ 2.1
PSC s 200 kHz '
2TC X E X L1AVG X VRAMP 27[ X T X 245 ].,lH X 40V
(65)
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Variable gm. is the current amplifier Transconductance Current Amplifier Gain.

gme =100 uS
(66)
Rzc1 = Rzco = ! = ! = 4.8 kQ
gme x Gpge 100 uS x 2.1
(67)
Czc1=Czc2 = 7 L = 00 kH1z ~ 1.7nF
2n 25 xRy, 2n ——— x 4.8kQ
10 10
(68)
Cpc1 = Cpc2 = fs1 = 200 kH1z ~ 333 pF
2n == x Ry 2n ——— x 4.8kQ
2 2
(69)
Standard components close to the calculated values are chosen for the current loop compensation:
Rzcq =4.02kQ, Czcq =2.2nF, Cpgq =330 pF
(70)

Graphically Check Theoretical Current Loop Gain (TcdB(f)) and loop phase (6c(f)): From the plots in
Figure 6 and Figure 7 it can be observed that the theoretical loop gain crossed over at roughly 20 kHz
with a phase margin of roughly 39 degrees.

N
Vour xRsx = jx 2 x f xRy x Cyo+1
. X271 X fx X
TedB(/ ) = 20log| |-— i AVS xgMe J _ 220 ZCR s
x 21 x fxL1x . X271 X f X X
j RAMP (ix2m x £ x(C26+Cec ){J S xRzc xCz¢ xCpc +1J
Czc+Cpc
(71)
200 180
200 180
13333 = 150
™~
66.67 SR
SN 120
TedB() 0 I S
\\\\_\ ' 0c(f) 90
~66.67 '
60
13333 N
A
- 200
-200 20 (
1 10 100 1-10° 1-10* 110° 110° 1 N
. 0 [ ol N
RE f 1x10°, 0 ]
1 10 100 1-10° 110" 1-10° 110°
A £ Ax10°,
Figure 6. Current Loop Gain (TdB(f)) Figure 7. Current Loop Phase (6c¢(f))
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12  Soft Start
To have a controlled soft start the Csg capacitor needs to be set to at least the same value as the C,,
capacitor or larger. This means the design has a minimum soft start time based on the C,, capacitor
tssu = 225V x Czy _ 2.25V x 1.5 uF ~ 338 ms
10 ©A 10 uA
(72)
Css = Czy
(73)
The soft-start timing can be set with timing capacitor Cs5 once the amount of soft start time (ts5) has been
determined. Our original design requirement was to have 200 ms of soft-start time. The calculated
capacitance needed for this soft-start time is less than the minimum required capacitance.
= 10 pA x tss _ 10 pA x 200 ms ~ 0.889 uF
2.25V 225V
(74)
A Cgg capacitor value equal to the C,, capacitor was chosen for the design.
Ce, =1.5puF
(75)
13  Spread Spectrum Reduces EMI
It has been shown that dithering the converter’s switching frequency can reduce EMI. Resistor Rgpy and
Ccor Program the frequency dithering magnitude and rate. For this design the frequency dither magnitude
(fom) was set to 30 kHz and the frequency dither rate (f,g) was set to 10 kHz. The frequency will dither
around the typical frequency programmed by resistor Rg;. In this example the frequency will dither from
roughly 185 kHz to 215 kHz at a 10 kHz rate.
fDM =30 kHz
(76)
fon = 10kHz
(77)
6 6
Reon = 937.5 x 10°Q _ 937.5 x 10°Q — 3113 KO
fom 30 kHz
(78)
-9 -9
Copg = 0.0667 x 10°F x Rgpy _ 0.0667 x 107°F x 31.13 kQ - 208 pF
JfrD 10 kHz
(79)
A standard resistor and capacitor are chosen for the design:
RRDM =31.6 kQ2
(80)
Copr = 220pF
(81)
16 UCC28070 300-W Interleaved PFC Pre-Regulator —Design Review SLUA479B-August 2008 —Revised July 2010

Copyright © 2008-2010, Texas Instruments Incorporated



13 TEXAS
INSTRUMENTS

www.ti.com Recommended PCB Device Layout

14 Recommended PCB Device Layout

Interleaved PFC techniques dramatically reduce input and output ripple current caused by the PFC boost
inductor, which allows the circuit to use smaller and less expensive filters. To maximize the benefits of
interleaving, the output filter capacitor should be located after the two phases allowing the current of each
phase to be combined together before entering the boost capacitor. Similar to other power management
devices, when laying out the PCB it is important to use star grounding techniques and to keep filter and
high frequency bypass capacitors as close to the device pins and ground pin as possible. To minimize the
interference caused by magnetic coupling from the boost inductor, the device should be located at least
one inch away from the boost inductor. It is also recommended that the device not be placed underneath
magnetic elements. To verify the application a 300-W interleaved prototype was constructed and
evaluated. This prototype consisted of mother board that was the power stage and a daughter board that
consisted of the control circuitry. Refer to Figure 8 through Figure 13 for schematics and a recommended
layout. The daughter board controller has two jumpers JP1 and JP2. If these jumpers are open the
evaluation module is running with frequency dithering. If these jumpers are shorted frequency dither is
disabled and the EVM can be synchronized through the sync input.
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Figure 8. 300-W Prototype Daughter Board Controller Schematic
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Figure 9. 300-W Prototype Mother Board Power Stage
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Figure 11. Daughter Board Layout Back
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15 Efficiency Curves

A 300-W prototype was built based on the design information presented in this application note. The
following graphs show the performance of this EVM.

15.1 Prototype Efficiency
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Figure 14. Figure 15.

Current Harmonics V= 230V, Py = 300W
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Figure 16. Prototype Harmonic Content at V,y, =230V, P, = 300 W
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15.2 Prototype Power Factor
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Figure 17. Figure 18. Input Current and Output Ripple Voltage at
Maximum Output Power
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15.4 Recovery from Line Dropout, CH1= Rectified Line Voltage, CH2=IL1, CH3=IL2, CH4 =
VOUT
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Figure 26. Brownout at V,y = 115V, Pq,; = 300 W

15.5 Startup, CH2 = IL1, CH3 = IL2, CH4 = Vg,
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15.6 EMI Measurements

When dithering was applied to the EVM a 4.35dBuV reduction in the Quasi Peak (QP) measurement was
observed. Note a filter was added to the front end of the EVM to clean up some of the noise to take EMI
data. Depending on the filter the amount of EMI will vary. Also, this filter was not setup to pass EMI
requirements but to show frequency dither reduced EMI.
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Figure 29. EMI Quasi Peak (QP) Measurement with out Frequency Dithering, No EMI Filter Present
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Figure 30. EMI Quasi Peak (QP) Measurement with Frequency Dithering, No EMI filter Present
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