

TPS54xx0-Q1 and TPS57xx0-Q1 Pin Open and Short Test Results

Ben Hopf

ABSTRACT

This application note provides Pin Open and Short Test Results for the device pins of the TPS54xx0-Q1 and TPS57xx0-Q1 family of step-down SWIFT[™] DC-DC converters. The TPS54xx0-Q1 and TPS57xx0-Q1 family of power devices consists of high-input-voltage step-down regulators that provide a variety of current options.

Contents

1	Introduction	2
2	Test Results	3
	List of Tables	
1	Summary of TPS54xx0-Q1 and TPS57xx0-Q1 Family of Step-Down SWIFT DC-DC Converters	2
2	Analysis for Pin Short-Circuit to GND	3
3	Analysis for Pin Left Open	3
4	Analysis for Pin Short-Circuit to Supply Voltage	4
5	Analysis for Pin Short-Circuit to Neighboring Pin	4

SWIFT, PowerPAD are trademarks of Texas Instruments.

1

2

1 Introduction

The TPS54xx0-Q1 and TPS57xx0-Q1 family of power devices consists of high-input-voltage, step-down regulators that provide a variety of current options. These devices have integrated high-side MOSFETs and employ current-mode control to provide simple external compensation and flexible component selection. A low-ripple pulse-skip mode reduces the no load, regulated output-supply current to 138 µA or less. Using the enable pin, shutdown supply current is reduced to 1.5 µA or less.

Undervoltage lockout is internally set at 2.5 V, but can be increased using the enable pin (EN). The output-voltage start-up ramp is controlled by the slow-start pin (SS/TR) that can also be configured for sequencing and tracking. An open-drain power-good signal indicates the output is within 92% to 109% of the nominal voltage. A wide switching frequency allows for efficiency and external component size to be optimized. Frequency foldback and thermal shutdown protects the device during an overload condition.

The TPS54xx0-Q1 and TPS57xx0-Q1 devices are available in 10-pin thermally enhanced MSOP PowerPAD[™] packages (DGQ) and 10-pin SON packages (DRC).

Table 1 lists the devices included in the TPS54xx0-Q1 and TPS57xx0-Q1 family of step-down SWIFT DC-DC converters.

DEVICE	INPUT VOLTAGE		OUTPUT CURRENT	PACKAGE OPTIONS
DEVICE	MIN	MAX	OUTFUT CORRENT	PACKAGE OF HONS
TPS54140-Q1	3.5 V	42 V	1.5 A	MSOP - DGQ SON - DRC
TPS54160-Q1	3.5 V	60 V	1.5 A	MSOP - DGQ SON - DRC
TPS57140-Q1	3.5 V	42 V	1.5 A	MSOP - DGQ SON - DRC
TPS57160-Q1	3.5 V	60 V	1.5 A	MSOP - DGQ SON - DRC
TPS54240-Q1	3.5 V	42 V	2.5 A	MSOP - DGQ SON - DRC
TPS54260-Q1	3.5 V	60 V	2.5 A	MSOP - DGQ SON - DRC
TPS54040-Q1	3.5 V	42 V	0.5 A	MSOP - DGQ SON - DRC
TPS54060-Q1	3.5 V	60 V	0.5 A	MSOP - DGQ SON - DRC
TPS57040-Q1	3.5 V	42 V	0.5 A	MSOP - DGQ SON - DRC
TPS57060-Q1	3.5 V	60 V	0.5 A	MSOP - DGQ SON - DRC

Table 1. Summary of TPS54xx0-Q1 and TPS57xx0-Q1 Family of Step-Down SWIFT DC-DC Converters

www.ti.com

2 Test Results

This application note provides test results for the device pins of the TPS54xx0-Q1 and TPS57xx0-Q1 family of step-down SWIFT DC-DC converters. The failure conditions covered in this document include typical failure scenarios, such as short-circuit to GND, short-circuit to supply, short-circuit to a neighboring pin, or if the pin is left open. This application note also details how these conditions affect the device. The first effect considered is whether the condition damages the pin in question or the device itself. The second effect considered is whether the device is functional under the condition. Lastly, the analysis includes a comments section that discusses how the particular condition affects the device operation.

NOTE: Values in green indicate normal device operation. Values in red indicate damage to the device.

PIN		SHORT TO GND			
NUMBER	NAME	DAMAGE	FUNCTIONALITY	COMMENTS	
1	BOOT	Yes	No	Damage the VIN to BOOT path	
2	VIN	No	No	No output voltage because the device is off. No Output	
3	EN	No	No	No output voltage because the device is disabled. No Output	
4	SS/TR	No	No	No output voltage because the device is disabled. No Output	
5	RT/CLK	No	No	Very high switching frequency	
6	PWRGD	No	Yes	Output voltage is present, but communication about status of output voltage is lost. Normal Operation	
7	VSENSE	Yes	No	Max duty cycle so device connected to output can be damaged and pass transistor may be damaged from excessive heat.	
8	COMP	No	No	Duty cycle is 0. No Output	
9	GND	No	Yes	Appropriate connection. Normal Operation	
10	PH	Yes	No	Device is protected from overcurrent, but pass transistor may be damaged due to excessive heat. No Output	

Table 2. Analysis for Pin Short-Circuit to GND

Table 3. Analysis for Pin Left Open

PIN		OPEN			
NUMBER	NAME	DAMAGE	FUNCTIONALITY	COMMENTS	
1	BOOT	No	No	No output voltage because Boot capacitor is not charged so pass transistor is always off. No Output	
2	VIN	Yes	No	No output voltage because device is always off. Potential for damage from static. No Output	
3	EN	No	Yes	Output voltage overshoot at power ON and input inrush current. Normal Operation	
4	SS/TR	No	Yes	Output voltage overshoot at power ON and input inrush current. Normal Operation	
5	RT/CLK	No	No	Very low switching frequency	
6	PWRGD	No	Yes	Output voltage is present, but communication about status of output voltage is lost. Normal Operation	
7	VSENSE	Yes	No	No predicted duty cycle and potential of damage from static. Unregulated Output	
8	COMP	No	No	Potential for unstable output due to lack of compensation. Unstable operation	
9	GND	No	No	No output voltage because device is off. No Output	
10	PH	No	No	No output voltage because PH pin is disconnected from output LC filter. No Output	

Texas Instruments

www.ti.com

Test Results

PIN		SHORT TO SUPPLY			
NUMBER	NAME	DAMAGE	FUNCTIONALITY COMMENTS		
1	BOOT	Yes	No	Damage the internal BOOT-PH ESD cell and potential damage to bond wire of PH pin depending on the voltage. Massive Destruction	
2	VIN	No	Yes	Appropriate Connection. Normal Operation	
3	EN	Yes	No	Violation of absolute maximum voltage rating on EN pin if supply voltage greater than 5 V	
4	SS/TR	Yes	No	Violation of absolute maximum voltage rating on SS/TR pin if supply voltage greater than 3 V	
5	RT/CLK	Yes	No	Violation of absolute maximum voltage rating on RT/CLK pin if supply voltage greater than 3.6 V	
6	PWRGD	Yes	No	Violation of absolute maximum voltage rating on PWRGD pin if supply voltage greater than 6 V	
7	VSENSE	Yes	No	Violation of absolute maximum voltage rating on VSENSE pin if supply voltage greater than 3 V	
8	COMP	Yes	No	Violation of absolute maximum voltage rating on COMP pin if supply voltage greater than 3 V	
9	GND	No	No	Supply shorted to GND. No Operation	
10	PH	Yes	No	Potential damage to device connected to output due to short between supply and PH.	

Table 4. Analysis for Pin Short-Circuit to Supply Voltage

Table 5. Analysis for Pin Short-Circuit to Neighboring Pin

PIN		SHORT TO NEIGHBORING PIN			
NUMBER	NUMBER NAME DAMAGE FUNCTIONALITY		FUNCTIONALITY	COMMENTS ⁽¹⁾	
1	BOOT	Yes	No	(1-2) Damage the internal BOOT-PH ESD cell and potential damage to bond wire of PH pin depending on the voltage. Massive Destruction	
2	VIN	Yes	No	$(2\mathchar`-3)$ Violation of absolute maximum voltage rating on EN pin if supply voltage greater than 5 V	
3	EN	No	Yes	(3-4) SS/TR functionality will be altered which could result in faster start-up time than desired.	
4	SS/TR	No	No	(4-5) Switching frequency is corrupted and SS/TR functionality is lost.	
5	RT/CLK	N/A	N/A	(5-6) N/A as pins are on opposite sides of the package	
6	PWRGD	No	No	(6-7) PWRGD pin is low at power-up, so VSENSE is driven low and stays low. No switching and output voltage is 0 V.	
7	VSENSE	No	No	(7-8) Error amplifier output connected to VSENSE will cause the output to become unregulated upon any change in load. Unregulated output	
8	COMP	No	No	(8-9) Duty cycle is 0. No Output	
9	GND	Yes	No	(9-10) Device is protected from over current but pass transistor may be damaged from heat	
10	PH	N/A	N/A	(10-1) N/A as pins are on opposite sides of the package	

(1) The numbers in parentheses indicate the two pins that are being considered.

4

www.ti.com

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Cł	Changes from Original (November 2013) to A Revision					
•	Added note to Pin FMEA section to identify meaning of colors used in the tables	3				

5

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated