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ABSTRACT
This application note discusses the design comparison of a Continuous Conduction Mode (CCM) Power
Factor Controller (PFC) versus a two-phase interleaving CCM PFC for on-board chargers in electric
vehicles. An on-board charger (OBC) is generally a two-stage design with a boost topology power factor
correction (PFC) stage followed by an isolated DC-DC stage.
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1 Introduction
A common AC/DC block diagram solution for the on-board charger is shown in Figure 1. [1] An OBC takes
as input AC voltage from the grid and converts to DC voltage in order to charge the electric vehicle
traction battery. This AC-DC system is located within the hybrid electric vehicle and electric vehicle
(HEV/EV). Figure 1 is not detailing isolation boundaries however the UCC21521-Q1 can be used to cross
the isolation barrier and drive the Phase-Shifted Full-Bridge (PSFB) MOSFETs.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA896
http://www.ti.com/product/UCC21521
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Figure 1. On-Board Charger Block Diagram Example

The same AC-DC system may be found in electric vehicle charging stations, also known as electric
vehicle service equipment (EVSE), where non-automotive grade components can be utilized. When
HEV/EV OBCs are serviced by an EVSE, the Society of Automotive Engineers standard has established
Levels 1 and 2: Level 1 is 120/230 VAC at 12 to 16 A input while Level 2 uses 208 ~ 240 VAC at 15 to ~
80 A input. These EVSE charger powers are therefore up to ~ 3 kW for level 1 versus ~ 20 kW for level 2.
[2]

At these input power levels, the boost power stage should be designed using a PFC controller. Depending
on the power level output from the OBC, a single-phase UCC2818A-Q1 controller or a two-phase
interleaved UCC28070-Q1 controlled can be selected; both are analog based controllers operating in
CCM PFC mode.

There are also Level 3 EVSEs that consists of an external charger supplying high voltage 300 to 750 VDC
up to 400 A to the automobile. For these power levels a digital based system is preferred still requiring a
PFC where the PFC is typically a Vienna Rectifier. [3] Digital based systems may also be preferred in
Level 2 systems. [4] There are also digital bridgeless PFC GaN designs. [5, 6] These design solutions will
not be included in this application report.

The remainder of this application report will detail the equations to design the CCM PFC power stage
components for the single-phase versus two-phase interleaved designs, an example design will be used
as a comparison on the component choices, followed by some reference design examples.

2 Single-phase CCM PFC Design
A typical circuit showing a CCM boost PFC is shown in Figure 2 using a single-phase UCC2818A-Q1
controller; note input filtering or inrush limiting components are not shown. If non-automotive grade
components are preferred then the UCC28180 or the UCC28019 controllers can be selected.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA896
http://www.ti.com/product/UCC2818A-Q1
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Figure 2. Typical Application Circuit that can be used with the UCC2818A-Q1

In addition to providing the key power train component design equations, an example calculation will be
provided based on the design specifications shown in Table 1. The 1 kW output is used in the example in
order to compare to reference designs found later in this application note. The following key power train
component design equations are also provided in the UCC28180 datasheet.

Table 1. Design Specifications for Calculated Example

PFC
Input Voltage Range (VRMS) 90 - 265

Output Voltage (V) 380, 300 minimum during tHOLDUP

Output Power (W) 1000
Efficiency (η) Target 97 %

Power Factor (PF) Target 0.99

The bridge rectifier (D3) must be rated to handle the IIN(max) and IIN_AVG(max) current after derating criteria:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA896
http://www.ti.com/product/UCC28180
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Where η is the target efficiency for the design which can be better estimated after the first pass design is
completed using calculated power loss values to determine the new efficiency and PF is the target power
factor for the design

The boost inductor (L1) maximum current and inductance value are determined by the following
equations:

Where VOUT is the output voltage of the PFC stage, D is duty cycle, ΔI is inductor ripple current, and fs is
switching frequency.

Assuming the boost inductor ripple current is 40 % of IIN(max), a duty cycle of 0.5, and a switching frequency
of 60 kHz, the boost inductor minimum is calculated to be:

The output capacitor (C12) is in part based on holdup time required for supporting the load after input ac
voltage is removed and is given by the following equation:

Where POUT is the output power from the PFC stage, tHOLDUP is the desired holdup time when there is loss
of input grid power to allow the OBC to safely shutdown in a know state, and VOUT and VOUT(min) are the
capacitor voltage change during the holdup time.

The output of the PFC stage should not fall below 300 V during one line cycle (20 ms at 50 Hz) in this
design example, therefore the minimum calculated output capacitor is:

However, in practice the capacitor output ripple voltage, the capacitor ESR, or the capacitor RMS ripple
current rating may require a capacitor value resulting in a different capacitance value then calculated
based on tHOLDUP alone.

The total rms capacitor current contributed by the PFC stage for D > 50 % is approximated by:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA896
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The rms capacitor current consists of a low frequency ripple current at twice the line frequency as well as
a high frequency ripple current at the PFC switching frequency and its harmonics. The rms current
calculation is a slightly modified version of the formula in Erickson and Maksimovic’s “Fundamentals of
Power Electronics” to calculate the RMS total capacitor ripple current. This formula ignores the effect of
inductor switching-frequency ripple current and thus underestimates the current when compared to a
numerical simulation. This underestimation becomes proportionally greater at high line, but because ripple
currents are greatest at low line, The i1∅ equation is accurate to better than about 10%. [7] For a more
detailed set of current equations, reference “Analytic Expressions for currents in the CCM PFC stage.” [8]

The current through the power MOSFET (Q1) is given by the following equation:

Where: VIN_RECTIFIED(min) is√2VIN(min)

Following with the calculation example inputs,

The current through the boost diode is

The MOSFET gate drive selection details can be found in the TI Tech Note “Pairing the PFC controller
with Gate Drivers in On-Board Chargers for Electric Vehicles” [1]

Specific to the rest of the UCC2818A-Q1 design and component selection on controller settings, feedback,
start-up, etc., reference the datasheet. [9]

3 Two-phase Interleaved CCM PFC Design
A typical circuit showing a two-phase interleaved CCM boost PFC is shown in Figure 3 using a single-
phase UCC28070-Q1 controller. The following key power train component design equations can be found
in the design note “UCC28070 300-W Interleaved PFC Pre-Regulator Design Review.” [10]

http://www.ti.com
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Figure 3. Typical Application Circuit sing the UCC28070-Q1

The benefit to an interleaved boost PFC is the inductor ripple current reduction seen by the input and
output capacitors of the boost stage. Figure 4 shows K(D), the ratio of input ripple current (ΔIIN) to
individual inductor ripple current (ΔIL1), for a two-phase interleaved PFC as a function of duty cycle (D).

Figure 4. Input Inductor Ripple Current Cancellation

The duty cycle is not constant and varies with changes in line phase input voltage. At low line the duty
cycle will vary from 100 % to 69 % and at high line the duty cycle will vary from 100 % to 2 %. Therefore,
the inductor ripple current cancellation will not be 100 % throughout the line cycle. [11] Notice that if the
interleaved boost PFC could operate only at 50 % duty cycle then the ripple current reduction is
completely cancelled. Duty cycles other than 50 % still result in smaller ripple currents as seen on the
input and output capacitors. The ripple current at twice line frequency is unaffected by interleaving
therefore to a rough approximation there is no reduction in low frequency (100 Hz to 120 Hz) ripple and
about 50% reduction in the high frequency ripple.

The equations for K(D) are:

http://www.ti.com
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In the design example so far:

The bridge rectifier must be rated to handle the IIN(max)and IN_AVG(max) current after derating criteria:

The boost inductors (L1 and L2) value is determined by the following equations with a 30 % assumption
on the inductor ripple current ΔI and a 120 kHz switching frequency:

Notice when compared to the previous single-phase CCM boost inductor design, the inductance value is
smaller even though there is a larger amount of ripple current in each inductor resulting in a smaller over
all sized inductor. An interleaved design can accommodate a larger inductor ripple current and can
operate at high switching frequencies due to the ripple cancellation effect.

The output capacitor (COUT) is in part based on holdup time required for supporting the load after input ac
voltage is removed and also keeping the capacitor ripple voltage within acceptable limits. A capacitance
value of approximately 0.6 uF per Watt of output power is sometimes used for an initial estimate on the
capacitor sizing. In the design example the output capacitance estimation is 600 uF. Either method for
calculating the output capacitor can be utilized; the interleaved design is 600 uF versus the single phase
design which is calculated to 735 uF. The capacitor output ripple voltage, ESR value, and RMS ripple
current may result in a capacitor sizing different from this 0.6 uF per Watt estimation.

The advantage in a two-phase interleaved CCM PFC design is when considering the ripple current
reduction in COUT between single- and two-phase interleaved CCM.

http://www.ti.com
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With the capacitor RMS current smaller, smaller sized capacitors may be chosen based on the ESR rating
of the capacitor. Note that in the literature, The i2∅ equation has several different factors for the first term
under the square root but circuit simulations and ultimately verification on the final design will be
performed and these calculations are meant to start component selections. [12,13] For a more detailed set
of current equations, reference “Analytic Expressions for currents in the CCM PFC stage.” [8]

The current though the power switches (M1 and M2) is given by the following equation:

Where VIN_RECTIFIED(min) is √2VIN(min)

Notice how only half the power is used for each power switch current calculation.

Following with the calculation example inputs,

This is lower rms current per MOSFET then in the single-phase CCM PFC design so a higher RDSON
MOSFET can be utilized in each phase. Higher RDSON MOSFETs tend to have lower capacitances
resulting in lower switching losses.

The current through each boost diode is

The MOSFET gate drive selection details can be found in the TI Tech Note “Pairing the PFC controller
with Gate Drivers in On-Board Chargers for Electric Vehicles” [1]

Specific to the rest of the UCC28070-Q1 design and component selection on controller settings, feedback,
start-up, etc., reference the datasheet. [14]

4 Transition-Mode PFC Design
The transition-mode (TM), also known as boundary conduction mode (BCM) or critical conduction mode
(CrCM), PFC could also be considered in OBC PFC designs however it is not recommended for designs
greater than 300 W loading. GaN based designs may allow TM up to higher powers. The TM PFC can
also be interleaved using the UCC28061-Q1 and can then be used in designs up to 1000 W loading. TM
PFC designs would find applications in HEV/EV special-purpose vehicles that have OBC requirements
less than found in a Level 1 system. These vehicles include small task-oriented vehicles (carts, utility task,
and all-terrain) and personal transportation devices (e-bikes, scooters, wheelchairs, even skateboards).

Since Level 1 OBCs are typically up to ~3 kW, TM PFCs are not considered because of the advantages of
a CCM PFC design. The key difference between the TM and CCM PFC design is the amplitude and ripple
profile on the input current to the PFC stage (the current after the EMI filter). Reference the Power Supply
Design Seminar “Designing High-Power Factor Off-Line Power Supplies” [15] and the High Voltage
Interactive Training Series “PFC for not dummies” [16] to get a better understanding on differences
between TM and CCM PFC. In short, there is larger ripple current in a TM PFC affecting the switching

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA896
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losses in the power switch and the boost inductor however the boost diode power losses are higher in the
CCM PFC due to reverse recovery which can be lowered when a SiC boost diode is used, in fact using a
SiC diode is almost mandatory at OBC power levels. CCM PFC could reduce the EMI filter design not just
in consideration of lower ripple currents but CCM mode uses fixed frequency control versus variable
frequency control in TM PFC designs.

5 Single-phase versus Two-phase Interleaved CCM PFC BOM Comparison based on
Example Design
Tabulating the example design calculations for the single and two-phase interleaved PFC CCM, Table 2
compares the different results. The previous Table 1 states the design requirements used for the
comparison data.

Table 2. BOM Comparison for Calculated Example

Single-phase CCM PFC Two-phase Interleaved CCM PFC
Quantity Description Quantity Description

Switching
Frequency 120 kHz 120 kHz - the individual

phases run at 60 kHz

Input Rectifier 1 IIN_AVG(max) = 10.4 A IIN_MAX =
16.4 A 2 IIN_AVG(max) = 10.4 A IIN_MAX =

16.4 A

Boost
Inductor 1

Ripple current = 40 %
IL_PEAK(max) = 19.7 A

Inductance = 120 µH
2

Ripple current = 30%
IL_PEAK(max) = 13.1 A
Inductance = 69 µH

Power Switch 1 9.7 A 2 4.8 A
Boost Diode 1 2.6 A 2 1.3 A

Output
Capacitor 1 735 µF Ripple current = 5.3

A 1 600 µF Ripple current = 3.3
A

Gate Driver 1 Single Low-Side 2 Single Low-Side

Referring to Table 2, the differences between a single-phase versus two-phase interleaved CCM PFC is:
• Each boost inductor is smaller in the two-phase interleaved design resulting in the possibility of a

smaller printed circuit board area needed for the total boost inductor design even though two inductors
are needed in the two-phase interleaved design.

• The power switch current is less in the two-phase interleaved boost converter so a smaller RDSON
MOSFET could be used even though two MOSFETs are required.

• Interleaving can reduce the ripple current in the output capacitor so a smaller capacitor could be used
in the two-phase interleaved design provided the capacitor output ripple voltage, ESR value, and RMS
ripple currents are within the design goal and capacitor derating.

• Two MOSFET gate drivers and two boost diodes are needed in the two-phase interleaved design.
• There is less power dissipated in the inductor and power switches in the two-phase interleaved design

and this makes thermal management easier since not only could the total power losses be smaller but
the heat is distributed across more components increasing the surface area for component cooling
design.

In the reference “An Interleaved PFC Preregualtor for High-Power Converters” [11] several benefits of a
two-phase interleaved design were concluded:
• The overall input ripple current of a two-phase interleaved PFC boost will be 55 % of what it would

have been in the same power and inductance for a single-phase PFC design.
• Up to a 25 % reduction in magnetic transformer volume with a two-phase interleaved PFC.
• The EMI filter could also be decreased in size not only due to the reduction in ripple current on the

input but also if reducing the switching frequency is considered.

http://www.ti.com
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These differences are key items to consider in deciding when to using the two-phase interleaved CCM
PFC versus a single-phase CCM PFC design. For a given design, a quick calculation for single-phase
versus two-phase interleaved CCM PFC should be conducted using the above quick calculations followed
by a component optimization selection based on the component Figure-of-merits, i.e. capacitor ESR,
MOSFET RDSON, boost inductor sizing, etc. Once the critical power train components are selected, a cost
estimate can be examined to determine the optimal PFC design.

6 Single-phase and Two-phase Interleaved CCM PFC Reference Designs
Two reference designs provide real examples to compare trends between a single-stage versus two-
phase interleaved CCM PFC designs: PMP11062 Universal AC Input, 380V/1kW CCM Boost Power
Factor Regulator Reference Design [17] as the single-phase CCM PFC design and PR779A 1.2kW
Universal Input Interleaved CCM PFC Power Board [18] as the two-phase interleaved CCM PFC design.
Also included will be the TIDM-2PHILPFC Two-Phase Interleaved Power Factor Correction Converter with
Power Metering [19] reference design to provide comparison comments between analog versus digital
solutions. Note that the reference designs are not optimized to compare the three designs on an
equivalent performance design point but are used to highlight design trends with the BOM. These
reference designs are only ~1000 W in order to compare back to the previous design calculations and see
component optimization trade-offs.

The 1 kW outputs are not power load limits to a CCM PFC design but rather are reference designs that
were designed for the 1 kW power output. A CCM PFC can be used in much higher power outputs, i.e.
there is the reference design PMP4311 5 KW Interleaved CCM Power Factor Correction Converter [20]
using the non-automotive version of the UCC28070 in a two-phase interleaved CCM PFC demonstrating
higher power designs where the automotive version of the controller can be substituted for the non-
automotive version of the controller.

Table 3 is a comparison on the design specifications for the three reference designs being compared. The
three designs are similar “enough” in order to provide some comments on the component BOMs.

Table 3. Design Specifications for the three reference designs

Single-phase CCM PFC Two-phase Interleaved CCM PFC Digital Two-phase Interleaved CCM
PFC

Reference Design PMP11062 PR779A TIDM-2PHILPFC
Input Voltage

(VRMS) 120 / 230 120 / 230 120 / 230

Output Voltage (V) 380 390 400
Output Watt (W) 1000 1200 750

Maximum
Efficiency

96 % peak @ 120 VAC / 60 Hz
98 % peak @ 230 VAC / 50 Hz

95 % peak @ 115 VAC / 60 Hz
97 % peak @ 230 VAC / 50 Hz 97 % peak

CCM Controller UCC28180 analog UCC28070-Q1 analog C2000 digital

Table 4 compares the three different BOMs.

Table 4. BOM Comparison for the three reference designs

Single-phase CCM PFC Two-phase Interleaved CCM PFC Digital Two-phase Interleaved CCM
PFC

Quantity Description Quantity Description Quantity Description
Input

Rectifier 2 600 V, 25 A with
HS 1 600 V, 25 A 1 600 V, 15 A

Boost
Inductor 1 2.54 mH, 79x43

mm 2 78 uH, 23.2x29,5
mm 2 150 uH

Power
Switch 2 650 V, 24 A, 95

mΩ, TO-247 4 500 V, 20 A, 250
mΩ, TO-220V 2 560 V, 12 A, 250

mΩ, TO-220

Boost
Diode 1 650 V, 20 A, SiC

TO-220 2
600 V, 6A,

UltraFast TO-
220AC

2
600 V, 10 A,

Schottky, TO263-
2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA896
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http://www.ti.com/tool/TIDM-2PHILPFC
http://www.ti.com/tool/PMP11062
http://www.ti.com/tool/pr779
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Table 4. BOM Comparison for the three reference designs (continued)

Output
Capacitor 3

180 uF ALUM, 450
V, 22x25 mm
Ripple current

rating: 1.8 A @ 120
Hz and 2.5 A @ 10

kHz

3

330 uF ALUM,
450 V, 35x30 mm

Ripple current
rating: 2.0 A @

120 Hz and 2.8 A
@ 10 kHz

3

100 uF ALUM,
450 V, 18x40 mm

Ripple current
rating: 0.8 A @

120 Hz and 1.8 A
@ 100 kHz

Controller 1 UCC28180D,
SOIC-8 1 UCC28070PW,

TSSOP-20 1 TMS320F28035,
VQFN-56

Gate
Driver 1

UCC27511DBVR
Single Low-Side,
4A/8A, SOT-23

4
UCC27322DGN,
Single Low-Side,

9A, MSOP8
1

UCC27524DR,
Dual Low-Side,

5A, SOIC-8

Comments on the BOM examples:
• The combined surface area of the two-phase interleaved CCM PFC inductors are smaller than the

single-phase CCM PFC inductor design.
• The power switches in the two-phase interleaved CCM PFC are smaller than the single-phase CCM

PFC power switch but with the paralleling of the MOSFETs in the interleaved design results in the
same effective RDSON.

• The digital two-phase interleaved CCM PFC design takes advantage of the reduction in output
capacitor ripple current to use smaller valued capacitances.

For the digital based design, Figure 5 shows the TIDM-2PHILPFC block diagram. [21]

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA896
http://www.ti.com/lit/ug/tidu249/tidu249.pdf
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Figure 5. Digital Two-phase Interleaved CCM PFC

To implement digital control, the power train components are still the same. With the analog controller
replaced by a digital controller, the digital controller requires signal conditioning blocks shown in Figure 5
to be implemented using discrete components and operational amplifiers. To learn more about the types
of operational amplifiers required in a digital design, go to “Selecting operational amplifiers for HEV/EV
powertrain systems” [22] of visit the “On-Board (OBC) & Wireless Charger” [23] application support page
on TI.com. The largest difference in a digital versus analog design is in the support required for the digital
firmware development and the ISO26262 safety certification but the tradeoff is in the flexibility to design in
features or operating modes not part of the analog solution.

http://www.ti.com
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https://training.ti.com/selecting-operational-amplifiers-hevev-powertrain-systems
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7 Increasing the Interleaving Count and Paralleling for a CCM PFC
Another important design question is how to achieve greater power outputs from the CCM PFC solution.
The UCC28070-Q1 controller can be paralleled as shown in Figure 6. In this configuration, the design
uses a single phase line input.

Figure 6. Simplified Four-phase Interleaved Application Diagram Using Two UCC28070 Devices

http://www.ti.com
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http://www.ti.com/product/UCC28070-Q1
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Figure 6 is a synchronization of two-separate two-phased interleaved CCM designs. A 4-phase interleaved
CCM PFC design, where all 4 phases are operating 90 ° from each other, reduces the inductor ripple
current further when compared to a 2-phase interleaved CCM PFC design, the two phase are 180 ° from
each other, and the reader is directed to section IX in “An Interleaved PFC Preregualtor for High-Power
Converters” for information on the ripple reduction. [11]

Another option is to parallel OBC designs for 1 AC input phase across 2 or 3 different AC input phases as
shown in Figure 7.

Figure 7. OBC Design Paralleling Designs from 3 AC-Input Phases

http://www.ti.com
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In this configuration, the OBC is designed to accommodate a single line phase input. This single line
phase OBC system is paralleled with other OBC systems connected to different input line phase grid
voltages to scale to the higher power level.

8 Summary
The differences between a single-phase versus a two-phase interleaved CCM PFC are key items to
consider in deciding when to using the two-phase interleaved CCM PFC versus a single-phase CCM PFC
design; the differences are the boost inductor size and printed circuit board area allocation, the reduction
of input and output ripple current seen by the input and output capacitors, EMI filter design, and how the
thermal power losses are distributed over the printed circuit board. For a given design, a calculation for
single-phase versus two-phase interleaved CCM PFC should be conducted using the quick calculations
outlined in this application note followed by a component optimization selection based on the component
Figure-of-merits, i.e. capacitor ESR, MOSFET RDSON, boost inductor sizing, etc. Once the critical power
train components are selected, a cost estimate can be examined to determine the optimal PFC design.

Several reference designs are provided to see actual implementations of the single-phase versus two-
phase interleaved CCM PFC as well as a few comments on a digitally based control design where the
effort put into the firmware development is the significant consideration especially in short time-to-market
schedules.

The OBC includes more than the PFC itself; it also includes the isolated DC-DC and auxiliary power to
control the different electronics in the OBC. For additional information on a complete OBC design, the
“Design review of a 2-kW parallelable power supply module” [24] and “Designing multi-kW power supply
systems” [25] discuss the other key power subsystems in the OBC design.
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