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ABSTRACT

The TPS23753 is an IEEE 802.3-2005-compliant powered-device and power supply controller optimized
for isolated converter topologies. This application report provides a comprehensive design example for the
TPS23753EVM-002 evaluation module (EVM). This EVM is targeted at low-cost, simple, 7-W flyback
converter applications.
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1 Introduction

The TPS23753 supports designs using isolated flyback converter topologies. Benefits include lower
voltage operation along with built-in features including:

• Devices optimized for isolated converters

• Programmable frequency with synchronization

• Adjustable leading-edge blanking

• Simplified dc/dc control 100-V ratings

• –40°C to 125°C junction temperature range

• Current and inrush limit

• Thermal protection

2 Design Example and Component Selection

Table 1 outlines the electrical requirements for this design example.

Table 1. TPS23753EVM-002 Electrical Specifications

PARAMETER CONDITION MIN TYP MAX UNIT

POWER INTERFACE

Input voltage Applied to the power pins of connectors J1 or J2 0 – 57 V

Operating voltage After start-up 30 – 57

Input UVLO Rising input voltage – – 36

Falling input voltage 30 – –

DC/DC CONVERTER

Output voltage 20 V ≤ Vin ≤ 57 V, ILOAD ≤ ILOAD (max) 3.3-V 3.13 3.3 3.47 V
10.8 V ≤ Vin ≤ 13.2 V, ILOAD ≤ ILOAD (max) output

Output current 20 V ≤ Vin ≤ 57 V 3.3-V – – 2 A
output10.8 V ≤ Vin ≤ 13.2 V – – 1.2

Output ripple voltage, peak-to- Vin = 44 V, ILOAD = 2 A 3.3-V – 65 – mV
peak output

Efficiency, end-to-end Vin = 44 V, ILOAD = 2 A 3.3-V – 77% –
output

Switching frequency 225 – 275 kHz
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The equations that follow are associated with the schematic diagram in Figure 1. The reference
designators in Figure 1 perform a cross-reference function to both the TPS23753EVM-002EVM and the
TPS23753 data sheet (SLVS853).

Figure 1. Generic PD and Flyback Converter Circuit Block Diagram
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2.1 Powered-Device Controller

2.1.1 TVS, D1

D1 is used to protect the powered-device (PD) controller front-end from overvoltage due to line transients,
hotplug into 48-V sources, and output faults. A transient suppressor diode, such as the SMAJ58A, must
be connected from VDD to VSS.

2.1.2 Capacitor, C1

The IEEE 802.3-2005 standard specifies a VDD-VSS bypass capacitor whose value is required to be 0.05
μF–1.2 μF. Typically, a 0.1-μF, 100-V, 10% ceramic capacitor is used.

2.1.3 Detection Resistor, RDEN

The IEEE 802.3-2005 standard specifies a detection signature resistance, RDEN, between 23.75 kΩ and
26.25 kΩ.

(1)

2.1.4 Classification Resistor, RCLS

Connect a resistor from CLS to VSS to program the classification current according to the IEEE 802.3-2005
standard. The power assigned must correspond to the maximum average power drawn by the PD during
operation. Select RCLS according to the following table.

CLASS POWER AT PD PI CLASS CURRENT RESISTOR MINIMUM NOTES
(Ω) PACKAGEMINIMUM MAXIMUM MINIMUM MAXIMUM

SIZE(W) (W) (mA) (mA)

0 0.44 12.95 0 4 1270 0402

1 0.44 3.84 9 12 243 0402

2 3.84 6.49 17 20 137 0402

3 6.49 12.95 26 30 90.9 0603

4 12.95 25.5 36 44 63.4 0603 802.3at only, not allowed for IEEE
802.3-2005

Because this design example is 7 W, either class 0 or class 3 can be chosen. Because the output loading
is not fixed, class 0 and RCLS = 1270 Ω is chosen.

2.2 Adapter Input

The adapter configuration shown in Figure 1 bypasses the PD hotswap MOSFET by applying the adapter
voltage directly to the TPS23753 converter section (VDD1 and RTN). Other adapter O-ring configurations
are possible and are discussed in application report SLVA306.

2.2.1 Input Blocking Diode, DA

DA should be rated for the reverse voltage required which is typically 80 V–100 V. A Schottky diode rated
for the maximum adapter low line input current is preferred to minimize diode power loss. For this
example, the MURA120 diode is used (200 V, 1 A, VF = 0.75 V maximum, VF = 0.7 V nominal at 550
mA).

2.2.2 APD Pin Divider Network, RAPD1, RAPD2

The APD pin can be used to disable the TPS23753 internal hotswap MOSFET giving the adapter source
priority over the PoE source. An active APD pin also disables the internal class regulator and CLS pin.
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RAPD1 and RAPD2 provide ESD protection, leakage discharge for the adapter ORing diode, and input voltage
qualification. The APD divider ratio DRAPD must be chosen with consideration given to the APD pin
maximum recommended input voltage, class regulator and resistor power dissipation, and adapter disable
threshold.

The following example illustrates selection of RAPD1 and RAPD2.

1. To prevent the converter from operating at an excessively low adapter voltage, choose a start-up
voltage, VSTART, approximately 75% of nominal. Assuming that the adapter output is 48 V ± 10%, this
provides 15% margin below the minimum adapter operating voltage.

2. Choose VSTART = 48 × 0.75 = 36 V.

3. Select RAPD2, considering power dissipation. Choose RAPD2 = 3.01 kΩ

(2)

(3)

4. Choose RAPD1 = 69.8 kΩ
5. Check the adapter turnon and turnoff voltage.

(4)

(5)

6. Check the APD pin voltage at maximum adapter input.

(6)

7. VAPD is less than VB, so is within the recommended maximum.

APD turns the class regulator off when the input voltage is above the threshold. When low-voltage
adapters are to be used, the APD pin divider can be chosen with class regulator and class resistor power
dissipation in mind. With lower APD divider ratios, caution must be exercised to avoid damage to the APD
pin if used with a higher voltage adapter.

2.3 Frequency and Blanking

2.3.1 Frequency Setting Resistor, RFRS

For this design, ƒSW = 250 kHz

(7)

2.3.2 Blanking Interval, RBLNK

External blanking can be achieved by installing RBLNK. If the internal blanking interval is sufficient, connect
the RBLNK pin to RTN. Choose the blanking interval to be a percentage of the switching period.

(8)
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2.3.3 Internal Control Rail Capacitor, CVB

VB must be bypassed with a 0.1-μF ceramic capacitor to RTN. VB is an internal 5-V control rail and must
be used to bias the feedback opto-coupler, U2

2.4 Bias Supply

2.4.1 Bias Supply Diode, DVC

DVC can be a small, general-purpose diode. For this example, BAS16 diode is used (75 V, 150 mA).

2.4.2 Bias Supply Resistor, RVC

RVC helps to reduce peak charging from the bias winding. Typical RVC values range from 0 Ω to 100 Ω.
Choose RVC = 49.9 Ω.

2.4.3 Bias Supply Capacitance, CVC1, CVC2

VC must be bypassed with a 0.22-μF minimum ceramic capacitor (CVC2) to RTN. The value of the bulk VC

capacitor (CVC1) affects the converter start-up time as well as shorted output hiccup frequency. CVC1 is
charged by the internal VC bootstrap current source as VC approaches UVLO1. CVC1 affects the charge-up
time as follows:

(9)

2.5 DC-DC Converter Characteristics

2.5.1 Output

(10)

2.5.2 Input

(11)

2.5.3 Efficiency Target

ηFB ≉ 78%

2.5.4 Maximum Adapter Input Current

(12)
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2.5.5 Minimum Converter Input Voltage

(13)

2.5.6 Duty Cycle

The TPS23753 supports duty cycles up to 80%. Choose a maximum operating duty cycle for the converter
that includes plenty of margin.

DmaxDESIGN ≉ 60%

2.6 Flyback Transformer

2.6.1 Primary Voltage Drops

Estimate the primary element voltage drops assuming that the peak primary input current is twice the
maximum adapter low line input current.

(14)

2.6.2 Secondary and Bias Winding Voltage Drops

(15)

2.6.3 Required Transformer Turns Ratios

The equations yield a maximum turns ratio at VflybackMIN and DmaxDESIGN

(16)

2.6.4 Target Peak Primary Current

For a continuous conduction mode (CCM) flyback converter, a good rule is to choose the primary ripple
current to be < 50% of the peak primary current. Doing this yields the following equation.

(17)

2.6.5 Primary Inductance

The following equation yields a minimum primary inductance required to keep the peak current below that
in Equation 17.

(18)
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2.6.6 Select the Transformer

Several readily available 7-W choices exist for this PoE transformer. Significant data sheet parameters
follow.

Primary Inductance, LP = 155 μH
Primary-to-secondary turns ratio, NPS = 5.26
Primary-to-bias turns ratio, NPB = 1.5

2.6.7 Actual Duty Cycle at Voltage Using Selected Transformer

(19)

2.6.8 Calculate Primary Currents

An example of the primary current waveform is shown in Figure 2.

Figure 2. Example Primary Current Waveform

Low line average DC input current:

On-state step current:

Ramp current:

Peak current:
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2.7 Power Train

2.7.1 Primary Switching MOSFET, M1

Determine drain-to-source voltage rating. The snubber limits the actual voltage excursion.

(20)

Choose a MOSFET with a 150-V, drain-to-source rating. A small package device such as SOT-23 is
suitable for this power level. Drain current of at least 1.5 A and RDSon of 500 mΩ is sufficient. Choose a
MOSFET with a fairly low gate charge (10–20 nC) due to the potentially low operating voltage conditions
that may be encountered in a shorted output condition. The TPS23753 can operate down to about 6.5 V;
so, this requires that the MOSFET adequately switch on during these conditions.

2.7.2 Current Sense Resistor, RCS

(21)

2.7.3 Snubber, RSN , CSN, DSN

Without a snubber, the stored energy in the leakage inductance rings with the transformer interwinding
(CWDG) and MOSFET output capacitance (COSS_M1) at MOSFET turnoff. The transformer leakage
inductance, LLKG, may be 2%-3% of the primary inductance and the MOSFET and transformer winding
capacitance can be several hundred picofarads.

(22)

Choose RSN so that the snubber time constant is much larger (say 200x) than the switching period.
Choose DSN for the input filter; LIN, CIN1, CIN2 required reverse voltage and leakage inductance charging
current.

(23)

Alternatively, an RC snubber from the primary FET drain to RTN can be employed to limit the spike and
slow down the turnoff rise time. This may be preferred for an application where reduced conducted
emissions are required. The RC combination should be chosen to minimize the effect on efficiency while
reducing the spike to an acceptable safe level. Typical values are 80 Ω, 1/2 W, 330 pF, and 200 V for this
application.

2.7.4 Input filter; LIN, CIN1, CIN2

The input capacitance (CIN1 and CIN2) must furnish the transient switching current. An inductor, LIN,
provides another layer of filtering and reduces the requirements on CIN2. CIN1 provides bulk filtering,
whereas CIN2 provides switching energy absorption.
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(24)

Select a common-type aluminum electrolytic capacitor for CIN1, and then size the inductor to achieve the
additional attenuation of the ripple voltage.

(25)

Choose a 4.7-μH, 1.5 ARMS, 90-mΩ inductor.

2.7.5 Calculate Secondary Currents

An example of the secondary current waveform is shown in Figure 3.

Figure 3. Example Secondary Current Waveform
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Off-state step current:

Ramp current:

Peak current:

2.7.6 Output Filter; COUT1, COUT2

The output capacitance (COUT1 and COUT2) must furnish the transient load current. COUT1 provides bulk
filtering, whereas COUT2 provides switching energy absorption.

(26)

(27)

Add COUT1 = 47 μF, aluminum electrolytic, 6.3-V, 1.25-Ω ESR at 100-kHz, 90-mA RMS ripple current
rating.

The low-ESR ceramics effectively shunt the ESR of the aluminum electrolytic. The additional ripple
attenuation due to the aluminum electrolytic is minimal due to the larger ESR.

2.7.7 Output Rectifier; DS

The output rectifier diode must provide low forward voltage drop at the secondary peak current.
Consideration must also be given to a safe operating area during output overload conditions. For this
case, the converter goes to a constant output power condition with low-primary and high-secondary duty
cycle. DS must withstand these conditions reliably. Choose DS to be a MBRS540T3 in a SMC package
(40-V reverse voltage, 5-A continuous current max, Vf = 0.5 V max at 5 A).

2.7.8 Thermal Considerations

Consideration must be given to the power dissipation in M1, RCS, and DS. Both conduction and switching
losses must be considered.

2.8 Feedback Control

2.8.1 Shunt Regulator, U3

For this 3.3-V application, a low-voltage reference shunt regulator is required. Choose the TLV431A with a
1.24-V, 1% internal reference.

2.8.2 Output Voltage Setpoint Resistors: RFBU, RFBL

Choose RFBU based on expected integrator midband gain and zero location. Estimate the integrator zero
location to be approximately 1 kHz, integrator zero capacitors are from 1 nF–10 nF, and low integrator
gain.
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(28)

(29)

Choosing RFBL a little smaller than calculated ensures an output voltage a bit higher than nominal to
compensate for the DC drops from the power supply to the load.

2.8.3 Opto-Isolator, U2 Biasing

Choose the opto-isolator to provide a fairly low but stable current transfer ratio characteristic when the
LED is driven with a 1- to 2-mA current bias. Typical parameters for an opto-isolator of this sort are:

(30)

2.8.4 Opto-Isolator LED Bias Current

(31)

2.8.5 Opto-Isolator Transistor Bias Current

(32)

2.8.6 Secondary Side Soft Start

Place an RC network on the shunt regulator output for soft start. Typical values are RSS = 10 kΩ and CSS =
0.1 μF. A blocking diode, DSS, isolates the outer loop from RSS and CSS.
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2.9 Frequency Characteristics

2.9.1 Modulator-Power Stage (MPS) Gain and Right-Half Plane Zero (RHPZ)

The MPS gain, KMPS is the ratio of modulator output current to CS pin voltage, VCS. KMPS and RHPZ are
derived below in Equation 33.

(33)

2.9.2 MPS Current

The MPS current, IMPS(ω), is the product of KMPS and RHPZ.

(34)

2.9.3 Output Filter (Plus Load) Frequency Characteristics

The output impedance is simply the parallel combination of the output capacitors (including each
capacitor's equivalent series resistance or ESR) and the load.

(35)

2.9.4 MPS Plus Filter and Load (MPF) Transfer Function

The MPF transfer function is shown in Equation 36

(36)

2.10 Loop Compensation

The following discussion relies on the use of a mathematics program like MathCAD™ or Excel™ to
perform the calculations. Some iteration is involved, but the end results are close to actual performance.

2.10.1 Choose Desired Loop Crossover Frequency, F0 = 5.5 kHz

The inner control loop consists of the opto-isolator and associated components. The outer control loop
consists of the integrator. It can be shown that the overall transfer function from VOUT to VCTL is:

–OPTO(ω) x [INT(ω) + 1]
where OPTO(ω) is the opto-isolator transfer function and INT(ω) is the integrator transfer function
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2.10.2 Overall Transfer Function

(37)

2.10.3 Compensate Opto-Isolator or Inner Loop

Select CCTL to achieve a gain sufficiently below unity at the crossover frequency. Start by assuming the
simple integrator INTS(ω) with no midband gain (RIZ = 0). Target an initial |GMO(2 × π × F0)| > 0.5–0.8 to
estimate CCTL. CCTL must be limited to 47 nF or less.

(38)

2.10.4 Inner Loop Control Zero Resistor, RZCTL

For lower output power and voltage designs, a resistor in series with CCTL can provide phase boost for
stability. Target RZCTL ~ RCTL /10).

Choose RZCTL = 249 Ω

2.10.5 Inner Loop Transfer Function

(39)

2.10.6 Outer Loop Compensation

Now that the inner loop is first-pass compensated, design an integrator with midband gain to yield the
desired crossover. First calculate the new GMO including RZCTL.

(40)

Solve for the integrator midband gain (RIZ/RFBU), which causes the overall transfer function to be unity at
F0.

(41)
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Select the integrator zero capacitor, CIZ, by choosing an integrator zero 4 to 5 times below F0. Note that
once the bode plot is mathematically generated, some shaping of the response curves can be performed
to optimize the desired response.

(42)

Select the integrator pole capacitor, CIP, by choosing an integrator zero 10 times above F0.

(43)

2.10.7 Integrator Transfer Function

(44)

2.10.8 Stability Check

For loop-stability analysis, break the feedback loop between the output load and the input to the shunt
regulator feedback network and inject a noise source. The shunt regulator/integrator shifts phase by 270
degrees (180 due to inversion and 90 due to integrator). So, the output load phase leads the input phase
by 90 degrees. Instability occurs as the phase difference approaches 0 degrees (or in-phase input and
output signals).

(45)

The phase margin is inadequate. Increase RZCTL, then recompute RIZ.

(46)

Recompute the new phase margin.

(47)

The new phase margin is now acceptable.

The modeled bode plot is shown in Figure 4 and the modeled crossover is at 5.3 kHz with phase margin
of 50 degrees. Figure 5 and Figure 6 show the circuit response using a network analyzer. The actual
results correlate closely with the modeled results.
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Figure 4. Mathcad Bode Plot (Minimum Input/2-A Output)

Figure 5. TPS23753EVM-002 Network Analyzer Plot (24-V Input/2-A Output)
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Figure 6. TPS23753EVM-002 Network Analyzer Plot (48-V Input/2.2-A Output)
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3 PCB Layout Guidelines

The layout of the PoE front end must follow power and EMI/ESD best practice guidelines. A basic set of
recommendations include:

• Parts placement must be driven by power flow in a point-to-point manner; RJ-45, Ethernet transformer,
diode bridges, TVS and 0.1-µF capacitor, and TPS23753 converter input bulk capacitor.

• All leads must be as short as possible with wide power traces and paired signal and return.

• Signals must not cross over one part of the flow to another.

• Spacing consistent with safety standards like IEC60950 must be observed between the 48-V input
voltage rails and between the input and an isolated converter output.

• The TPS23753 must be located over split, local ground planes referenced to VSS for the PoE input
and to RTN for the converter. Whereas the PoE side may operate without a ground plane, the
converter side must have one. Logic ground and power layers must not be present under the Ethernet
input or the converter primary side.

The DC/DC converter layout can benefit from basic rules such as:

• Pair signals to reduce emissions and noise, especially the paths that carry high-current pulses which
include the power semiconductors and magnetics.

• Minimize trace length of high current, power semiconductors, and magnetic components.

• Where possible, use vertical signal pairing.

• Keep the high-current and high-voltage switching away from low-level sensing circuits including those
outside the power supply.

• Pay special attention to spacing around the high-voltage sections of the converter.

4 PCB EMI Control

Refer to Designing an EMI Compliant PoE With Isolated Flyback UNPUBLISHED application report
(SLUA469) for detailed EMI recommendations. A short list of recommendations follows.

• Use compact loops for dv/dt and di/dt circuit paths (power loops and gate drives).

• Use minimal, yet thermally adequate, copper areas for heat sinking of components tied to switching
nodes (minimize exposed radiating surface).

• Use copper ground planes (possible stitching) and top layer copper floods (surround circuitry with
ground floods).

• Minimize the amount of copper area associated with input traces (to minimize radiated pickup).

• Hide copper associated with switching nodes under shielded magnetics where possible.

• Heat sink the “quiet side” of components instead of the “switching side” where possible (like the output
side of inductor).

• Use Bob Smith terminations, Bob Smith EFT capacitor, and Bob Smith plane

• Use Bob Smith plane as ground shield on input side of PCB (creating a phantom or literal earth
ground)

• Use LC filter at DC/DC input to suppress high-frequency ringing on the switching nodes.

• Control rise times with gate drive resistors and drain snubbers.

• Use an EMI bridge capacitor across isolation boundary (isolated topologies).

• Observe the polarity dot on inductors (embed noisy end).

• Use common-mode inductors or ferrite beads in a common-mode filter fashion on the input.

• Maintain physical separation between input-related circuitry and power circuitry (use ferrite beads as
boundary line).

• Balance efficiency vs acceptable noise margin.

• Consider the end-product enclosure and shielding with respect to input signal routing and filtering.
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5 Conclusion

This application report outlines the steps to design a simple flyback converter using the TPS23753. The
design procedure outlined along with the included layout guidelines allows easy and accurate circuit
design using the TPS23753.

6 References
1. TPS23753, IEEE 802.3-2005 PoE Interface and Isolated Converter Controller data sheet (SLVS853)

2. TPS23753EVM-001 Evaluation Module for TPS23753 User's Guide (SLVU246)

3. Compensating the (often missed) Inner and Outer Control Loops using the TL431 by Robert Kollman
and John Betten. Power Electronic Technology Conference, Power Systems World 2002, Chicago

4. Practical Guidelines to Designing an EMI Compliant PoE Powered Device with Non-Isolated DC/DC
application report (SLUA454)

5. Designing an EMI Compliant PoE Powered Device with Isolated Flyback application report (SLUA469)
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