Application Note

TPS2576x/TPS2577x-Q1 Source Power Policy Management

ABSTRACT

The USB Type-C® and Power Delivery (PD) specification has expanded the capability of USB ports including support for higher power delivery over USB connection. With the widespread adoption of USB Type-C and PD applications and portable devices that can charge over USB, it has become increasingly important for single or multi-port charger systems to intelligently manage power schemes for reliable and safe operation.

This application note describes how the TPS2576x/77x-Q1 family of USB Type-C PD controllers enable power delivery over USB for robust and reliable system operation using the Source Power Policy Management (SPM) Engine.

Table of Contents

1 Introduction ... 2
 1.1 Terms and Abbreviations .. 2
2 SPM Engine Overview .. 3
3 Multi-Port Power Allocation Policy .. 4
 3.1 Assured Capacity Policy ... 5
 3.2 Shared Capacity Policy .. 7
 3.3 Hybrid Mode .. 11
4 Power Foldback Policy .. 14
 4.1 Thermal Foldback Operation .. 14
 4.2 Engine Start or Stop Transition Management ... 18
5 Multi-Port Power Allocation Policy Examples .. 22
 5.1 Assured Capacity Policy Example .. 23
 5.2 Fair Share Power Policy Example .. 26
 5.3 Hybrid Mode Example .. 38
6 References .. 42
7 Revision History .. 42

Trademarks

USB Type-C® is a registered trademark of USB Implementers Forum.
All trademarks are the property of their respective owners.
1 Introduction

The TPS257xx-Q1 devices belong to a family of USB Type-C PD controllers for use in single or multi-port charging or data USB system applications. The TPS257xx-Q1 family supports an integrated Source Power Policy Management (SPM) Engine that manages multi-port power allocation policies (in the case of the TPS25772-Q1 dual-port PD controller) and dynamically adjusts USB port power based on events such as these: Connect or disconnect of a Sink device and its Sink Capabilities, thermal events measured through an external thermistor or temperature sensor, and engine status detected through a change in input supply voltage.

1.1 Terms and Abbreviations

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blind Sink</td>
<td>A Sink not returning Sink Capabilities per system power requirement.</td>
</tr>
<tr>
<td>Contract</td>
<td>An agreement on power level reached between a Source and Sink.</td>
</tr>
<tr>
<td>FSP</td>
<td>Fair Share Power</td>
</tr>
<tr>
<td>Good Sink</td>
<td>A Sink correctly returning Sink Capabilities per system power requirement.</td>
</tr>
<tr>
<td>Negotiation</td>
<td>The PD process between a Sink and Source:</td>
</tr>
<tr>
<td></td>
<td>1. The Sources advertises its Source Capabilities.</td>
</tr>
<tr>
<td></td>
<td>2. The Sink requests one of the advertised capabilities.</td>
</tr>
<tr>
<td></td>
<td>3. The Source accepts the request and provides power accordingly</td>
</tr>
<tr>
<td></td>
<td>The results of the negotiation is a Contract for power delivery/consumption between the TPS257xx-Q1 and Sink devices.</td>
</tr>
<tr>
<td>PD</td>
<td>USB Power Delivery</td>
</tr>
<tr>
<td>Port Partner</td>
<td>A USB Type-C PD device or host that is connected to a TPS257xx-Q1 port. In the scope of this application note, Port Partner is used to indicate a Sink.</td>
</tr>
<tr>
<td>PDO</td>
<td>Power Data Object. What is used to expose a Source's power capabilities or a Sink's power requirements.</td>
</tr>
<tr>
<td>Sink</td>
<td>The Port Partner consuming power from VBUS; most commonly a device. In this application note, Sink refers to devices connected to the TPS257xx-Q1.</td>
</tr>
<tr>
<td>Sink Capabilities</td>
<td>A PD message reported by the Sink, which includes PDO to convey Sink's operational power requirements. Also referred to as Sink Cap.</td>
</tr>
<tr>
<td>Source</td>
<td>The Port Partner supplying power over VBUS; most commonly a downstream facing port. In this application note, Source refers to the TPS257xx-Q1.</td>
</tr>
<tr>
<td>Source Capabilities</td>
<td>A PD message reported by the Source, which includes PDO to convey Source's capabilities to provide power. Also referred to as Source Cap.</td>
</tr>
<tr>
<td>SPM Engine</td>
<td>The TPS257xx-Q1’s integrated subsystem responsible for the operational function of the Source Power Policy Management</td>
</tr>
</tbody>
</table>
2 SPM Engine Overview

The TPS257xx-Q1's SPM Engine contains two main subsystems (Figure 2-1): the Multi-Port Power Allocation Policy and the Power Foldback Policy. Note that the Multi-Port Power Allocation Policy is specific to the TPS25772-Q1 dual-port PD controller as the TPS25762-Q1 device is a single-port PD controller and contains only the Power Foldback Policy block. For the TPS25772-Q1, the two subsystems of the SPM Engine work in conjunction to support dynamic power adjustments in response to different types of power events.

There are two types of Multi-Port Power Allocation Policies supported by the TPS25772-Q1: Assured Capacity Policy and Shared Capacity Policy. Only one policy can be enabled per SPM system. The Assured Capacity Policy allows power to be allocated to a port independent of the second port's status while Shared Capacity Policy allows the total available system power to be shared by both ports.

- Assured Capacity Policy: Source port has a fixed allocated amount of power and able to deliver its max power capacity independent of the second port's status. See Section 3.1 for more details.
- Shared Capacity Policy: Source port has a dynamically allocated amount of power and able to deliver up to its max power capacity depending on the remaining available system power that is shared with the second port. See Section 3.2 for more details.

The Multi-Port Power Allocation Policies regulates how the total system power is allocated to the ports. The Power Distribution Rules determine how the allocated power is distributed to connected Sinks. The Assured Capacity Policy and Shared Capacity Policy can be enabled with one of their respective power distribution methods as listed in the Power Distribution Rules block in Figure 2-1. These Power Distribution Rules are discussed in more detail in the subsequent sections.

The Power Foldback Policy supports dynamic power adjustment in response to power related activities such as thermal and supply voltage events to meet operational safety requirements and works in conjunction with the Multi-Port Power Allocation Policy. See Section 4 for more details.

Note

The SPM Engine is responsible for managing VBUS power only. Vconn power is outside the scope of the SPM operation. The system shall allocate power budget for the Vconn power separately. Refer to device data sheets for more information.
3 Multi-Port Power Allocation Policy

The SPM Engine, which contains the Multi-port Power Allocation Policy, is configurable using the TPS257xx-Q1 GUI. The following parameters are configured per system requirements for correct SPM operations.

<table>
<thead>
<tr>
<th>SPM Engine Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total USB VBUS Power (System Max Power)</td>
<td>Total system power capacity that is allocated to all ports</td>
</tr>
<tr>
<td>Port Max Power</td>
<td>Maximum VBUS power for each port. Power contract is limited to the maximum value configured in this parameter</td>
</tr>
<tr>
<td>Port Min Power</td>
<td>Minimum VBUS power for each port. Minimum power configured in this parameter is designed for each port.</td>
</tr>
</tbody>
</table>

There are two configuration views in the GUI: Simple Configuration and Advanced Configuration. While the Simple Configuration controls can satisfy the device configuration requirements for most systems, additional controls for some modules are available in the Advanced Configuration. Refer to the TPS257xx-Q1 GUI Configuration Guide for more information. Figure 3-1 and Figure 3-2 show the GUI's SPM power parameter configuration in the Simple Configuration view and Advanced Configuration view. Either configuration view can be used to framework the SPM power parameters.

![Figure 3-1. SPM Engine Configurable Parameters – Simple Configuration](image)

![Figure 3-2. SPM Engine Configurable Parameters – Advanced Configuration](image)
3.1 Assured Capacity Policy

The Assured Capacity Policy is where the sum of the Port Max Power, as designed, is equal to the Total USB VBUS Power.

\[
\text{Total USB VBUS Power} = \text{Port A Max Power} + \text{Port B Max Power}
\] (1)

When the Source ports are configured as Assured Capacity, Port Max Power is guaranteed and each port is able to deliver up to its Port Max Power independent of the second port's status. An example of the Assured Capacity Policy is shown in Figure 3-3 where the Total USB VBUS Power is 60W, Port A's Max Power is 40W, and Port B's Max Power is 20W.

![Figure 3-3. Assured Capacity Policy](image)

The TPS25772-Q1 dual-port PD controller supports two Assured Capacity power modes configurable using the TPS257xx-Q1-GUI. The options are:

- **Max Init (Initialization) Power**: Upon connection, the Source will initially send Source Capabilities advertising the maximum power as configured in the GUI.
- **Min Init (Initialization) Power**: Upon connection, the Source will initially send Source Capabilities advertising the minimum power as configured in the GUI. Depending upon the responding Sink Capability, the TPS257xx will resend Source Capabilities accordingly.

The recommendation is to always configure for **Max Init Power** (default GUI setting) unless a different operational mode is preferred based on system requirements. Figure 3-4 and Figure 3-5 show the Assured Capacity Policy selection in the GUI's Simple Configuration view and Advanced Configuration view.

![Figure 3-4. Assured Policy GUI Selection – Simple Configuration](image)
Figure 3-5. Assured Policy GUI Selection – Advanced Configuration

See Section 5.1 for example scenarios of the Assured Capacity Policy to better understand how system power is allocated and distributed when this SPM Power Policy is selected.
3.2 Shared Capacity Policy

The Shared Capacity Policy is where the sum of the Port Max Power, as designed, is less than the Total USB VBUS Power. When the Source ports are configured in Shared Capacity, Port Min Power is guaranteed for each port while the remaining power stored in Power Reserve is shared between Port A and Port B.

\[
\text{Total USB VBUS Power} = \text{Port A Min power} + \text{Port B Min power} + \text{Power Reserve}
\]

An example of the Shared Capacity Policy is shown in Figure 3-6 where the Total USB VBUS Power is 75 W, Port A and B's Min Power are both 15 W, and there is 45 W in Power Reserve. Port A connects to a Sink that requests 45 W. Port A's Min Power of 15 W is guaranteed, so 30 W is distributed from Power Reserve to deliver a total of 45 W, the Sink's requested power. The remaining power in Power Reserve is now 15 W, so with Port B's Min Power of 15 W, a total of 30 W is available for Port B. From this point, what occurs when a second Sink connects to Port B is dependent on the Port Partner's Sink Capabilities and is discussed in the following subsections.

Figure 3-6. Shared Capacity Policy

Figure 3-7 and Figure 3-8 show the Shared Capacity Policy selection in the GUI's Simple Configuration view and Advanced Configuration view.

Figure 3-7. Shared Capacity GUI Selection – Simple Configuration
Figure 3-8. Shared Capacity GUI Selection – Advanced Configuration

Note that although freely configurable in the GUI, according to the USB Type-C Cable and Connector Specification Release 2.2, the following behavioral rules must apply for Source ports configured with Shared Capacity Policy:

• Both Source ports must have the same power capabilities; each port must be capable of the same Port Max Power, Port Min Power, and able to harvest power from Power Reserve equally.
• Port Min Power must be at least 7.5 W.
• Ports that initially offer 1.5 A must increase to 3 A after a connection with a Sink if there is sufficient power remaining in Power Reserve within one second.
3.2.1 Fair Share Power Policy

Fair Share Power (FSP) Policy is the Shared Capacity Policy's Power Distribution Rule. When using FSP, Port Min Power is guaranteed for each Source port and the remaining power in Power Reserve is intelligently distributed to ports according to their Port Partners' Sink Capabilities.

The FSP parameters shown in Table 3-2 are used in the power distribution method and to achieve FSP between two Sinks.

<table>
<thead>
<tr>
<th>Fair Share Power Policy Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Min Power</td>
<td>Configurable minimum VBUS power for each port</td>
</tr>
<tr>
<td>Equally Divided Shared Power</td>
<td>Equally Shared Power from Power Reserve that can be distributed to each port. Power Reserve / Total number of ports.</td>
</tr>
<tr>
<td>Per Port Guaranteed FSP</td>
<td>Guaranteed Shared Power for each port. Equally Divided Shared Power + Minimum Port Power</td>
</tr>
</tbody>
</table>

The typical flow of the Fair Share Power Policy power distribution is as follows:

1. The first connected Source port initially advertises Port Min Power and sends a Get Sink Capabilities request to its Port Partner.
2. The Sink responds by returning a Sink Capabilities message and receives power accordingly.
3. The remaining power is stored in Power Reserve.
4. The second connected Source port initially advertises Port Min Power and sends a Get Sink Capabilities request to its Port Partner. After receiving the Sink Capabilities, the SPM begins the power distribution process. During the power distribution process, power is harvested from or contributed to Power Reserve to fulfill the Sinks' requirements as shown in Table 3-3.

<table>
<thead>
<tr>
<th>Example Scenario</th>
<th>Corresponding Power Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Both Port Partners' Sink Capabilities are less than the Per Port Guaranteed FSP.</td>
<td>The SPM distributes power to meet the Sink Capabilities and stores the remaining power to Power Reserve.</td>
</tr>
<tr>
<td>2 Both Port Partners' Sink Capabilities are higher than the Per Port Guaranteed FSP.</td>
<td>The SPM distributes the Per Port Guaranteed FSP to each Sink.</td>
</tr>
<tr>
<td>3 One Port Partner's Sink Capabilities is higher than the Per Port Guaranteed FSP and the other Port Partner's Sink Capabilities is less than the Per Port Guaranteed FSP.</td>
<td>The SPM distributes power to the Sink requesting lower power and the remaining power to the other Sink.</td>
</tr>
</tbody>
</table>

Note

It is required per USB PD specification for Sink devices to report a Capability Mismatch if the power offered by the Source does not satisfy its power requirements. Once the Source receives the request with a Capability Mismatch flag from the Sink, it requests the Sink Capabilities by sending a Get Sink Capabilities message. Some Sinks, however, are unable to report a Capability Mismatch. Therefore, although a Sink may report a Capability Mismatch or present limitations to accurately communicate its full power needs, the TPS25772-Q1 always attempts to fetch the Sink Capabilities from the Port Partner by sending a Get Sink Capabilities message to better fulfill the Sink's power requirements.

See Section 5.2 for example scenarios of FSP to better understand this policy's power distribution methods.

3.2.1.1 Blind Sink Support

The Fair Share Power Policy can be configured with an option to enable or disable Blind Sink Support. The FSP operation principal is the same with Blind Sink support, but the power distribution mechanism can vary depending on a Port Partner's Sink Capabilities.

Enabling Blind Sink Support allows the FSP Policy to take an additional step to determine if a connected Port Partner is a Blind Sink. As previously mentioned, the FSP always starts by initially advertising the Port
Min Power and sends a Get Sink Capabilities request. If the Port Partner returns valid Sink Capabilities and is identified as a Good Sink, a new Source Capabilities message with PDOs that sufficiently meet the Sink Capabilities is sent back. However, when a Port Partner is identified as a Blind Sink, the FSP policy will offer Port Max Power instead if the second port is open and Per Port Guaranteed FSP if the second port is connected.

The following is how the TPS25772-Q1 identifies a Port Partner to be a Blind Sink:

- Power reported from the first Sink Capabilities is less than the current contract power.
 - When a port connects to a Sink and it returns Sink Capabilities that is less than the initial contract power, the Port Partner is identified as a Blind Sink.
 - Inversely, when a port connects to a Sink and it returns Sink Capabilities that is higher than the initial contract power, the Port Partner is identified as a Good Sink. However, from the second Sink Capabilities onward, if the Port Partner reduces power from the current contract power, it will still be recognized as a Good Sink.
- Power reported in the Sink Capabilities is less than the current Source Capabilities.
- The Sink Capabilities is blindly copied from the Source Capabilities.
- Sink Capabilities are not returned after a Get Sink Capabilities request.
- Not supported is returned after a Get Sink Capabilities request.

The Table 3-4 highlights the Fair Share Power Policy operation and the difference when Blink Sink support is disabled and enabled.

<table>
<thead>
<tr>
<th>Table 3-4. Difference Between Blind Sink Disable and Enable</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSP with Blind Sink Support Disabled</td>
</tr>
<tr>
<td>Initial Source Capabilities</td>
</tr>
<tr>
<td>Sink Capabilities Handling</td>
</tr>
<tr>
<td>Source sends Get Sink Capabilities request</td>
</tr>
<tr>
<td>Correct Sink Capabilities received</td>
</tr>
<tr>
<td>When the second port is open, offer Port Max Power to the Blind Sink. When the second port is also connected: take the Blind Sink as a device whose Sink Capabilities is higher than the Per Port Guaranteed FSP and offer FSP to the Blind Sink as described in the 2nd and 3rd condition in Table 3-3.</td>
</tr>
</tbody>
</table>

When Blind Sink Support is enabled in the GUI either from the Simple Configuration view or Advanced Configuration view, an additional option to enable or disable "Max Power" becomes active. This will enable the charging port to treat every Port Partner as a Blind Sink and always offer Port Max Power regardless of behavior. In addition, when two Sinks are connected, Per Port Guaranteed FSP will always be advertised to Port Partners regardless of their Sink Capabilities. Some Sink devices return a Sink Capabilities message that is lower than what they are actually able to consume. The Max Power option can be adopted to support higher power charging for Sink devices such as these.

Blind Sink Support and the Max Power option can be enabled via the GUI's Simple Configuration view or Advanced Configuration view. See Figure 3-7 and Figure 3-8.

Section 5.2.1 provides example scenarios of FSP to better understand this policy's power distribution method when Blind Sink Support is enabled. For examples when Blind Sink Support and Max Power are both enabled, see Section 5.2.2.
3.3 Hybrid Mode

Hybrid Mode is an optional power policy that behaves as a hybrid of the Assured Capacity Policy and Shared Capacity Policy. It provides the benefit of the Assured Capacity Policy by initially advertising the Port Max Power when one Sink is connected, while allowing equal distribution of the Total USB VBUS Power, similar to the Shared Capacity Policy, when two Sinks are connected.

There are some Sink devices that request power based on the first Source Capabilities received and do not attempt to renegotiate for a more favorable contract when higher PDOs are offered in following Source Capabilities messages. This is a problem when FSP is desired, so Source ports are configured as Shared Capacity and Port Min Power is advertised in the initial Source Capabilities message. With Hybrid Mode, FSP is possible while ensuring that the aforementioned Sink-type's power requirements are met.

Hybrid Mode can be enabled from either the Simple Configuration or Advanced Configuration view. After the SPM Engine parameters are entered with Assured Capacity Policy selected, Hybrid Mode can be enabled by modifying the Total USB VBUS Power (System Max Power) to a value less than the sum of Port A and Port B's Max Power. The GUI then displays Hybrid Mode in red text to indicate that Hybrid Mode is active as shown in Figure 3-9 and Figure 3-10.

![Figure 3-9. Hybrid Mode GUI Selection – Simple Configuration](image-url)
The Hybrid Mode parameters shown in Table 3-5 are used in the power distribution method.

<table>
<thead>
<tr>
<th>Hybrid Mode Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equally Divided System Power</td>
<td>Equally divided Total USB VBUS Power distributed to each port when two PD-Sinks are connected:</td>
</tr>
<tr>
<td></td>
<td>Total USB VBUS Power / Total number of ports.</td>
</tr>
<tr>
<td>Single Port Max Power Capacity</td>
<td>Maximum VBUS power for a port when a single PD-Sink is connected:</td>
</tr>
<tr>
<td></td>
<td>Total USB VBUS Power - Port Min Power (limited up to the Port Max Power)</td>
</tr>
<tr>
<td>Non-PD USB-C Power</td>
<td>USB Type-C 5 V output for non-PD based USB Type-C charging; 7.5W or 15W.</td>
</tr>
</tbody>
</table>

The typical flow of the Hybrid Mode power distribution is as follows:

1. The first connected Source port initially advertises Port Max Power and sends a Get Sink Capabilities request.
2. The Sink responds by returning the Sink Capabilities and receives power accordingly (up to the Single Port Max Power Capacity).
3. The second Source port connects to another Sink and the SPM Engine immediately distributes the Equally Divided System Power to each Port Partner.

In the event where one PD Sink and one non-PD Sink are connected to the ports, the Equally Divided System Power is initially distributed to each Sink. This connection takes roughly 8.5 seconds for the TPS257xx-Q1 firmware to identify a non-PD Sink. Once a non-PD Sink is identified, the SPM Engine can reallocate and redistribute system power; Non-PD USB-C Power is distributed to the non-PD Sink and the remaining power (the difference between the Total USB VBUS Power and the Non-PD USB-C Power) is distributed to the PD Sink. The Non-PD USB-C Power can be selected by configuring the USB Type-C Current parameter from the GUI's USB PORT(S) window (see Figure 3-11).
Figure 3-11. USB Type-C Current – Advanced Configuration

See Section 5.3 for example scenarios of Hybrid Mode to better understand this mode’s power distribution method.
4 Power Foldback Policy

The TPS257xx-Q1 PD controllers support Power Foldback Policies based on system temperature and VIN supply voltage levels. The Power Foldback Policies are managed by the integrated SPM Engine alongside the Multi-Port Power Allocation Policy (in the case of the TPS25772-Q1). Upon entry into a Power Foldback condition, the SPM uses the Total USB VBUS Power for the corresponding Power Foldback phase the TPS257xx-Q1 has entered then distributes port power accordingly.

4.1 Thermal Foldback Operation

The TPS257xx-Q1 PD controller monitors system temperature using an external thermistor or I2C temperature sensor. Based on the configurable temperature thresholds, the SPM can reduce USB port power in response to temperature increases. Depending on the voltage output level from the thermistor/temperature sensor, the SPM will enter or exit an appropriate thermal phase and re-negotiate the contract with a connected Port Partner to help with the thermal performance of the system.

In systems that use both an external thermistor and I2C temperature sensor, the SPM collects a thermal phase value from each device then uses the highest phase parameter to enter the appropriate power mode for all ports. The voltage thresholds for the thermal phases for each temperature sensing device can be varied. This is to accommodate variations in temperature which would be dependent upon the placement of the thermistor/temperature sensor, USB PD controller, and other temperature related physical properties.

There are three default thermal phases based on the voltage level detected on the TPS257xx-Q1’s NTC pin input or readings from an I2C temperature sensor, but three additional thermal phases can be added using the GUI for a total of six. The GUI is also used to configure the voltage thresholds and the max power for each phase. Figure 4-1 shows the NTC input voltage thresholds of a three thermal phase configuration where Phase3 represents the worst case with the highest temperature.

![NTC Input Voltage Threshold and Thermal Phase](image)

Rising or falling voltages on the NTC pin indicate increasing or decreasing system temperatures, respectively. To achieve a positive temperature slope on the TPS25772-Q1 NTC pin, thermistor resistor networks should be connected to LDO_3v3 as shown in Figure 4-2. The device firmware monitors the voltage level on the NTC pin then enters or exits the thermal phase per the configured values. For more information on the NTC input, see device data sheets.
Figure 4-2. Thermistor Implementation Options

Table 4-1 shows the Thermal Phase Parameters that are configured through the GUI.

Table 4-1. Thermal Phase Parameters

<table>
<thead>
<tr>
<th>Thermal Phase Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase(_n) Vth(_R)((1))</td>
<td>Thermal Phase(_n) entry threshold. Device enters Thermal Phase(_n) upon detection of rising edge above this voltage threshold.</td>
</tr>
<tr>
<td>Phase(_n) Vth(_F)((1))</td>
<td>Thermal Phase(_n) exit threshold. Device exits Thermal Phase(_n) upon detection of falling edge below this voltage threshold.</td>
</tr>
<tr>
<td>Phase(_n) Max Power((1))</td>
<td>Maximum total power in Thermal Phase(_n). SPM uses Thermal Phase(_n) Max Power to execute port power management actions once device enters Thermal Phase(_n).</td>
</tr>
</tbody>
</table>

(1) \(n\) ranges from 1 to 6. There are three default thermal phases and up to three additional phases can be added using the GUI.

Figure 4-3 shows the GUI entry example in Advanced Configuration View where the No. of Phases is configured to 6.

The Thermal Phase Parameters must be configured per the rules described below:

- Thermal Phase\(6\) power (W)\(\leq\) Thermal Phase\(5\) power (W)\(\leq\) Thermal Phase\(4\) power (W)\(\leq\) Thermal Phase\(3\) power (W)\(\leq\) Thermal Phase\(2\) power (W)\(\leq\) Thermal Phase\(1\) power (W)
- \(\text{Phase}^*_Vth_R \ (V) > \text{Phase}^*_Vth_F \ (V)\)

Figure 4-3. Thermal Foldback GUI Entry Example
Note that if *Total Max W* for any phase is less than SUM (Port Min Power), VBUS is disabled (0 V) upon entry into the corresponding phase. For example if Phase3 Max Power = 7.5 W while SUM(Port Min Power) = 30 W, VBUS will be disabled upon entry into Phase3.

The TPS257xx-Q1 is designed to work with LM75 type temperature sensor: TMP75-Q1. The SPM polls the I2C sensor ADC register at a configured interval, with a default typical polling interval value of 250 ms. The ADC reading from the temperature sensor is converted to 1°C resolution.

Figure 4-4 depicts the connection of the thermistor and I2C temperature sensor to the TPS257xx-Q1.

Table 4-2. NTC Thermistor Phase Configured Values

<table>
<thead>
<tr>
<th>Vth</th>
<th>Temperature</th>
<th>Total Max Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTC Phase1 Vth_F</td>
<td>0.83 V</td>
<td>65°C</td>
</tr>
<tr>
<td>NTC Phase1 Vth_R</td>
<td>1.1 V</td>
<td>70°C</td>
</tr>
<tr>
<td>NTC Phase2 Vth_F</td>
<td>1.2 V</td>
<td>78°C</td>
</tr>
<tr>
<td>NTC Phase2 Vth_R</td>
<td>1.4 V</td>
<td>90°C</td>
</tr>
<tr>
<td>NTC Phase3 Vth_F</td>
<td>1.5 V</td>
<td>95°C</td>
</tr>
<tr>
<td>NTC Phase3 Vth_R</td>
<td>1.7 V</td>
<td>105°C</td>
</tr>
</tbody>
</table>

Table 4-3. I2C Temperature Sensor Phase Configured Values

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Total Max Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>I2C temp sensor Phase1 F</td>
<td>42°C</td>
</tr>
<tr>
<td>I2C temp sensor Phase1 R</td>
<td>45°C</td>
</tr>
<tr>
<td>I2C temp sensor Phase2 F</td>
<td>49°C</td>
</tr>
<tr>
<td>I2C temp sensor Phase2 R</td>
<td>53°C</td>
</tr>
</tbody>
</table>
Table 4-3. I2C Temperature Sensor Phase Configured Values (continued)

<table>
<thead>
<tr>
<th></th>
<th>Temperature</th>
<th>Total Max Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>I2C temp sensor Phase3 F</td>
<td>59°C</td>
<td>15 W</td>
</tr>
<tr>
<td>I2C temp sensor Phase3 R</td>
<td>64°C</td>
<td></td>
</tr>
</tbody>
</table>

The following are two examples of Thermal Foldback where the NTC and I2C temperature sensor readings steadily increased and have crossed their rising thresholds.

Case 1. NTC thermistor Vth reading = 1.3 V (around 85°C), I2C temperature sensor temperature reading = 63°C.

Per the configuration shown in Table 4-2 and Table 4-3, the NTC reading indicates the thermistor is in Phase1 while the I2C temperature sensor is in Phase2. The SPM uses the I2C temperature Phase2 as its worse phase, then reduces power per I2C temp sensor Phase2 configuration of 30 W.

Case 2. NTC Phase Vth reading = 1.72 V (around 106°C), I2C temperature sensor temperature reading = 65°C.

Per the configuration shown Table 4-2 and Table 4-3, both NTC and I2C sensor readings are in Phase3. The Phase3 power configuration for NTC thermistor is 7.5 W while I2C temp sensor is 15 W. The SPM takes the lower of two then reduces power to 7.5 W.
4.2 Engine Start or Stop Transition Management

The TPS257xx-Q1 supports dynamic port power management scheme for VIN supply voltage fluctuations in case of Engine Start/Stop transition events. Through dynamic detection of the supply voltage input level, the SPM takes action to enter or exit the appropriate power level. Upon detection of low VIN below normal operating range, the SPM enters a lower power mode to protect the system from overheating. The SPM also filters a fluctuation or temporary glitch on VIN to prevent an abrupt loss of USB port power which in turn enhances the end user experience. Table 4-4 and Table 4-5 show the VIN threshold and timer parameters. All parameters are configured via the GUI except for VIN UVLO. Figure 4-5 depicts an example of how different power modes, as determined by the VIN threshold levels, work in conjunction with the deglitch filter and timers.

<table>
<thead>
<tr>
<th>VIN Threshold Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN>EngOnVth</td>
<td>Full Power level entry threshold with EngineOnDeglitch filter (for example, Engine fully ON condition w/ Car Key Knob in ON position)</td>
</tr>
<tr>
<td>VIN<EngOffNomVth</td>
<td>Full Power to Low power entry threshold with EngineOffDeglitch filter (i.e Car key knob in accessory position with nominal VIN accessory mode voltage level)</td>
</tr>
<tr>
<td>VIN>EngineOnMinVth</td>
<td>No Power to Low Power entry threshold. This transition triggers entry into Low Power state immediately. If VIN remains above this threshold but below EngOnVth for EngineOffTimer duration, VBUS is disabled after the timer expiration. (for example, Car key knob in accessory position with lower VIN accessory mode voltage level)</td>
</tr>
<tr>
<td>VIN<EngineOffMinVth</td>
<td>Any to No Power entry threshold after Engine Off Delay expiration. (for example, Car key knob in accessory position with lower VIN accessory mode voltage level)</td>
</tr>
<tr>
<td>VIN<UVLO</td>
<td>Hardware VIN UVLO voltage level. The SPM Controller is disabled.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engine On/Off Timer Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EngOn Deglitch</td>
<td>Engine On Deglitch timer. Deglitch time to enter engine ON Full Power condition after VIN reaches EngOnVth.</td>
</tr>
<tr>
<td>EngOff Deglitch</td>
<td>Engine Off Deglitch timer. Deglitch time to enter Low Power condition after VIN reaches EngOffNomVth.</td>
</tr>
<tr>
<td>EngOnTimer(Grace Period)</td>
<td>Engine On timer (Grace Period Timer). Timeout value after Low Power entry from No Power. Once this timer expires and the VIN supply voltage is still below EngOnVth, VBUS is disabled.</td>
</tr>
<tr>
<td>EngOffTimer(Grace Period)</td>
<td>Engine Off timer (Grace Period Timer). Timeout value after Low Power entry from Full Power. Once this timer expires, VBUS is disabled.</td>
</tr>
<tr>
<td>Engine Off Delay</td>
<td>Engine Off Delay timer. Delay time to to enter No Power after VIN falls under EngOffMinVth.</td>
</tr>
</tbody>
</table>
While Grace Period Timers are running, VIN will be continuously monitored, then action is taken based upon the VIN sampled.

The EngOnTimer is triggered when VIN=EngOnMinVth, but stops when the SPM enters Full Power. It continues to run only if the SPM stays in Low Power. Once EngOnTimer expires after the configured time, the SPM will enter No Power.

Figure 4-5. VIN Level and Engine On or Off Power Transition

Figure 4-6 shows the GUI entry example in Advanced Configuration View.
Figure 4-6. Engine On or Off GUI Entry Example
4.2.1 Engine Start or Stop Power Foldback Operation Example

The example below depicts the Power Foldback operation upon detection of VIN voltage level changes. Table 4-6 shows the configurable SPM Engine parameters used in this section's example.

<table>
<thead>
<tr>
<th>SPM Engine Parameters</th>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total USB VBUS Power (System Max Power)</td>
<td>60 W</td>
<td>Total system power capacity that is allocated for Port A and Port B</td>
</tr>
<tr>
<td>Port A Max Power</td>
<td>45 W</td>
<td>Maximum Port A Power</td>
</tr>
<tr>
<td>Port B Max Power</td>
<td>45 W</td>
<td>Maximum Port B Power</td>
</tr>
<tr>
<td>Port A Min Power</td>
<td>15 W</td>
<td>Minimum Port A power</td>
</tr>
<tr>
<td>Port B Min Power</td>
<td>15 W</td>
<td>Minimum Port B power</td>
</tr>
<tr>
<td>VIN Max Power Engine Off</td>
<td>30 W</td>
<td>Total VBUS Power allocated for Port A and B when VIN < EngOffNomVth (EngineOnToAny)</td>
</tr>
<tr>
<td>Sharing Mode</td>
<td>Fair Share Power Policy</td>
<td>Port Min Power is guaranteed for each port and remaining power is intelligently distributed</td>
</tr>
</tbody>
</table>

Table 4-7. Engine Start or Stop Power Foldback Operation Example

<table>
<thead>
<tr>
<th>Scenario 1: Port A connects in Normal Operation VIN > EngOnVth</th>
<th>Port A</th>
<th>Port B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Required by Sink</td>
<td>45 W</td>
<td></td>
</tr>
<tr>
<td>Power Distributed to Sink</td>
<td>45 W</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario 2: Port B connects in Normal Operation VIN>EngOnVth</th>
<th>Port A</th>
<th>Port B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Required by Sinks</td>
<td>45 W</td>
<td>45 W</td>
</tr>
<tr>
<td>Power Distributed to Sinks</td>
<td>30 W</td>
<td>30 W</td>
</tr>
</tbody>
</table>

Start of Power Foldback Operation

<table>
<thead>
<tr>
<th>VIN < EngOffNomVth (EngineOnToAny) w/ reduced power</th>
<th>30 W</th>
<th>30 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>After EngOffDeglitch time, 15 W Source Capabilities resent to Port A and Port B</td>
<td>30 W</td>
<td>30 W</td>
</tr>
<tr>
<td>Sink accepts and Grace Period (EngOffTimer) starts</td>
<td>15 W</td>
<td>15 W</td>
</tr>
<tr>
<td>VIN remains <EngOffNomVth(EngineOnToAny)</td>
<td>15 W</td>
<td>15 W</td>
</tr>
<tr>
<td>Ports disable after Grace Period (EngOffTimer) expires</td>
<td>0 W</td>
<td>0 W</td>
</tr>
<tr>
<td>VIN transitions to >Engine On Vth(AnyToEngineOn)</td>
<td>0 W</td>
<td>0 W</td>
</tr>
<tr>
<td>After EngOnDeglitch Time, 15 W Source Capabilities is sent to both ports</td>
<td>15 W</td>
<td>15 W</td>
</tr>
<tr>
<td>Sink Accepts</td>
<td>15 W</td>
<td>15 W</td>
</tr>
<tr>
<td>Sink Requests 45 W</td>
<td>15 W</td>
<td>15 W</td>
</tr>
<tr>
<td>30 W Source Capabilities resent to Port A and Port B</td>
<td>15 W</td>
<td>15 W</td>
</tr>
<tr>
<td>Sink Accepts</td>
<td>30 W</td>
<td>30 W</td>
</tr>
</tbody>
</table>
5 Multi-Port Power Allocation Policy Examples

This section includes example scenarios of port power allocation and distribution when using the different Multi-Port Power Allocation Policy and Power Distribution Rule options. The examples of when one or two Sinks are connected are shown in table format followed by a flow diagram. The tables concisely summarize what occurs when Sink devices connect to TPS25772-Q1 Source ports: the power requested by the Sinks and the power distributed to the Sinks. The flow diagrams that follow illustrate the PD negotiation between the Source and Sink using the same example scenarios.

A negotiation between Port Partners must successfully complete to establish a PD power contract. Port Partners communicate over the USB Type-C connector's CC wire and the typical PD negotiation process between a Sink and Source is outlined below:

1. The Source advertises the initial Source Capabilities to the Sink. Assured Capacity Policy, with Max Init Power enabled, will always advertise the Port Max Power upon connection. On the other hand, Shared Capacity Policy will always advertise the Port Min Power first.
2. The Sink requests power based on the PDOs offered from the advertised Source Capabilities.
3. The Source accepts the request and provides power accordingly.
4. The Source follows up with a Get Sink Capabilities message.
5. After obtaining the Sink Capabilities, the Source resends a new Source Capabilities message based on the Sink's power requirements.

Each time power is reallocated for Source ports via power harvesting or redistribution events, new Source Capabilities messages are automatically sent to Port Partners per the new allocated power. Power harvesting and redistribution events occur upon port connect/disconnect or Power Foldback phase entry/exit.
5.1 Assured Capacity Policy Example

This section provides examples of power distribution when Source ports are configured as Assured Capacity Policy and Max Init Power mode is selected. Table 5-1 shows the SPM Engine parameters used in this section's example.

<table>
<thead>
<tr>
<th>SPM Engine Parameters</th>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total USB VBUS Power (System Max Power)</td>
<td>105 W(1)</td>
<td>Total system power capacity allocated for Port A and B</td>
</tr>
<tr>
<td>Port A Max Power</td>
<td>60 W</td>
<td>Maximum Port A Power</td>
</tr>
<tr>
<td>Port B Max Power</td>
<td>45 W</td>
<td>Maximum Port B Power</td>
</tr>
<tr>
<td>Port A Min Power</td>
<td>15 W</td>
<td>Minimum Port A power</td>
</tr>
<tr>
<td>Port B Min Power</td>
<td>15 W</td>
<td>Minimum Port B power</td>
</tr>
<tr>
<td>Assured Mode</td>
<td>Max Init Power</td>
<td>Source initially sends Source Capabilities advertising max power</td>
</tr>
</tbody>
</table>

(1) The Total USB VBUS Power is 105 W; the sum of Port A Max Power and Port B Max Power.

Three example scenarios of Assured Capacity Policy are listed in Table 5-2. Note that the power distributed to each port is independent of the other port's status as is expected with the Assured Capacity Policy.

| Scenario: Port A connects to a Sink that requires 27 W. Port B is unconnected. |
|---|-------------------------------|
| Power Required by Sink | 27 W |
| Power Distributed to Sink | 27 W |

<table>
<thead>
<tr>
<th>Scenario: Port B connects to a Sink that requires 45 W.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Required by Sink</td>
</tr>
<tr>
<td>Power Distributed to Sinks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario: Port A changes the requirement to 60 W.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Required by Sink</td>
</tr>
<tr>
<td>Power Distributed to Sinks</td>
</tr>
</tbody>
</table>

The following diagrams show the flow of the PD negotiation when Assured Capacity Policy is enabled and where one Sink first connects to Port A (Figure 5-1) and a second Sink connects to Port B (Figure 5-2).
Total VBUS USB Power: 105W

<table>
<thead>
<tr>
<th>Source Port A</th>
<th>Source Port B</th>
<th>Sink Port A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min power: 15W</td>
<td>Min power: 15W</td>
<td>Sink Capability: 60W with</td>
</tr>
<tr>
<td>Max power: 60W</td>
<td>Max power: 45W</td>
<td>5V 3A, 9V 3A, 15 3A, 20V 3A</td>
</tr>
<tr>
<td>Conn Stat: On</td>
<td>Conn Stat: Off</td>
<td></td>
</tr>
</tbody>
</table>

Max Init Power (Enabled)

Port B is disconnected & 45W allocated
Now Port A is connected and power is negotiated as below

Sink actions vary

Step 1
Port Max Power is advertised
Port A: Source Capability(60W)
(5V 3A, 9V 3A, 15V 3A, 20V 3A)

Step 2
*Request 15V 1A

Step 3
Accept

Initial VBUS on Port A = 5V

Step 4
Get Sink Capability

Step 5
*Sink Capability of max 60W
goal of 3A, 9V 3A, 15V 3A, 20V 3A)

Step 6
Port A: Source Capability(60W)
(5V 3A, 9V 3A, 15V 3A, 20V 3A)

Step 7
*Request 20V 3A

Step 8
Accept

VBUS on Port A = 15W w/ Requested voltage 15V 1A

VBUS on Port A = 60W with Requested voltage 20V 3A

Figure 5-1. Assured Capacity Policy Negotiation Flow - Port A Connected
Total VBUS USB Power: 105W

Source Port A
Min power: 15W
Max power: 60W
Conn Stat: On

Source Port B
Min power: 15W
Max power: 45W
Conn Stat: On

Sink Port B
Sink Capability: 45W with
5V 3A, 9V 3A, 15V 3A

Max Init Power (Enabled)
Port A is already connected and has a 60W contract
Now Port B is connected and power is negotiated as below
*Sink actions vary

Step 1
Port Max Power is advertised
Port B: Source Capability (45W)
(5V 3A, 9V 3A, 15V 3A, 20V 2.25A)

Step 2
*Request 15V@1A

Step 3
Accept

VBUS on Port B = 15W w/ Requested voltage 15V 1A

Step 4
Get Sink Capability

Step 5
*Sink Capability of max 45W
(5V 3A, 9V 3A, 15V 3A)

Step 6
Port A: Source Capability (60W)
(5V 3A, 9V 3A, 15V 3A, 20V 3A)
Port B: Source Capability (45W)
(5V 3A, 9V 3A, 15V 3A, 20V 2.25A)

Step 7
*Request 15V 3A

Step 8
Accept

VBUS on Port B = 45W with Requested voltage 15V 3A
VBUS on Port A = 60 W with Requested voltage 20V 3A

Figure 5-2. Assured Capacity Policy Negotiation Flow - Port B Connected
5.2 Fair Share Power Policy Example

This section provides examples of power sharing between two ports configured with Fair Share Power Policy and when connected to Port Partners that are Good Sinks. When Port Partners are Good Sinks, the power distribution is the same whether Blind Sink Support is enabled or disabled. Table 5-3 shows the SPM Engine parameters used in this section's example. The FSP Parameters shown in Table 5-4 are used in the power distribution method and to achieve FSP between two Sinks.

Table 5-3. SPM Engine Parameters - FSP Example with Good Sinks

<table>
<thead>
<tr>
<th>SPM Engine Parameters</th>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total USB VBUS Power (System Max Power)</td>
<td>75 W</td>
<td>Total system power capacity allocated for Port A and B</td>
</tr>
<tr>
<td>Port A Max Power</td>
<td>60 W</td>
<td>Maximum Port A Power</td>
</tr>
<tr>
<td>Port B Max Power</td>
<td>60 W</td>
<td>Maximum Port B Power</td>
</tr>
<tr>
<td>Port A Min Power</td>
<td>15 W</td>
<td>Minimum Port A power</td>
</tr>
<tr>
<td>Port B Min Power</td>
<td>15 W</td>
<td>Minimum Port B power</td>
</tr>
<tr>
<td>Shared Mode</td>
<td>Fair Share Power Policy without Blind Sink Support</td>
<td>Port Min Power is guaranteed for each port and remaining power is intelligently distributed</td>
</tr>
</tbody>
</table>

Table 5-4. Fair Share Power Policy Parameters

<table>
<thead>
<tr>
<th>Fair Share Power Policy Parameters</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equally Divided Shared Power</td>
<td>(75-(15+15))/2=22.5 W</td>
<td>Equally shared power for each port that can be distributed: (Total VBUS power – Sum of Port A and B's Min Power)/Total number of ports</td>
</tr>
<tr>
<td>Per Port Guaranteed FSP</td>
<td>15+22.5 W=37.5 W</td>
<td>Guaranteed Shared Power for each port: Equally Divided Shared Power + Port Min Power</td>
</tr>
</tbody>
</table>

Four example scenarios of Fair Share Power Policy power distribution are concisely summarized in Table 5-5.

Table 5-5. FSP Example with Good Sinks

<table>
<thead>
<tr>
<th>Scenario: Port A connects to a Sink that requires 60 W. Port B is unconnected.</th>
<th>Port A</th>
<th>Port B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initially Allocated</td>
<td>15 W</td>
<td>15 W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario: Port B connects to a Sink that also requires 60 W Sink Cap.</th>
<th>Port A</th>
<th>Port B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Required by Sink</td>
<td>60 W</td>
<td>60 W</td>
</tr>
<tr>
<td>Power Distributed to Sink</td>
<td>60 W</td>
<td>60 W</td>
</tr>
<tr>
<td>Power Required by Sink (1)</td>
<td>37.5 W</td>
<td>37.5 W</td>
</tr>
<tr>
<td>Power Distributed to Sinks (2)</td>
<td>37.5 W</td>
<td>37.5 W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario: Port B changes the requirement to 15 W.</th>
<th>Port A</th>
<th>Port B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Required by Sink</td>
<td>60 W</td>
<td>15 W</td>
</tr>
<tr>
<td>Power Distributed to Sinks (3)</td>
<td>60 W</td>
<td>15 W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario: Port B changes the requirement to 25 W.</th>
<th>Port A</th>
<th>Port B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Required by Sink</td>
<td>60 W</td>
<td>25 W</td>
</tr>
<tr>
<td>Power Distributed to Sinks (3)</td>
<td>50 W</td>
<td>25 W</td>
</tr>
</tbody>
</table>

(1) Per Port Guaranteed FSP of 37.5 W are distributed. See second example scenario in Table 3-3.
(2) Distribute 15 W to Port B and reallocate surplus power 22.5 W from Port B to Power Reserve (Per Per Guaranteed FSP of 37.5 W - Power Distributed to Port B 15 W = 22.5 W). Port A is now granted with 22.5 W power from Power Reserve and therefore able to fulfill 60 W power request.
(3) 10 W from Port A is yielded and redistributed to Port B. See the third example scenario in Table 3-3.

Figure 5-3 and Figure 5-4 show the PD negotiation flow following the FSP examples from Scenario 1 and Scenario 2 of Table 5-5, respectively.
Figure 5-3. FSP Negotiation Flow - Scenario 1

Total VBUS USB Power: 60W

<table>
<thead>
<tr>
<th>Source Port A</th>
<th>Source Port B</th>
<th>Sink Port A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max power: 45W</td>
<td>Max power: 45W</td>
<td></td>
</tr>
<tr>
<td>Conn Stat: On</td>
<td>Conn Stat: Off</td>
<td></td>
</tr>
</tbody>
</table>

Guaranteed Fair Shared Power: 30W

Port B is disconnected & 15W allocated

Now Port A is connected and power is negotiated as below

*Sink actions vary

Step 1
Port Min Power is advertised
Port A: Source Capability(15W)
(5V 3A, 9V 1.67A, 15V 1A)

Step 2
*Request 15V 1A with cap mismatch = 0 or 1

Step 3
Accept

VBUS on Port A = 15W with Requested voltage 15V 1A

Step 4
Get Sink Capability

Step 5
*Sink Capability of max 60W
(5V 3A, 9V 3A, 15V 3A, 20V 3A)

Step 6
Port A: Source Capability(45W)
(5V 3A, 9V 3A, 15V 3A, 20V 2.25A)

Step 7
*Request 20V 2.25A with cap mismatch = 0

Step 8
Accept

VBUS on Port A = 45W with Requested voltage 20V 2.25A
Total VBUS USB Power: 60W

Source Port A
- Min power: 15W
- Max power: 45W
- Conn Stat: On

Source Port B
- Min power: 15W
- Max power: 45W
- Conn Stat: On

Sink Port B
- Sink Capability: 60W with 5V 3A, 9V 3A, 15V 3A, 20V 3A

Guaranteed Fair Shared Power: 30W
Port A is already connected and has a 45W contract
Now Port B is connected and power is negotiated as below
*Sink actions vary

Step 1
Port Min Power is advertised
Port B: Source Capability(15W)
(5V 3A, 9V 1.67A, 15V 1A)

Step 2
*Request 15V 1A with cap mismatch = 0 or 1

Step 3
Accept

VBUS on Port B = 15W w/ Requested voltage 15V 1A

Step 4
Get Sink Capability

Step 5
*Sink Capability of max 60W
(5V 3A, 9V 3A, 15V 3A, 20V 3A)

Step 6
Guaranteed FSP
Port A: Source Capability(30W)
(5V 3A, 9V 3A, 15V 2A, 20V 1.5A)
Port B: Source Capability(30W)
(5V 3A, 9V 3A, 15V 2A, 20V 1.5A)

Step 7
*Request 20V 1.5A with cap mismatch = 0

Step 8
Accept

VBUS on Port B = 30W with Requested voltage 20V 1.5A
VBUS on Port A = 30W with Requested voltage 20V 1.5A

Figure 5-4. FSP Negotiation Flow - Scenario 2
5.2.1 FSP Policy Example – Blind Sink Support

This section provides examples of Fair Share Power Policy's power distribution with Blind Sink Support enabled for both ports and in the event of a port connecting to a Sink that fails to return Sink Capabilities correctly. Note that the Max Power option is not enabled in these examples. Table 5-6 shows the SPM Engine parameters used in this section's example. The FSP Parameters shown in Table 5-7 are used in the Fair Share Power Policy's power distribution to achieve FSP between two Sinks.

Table 5-6. SPM Engine Parameters - FSP Example with a Blind Sink

<table>
<thead>
<tr>
<th>SPM Engine Parameters</th>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total USB VBUS Power (System Max Power)</td>
<td>75 W</td>
<td>Total system power capacity allocated for Port A and B</td>
</tr>
<tr>
<td>Port A Max Power</td>
<td>60 W</td>
<td>Maximum Port A Power</td>
</tr>
<tr>
<td>Port B Max Power</td>
<td>60 W</td>
<td>Maximum Port B Power</td>
</tr>
<tr>
<td>Port A Min Power</td>
<td>15 W</td>
<td>Minimum Port A power</td>
</tr>
<tr>
<td>Port B Min Power</td>
<td>15 W</td>
<td>Minimum Port B power</td>
</tr>
<tr>
<td>Shared Mode</td>
<td>FSP with Blind Sink Support</td>
<td>Port Max Power is offered to Blind Sinks</td>
</tr>
</tbody>
</table>

Table 5-7. Fair Share Power Policy Parameters

<table>
<thead>
<tr>
<th>Fair Share Power Policy Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equally Divided Shared Power</td>
<td>((75-(15+15))/2=22.5) W</td>
<td>Shared power for each port that can be distributed if available: (Total VBUS power – Sum of Port A and B's Min Power)/Total number of ports</td>
</tr>
<tr>
<td>Per Port Guaranteed FSP</td>
<td>15+22.5 W=37.5 W</td>
<td>Port Min Power + Per Port Equally Divided Shared Power = Per Port Guaranteed FSP</td>
</tr>
</tbody>
</table>

Three example scenarios of Fair Share Power Policy operation (when Blind Sink Support is enabled) are shown in Table 5-8. The table format in this section is structured differently to show how Blind Sinks are handled and supported by the SPM.

Table 5-8. FSP Example with Blind Sink Support

<table>
<thead>
<tr>
<th>Initially Allocated</th>
<th>Port A</th>
<th>Port B</th>
<th>SPM Operation Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1: Port A connects to Good Sink #1. Port B is unconnected.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Cap 1</td>
<td>15 W</td>
<td></td>
<td>The first Source Cap is sent to Port A's Sink with Port Min Power.</td>
</tr>
<tr>
<td>Sink Request</td>
<td>15 W</td>
<td></td>
<td>Grant 15 W to Port A.</td>
</tr>
<tr>
<td>Sink Cap</td>
<td>45 W</td>
<td></td>
<td>Source sends Get Sink Cap message to Port A and max 45 W Sink Cap is returned.</td>
</tr>
<tr>
<td>Source Cap 2</td>
<td>45 W</td>
<td></td>
<td>A 45 W Source Cap is sent again based on Sink Cap.</td>
</tr>
<tr>
<td>Sink Request</td>
<td>45 W</td>
<td></td>
<td>Port A Sink requests 45 W.</td>
</tr>
<tr>
<td>Power Distributed to Sink</td>
<td>45 W</td>
<td></td>
<td>45 W distributed to Port A Sink.</td>
</tr>
<tr>
<td>Scenario 2: Port A is replaced with a Blind Sink. Port B is still unconnected.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Cap 1</td>
<td>15 W</td>
<td></td>
<td>The first Source Cap is sent to Port A's Sink with Port Min Power.</td>
</tr>
<tr>
<td>Sink Request</td>
<td>15 W</td>
<td></td>
<td>Grant 15 W to Port A.</td>
</tr>
<tr>
<td>Sink Cap</td>
<td>15 W</td>
<td></td>
<td>Source sends Get Sink Cap message to Port A. Source Cap = Sink Cap is returned. Port A Sink is identified as a Blind Sink.</td>
</tr>
<tr>
<td>Source Cap 2</td>
<td>60 W</td>
<td></td>
<td>A Source Cap is sent again with Port Max Power.</td>
</tr>
<tr>
<td>Sink Request</td>
<td>60 W</td>
<td></td>
<td>Port A Sink requests 60 W.</td>
</tr>
<tr>
<td>Power Distributed to Sink</td>
<td>60 W</td>
<td></td>
<td>60 W is distributed to Port A Sink.</td>
</tr>
<tr>
<td>Scenario 3: Port B connects to Good Sink #2. Port A continues to deliver 60 W to Blind Sink.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Cap 1</td>
<td>Port A</td>
<td>15 W</td>
<td>Port B</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>Sink Request</td>
<td>15 W</td>
<td>Grant 15 W to Port B.</td>
<td></td>
</tr>
<tr>
<td>Sink Cap</td>
<td>20 W</td>
<td>Source sends Get Sink Cap message to Port B and max 20 W Sink Cap is returned.</td>
<td></td>
</tr>
<tr>
<td>Source Cap 2</td>
<td>55 W</td>
<td>Port A Sink's required power is less than the Per Port Guaranteed FSP. Port B's required power is higher. The SPM distributes power to the Port A's Sink requesting lower power and the remaining power to Port B's Sink.</td>
<td></td>
</tr>
<tr>
<td>Sink Request</td>
<td>55 W</td>
<td>20 W</td>
<td>Port A Sink requests 55 W and Port B Sink requests 20 W.</td>
</tr>
<tr>
<td>Power Distributed to Sinks</td>
<td>55 W</td>
<td>20 W</td>
<td>55 W distributed to Port A Sink. 20 W distributed to Port B Sink.</td>
</tr>
</tbody>
</table>

Figure 5-5, Figure 5-6, and Figure 5-7 show the PD negotiation flow of the FSP examples from Scenario 1, Scenario 2, and Scenario 3 of Table 5-8, respectively.
Figure 5-5. FSP Negotiation Flow with Blind Sink Support – Scenario 1

Total VBUS USB Power: 75W

Source Port A
- Min power: 15W
- Max power: 60W
- Blind sink support: Yes
- Conn Stat: On

Source Port B
- Min power: 15W
- Max power: 60W
- Blind sink support: Yes
- Conn Stat: Off

Guaranteed Fair Shared Power: 37.5W
- Port B is disconnected & 15W allocated
- Now Port A is connected and power is negotiated as below

 Sink actions vary

1. **Step 1**
 - Port Min Power is advertised
 - Port A: Source Capability (15W) *(5V 3A, 9V 1.67A, 15V 1A)*

2. **Step 2**
 - *Request 15V 1A with cap mismatch = 0 or 1*

3. **Step 3**
 - Accept

4. **Step 4**
 - Get Sink Capability

5. **Step 5**
 - *Sink Capability of max 45W* *(5V 3A, 9V 3A, 15V 3A, 20V 2.25A)*

6. **Step 6**
 - Source Cap advertised based on Sink Cap

7. **Step 7**
 - *Request 20V 2.25A with cap mismatch = 0*

8. **Step 8**
 - Accept

VPB on Port A = 45W with Requested voltage 20V 2.25A
Figure 5-6. FSP Negotiation Flow with Blind Sink Support – Scenario 2

<table>
<thead>
<tr>
<th>Source Port A</th>
<th>Source Port B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min power: 15W</td>
<td>Min power: 15W</td>
</tr>
<tr>
<td>Max power: 60W</td>
<td>Max power: 60W</td>
</tr>
<tr>
<td>Blind sink support: Yes</td>
<td>Blind sink support: Yes</td>
</tr>
<tr>
<td>Conn Stat: On</td>
<td>Conn Stat: Off</td>
</tr>
</tbody>
</table>

Guaranteed Fair Shared Power: 37.5W
Port B is still disconnected & 15W allocated

*Sink actions vary

Step 1
Initial VBUS on Port A = 5V

Step 2
*Request 15V 1A with cap mismatch = 0 or 1

Step 3
Accept

Step 4
Get Sink Capability

Step 5
*Possible Blind Sink Capability
- 5V 1.5A (less than requested power);
- 5V 3A, 9V 1.67A, 15V 1A (blindly copy);
- “Not supported”;
- No response

Step 6
Blind Sink detected
Port Max Power is advertised
Port A: Source Capability (60W)
(5V 3A, 9V 3A, 15V 3A, 20V 3A)

Step 7
*Request 20V 3A with cap mismatch = 0

Step 8
Accept

Step 9
VBUS on Port A = 60W with Requested voltage 20V 3A
Total VBUS USB Power = 75W

<table>
<thead>
<tr>
<th>Source Port A</th>
<th>Source Port B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min power: 15W</td>
<td>Min power: 15W</td>
</tr>
<tr>
<td>Max power: 60W</td>
<td>Max power: 60W</td>
</tr>
<tr>
<td>Blind sink support: Yes</td>
<td>Blind sink support: Yes</td>
</tr>
<tr>
<td>Conn Stat: On</td>
<td>Conn Stat: On</td>
</tr>
</tbody>
</table>

Guaranteed Fair Shared Power: 37.5W

Port A is already connected and has a 60W contract. Now Port B is connected and power is negotiated as below:

Sink actions vary

Step 1
Port Min Power is advertised
- Port B: Source Capability (15W)

 \(5V \ 3A, \ 9V \ 1.67A, \ 15V \ 1A\)

Step 2
Request 15V 1A with cap mismatch = 0 or 1

Step 3
Accept

Step 4
Get Sink Capability

Step 5
Sink Capability of max 20W

\(5V \ 3A, \ 9V \ 2.2A, \ 15V \ 1.3A\)

Step 6
Port A: Source Capability (55W)

\(5V \ 3A, \ 9V \ 3A, \ 15V \ 3A, \ 20V \ 2.75A\)

Port B: Source Capability (20W)

\(5V \ 3A, \ 9V \ 2.2A, \ 15V \ 1.3A\)

Step 7
Request 15V 1.3A with cap mismatch = 0

Step 8
Accept

VBUS on Port B = 20W with Requested voltage 15V 1.3A

VBUS on Port A = 55W with Requested voltage 20V 2.75A

Figure 5-7. FSP Negotiation Flow with Blind Sink Support – Scenario 3
5.2.2 FSP Policy Example – Blind Sink Support with Max Power

This section provides three additional examples of Fair Share Power Policy’s power distribution, but with Blind Sink Support and Max Power enabled for both ports, and are shown in Table 5-9. With these two FSP settings enabled, Port Max Power is always advertised after the initial Source Capabilities message regardless of the Sink's behavior. The SPM Engine Parameters for these examples are the same as shown in Table 5-6.

<table>
<thead>
<tr>
<th>Table 5-9. FSP Example with Blind Sink Support and Max Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initially Allocated</td>
</tr>
<tr>
<td>Min Power is initially allocated for Port A and Port B.</td>
</tr>
<tr>
<td>Source Cap 1</td>
</tr>
<tr>
<td>Sink Request</td>
</tr>
<tr>
<td>Sink Cap</td>
</tr>
<tr>
<td>Source Cap 2</td>
</tr>
<tr>
<td>Sink Request</td>
</tr>
<tr>
<td>Power Distributed to Sink</td>
</tr>
</tbody>
</table>

Scenario 1: Port A connects to Good Sink 1. Port B is unconnected.

- Source Cap 1: 15 W (sent to Port A’s Sink with Port Min Power)
- Sink Request: 15 W (granted)
- Sink Cap: 45 W (sent by Source)
- Source Cap 2: 60 W (sent with Port Max Power)
- Sink Request: 60 W (requested)
- Power Distributed to Sink: 60 W (delivered to Port A Sink)

Scenario 2: Port A is replaced with a Blind Sink. Port B is still unconnected.

- Source Cap 1: 15 W (sent to Port A’s Sink with Port Min Power)
- Sink Request: 15 W (granted)
- Sink Cap: 15 W (sent by Source)
- Source Cap 2: 60 W (sent with Port Max Power)
- Sink Request: 60 W (requested)
- Power Distributed to Sink: 60 W (delivered to Port A Sink)

Scenario 3: Port B connects to Good Sink 2. Port A continues to deliver 60 W to Blind Sink.

- Source Cap 1: 15 W (sent to Port B’s Sink with Port Min Power)
- Sink Request: 15 W (granted)
- Sink Cap: 20 W (sent by Source)
- Source Cap 2: 37.5 W (sent with Port Max Power)
- Sink Request: 37.5 W (requested)
- Power Distributed to Sinks: 37.5 W (each Sink gets Per Port Guaranteed FSP of 37.5 W)

(1) Some Sink devices return a Sink Capabilities message that is lower than what they are actually able to consume. The Max Power option can be adopted to support higher power charging for Sink devices such as these.

Figure 5-8, Figure 5-9, and Figure 5-10 show the PD negotiation flow of the FSP examples from Scenario 1, Scenario 2, and Scenario 3 of Table 5-9, respectively.
Total VBUS USB Power: 75W
Source Port A Source Port B
Min power: 15W Min power: 15W
Max power: 60W Max power: 60W
Blind sink support: Yes Blind sink support: Yes
(With Max Power) (With Max Power)
Conn Stat: On Conn Stat: Off
Guaranteed Fair Shared Power: 37.5W
Port B is disconnected & 15W allocated
Now Port A is connected and power is negotiated as below
*Sink actions vary

Step 1
Port Min Power is advertised
Port A: Source Capability(15W)
(5V 3A, 9V 1.67A, 15V 1A)

Step 2
*Request 15V 1A with cap mismatch = 0 or 1

Step 3
Accept

VBUS on Port A = 15W w/ Requested voltage 15V 1A

Step 4
Get Sink Capability

Step 5
*Sink Capability of max 45W
(5V 3A, 9V 3A, 15V 3A, 20V 2.25A)

Step 6
Sink Cap is ignored and Port Max Power is advertised
Port A: Source Capability(60W)
(5V 3A, 9V 3A, 15V 3A, 20V 3A)

Step 7
*Request 20V 3A with cap mismatch = 0

Step 8
Accept

VBUS on Port A = 60W with Requested voltage 20V 3A

Figure 5-8. FSP Negotiation with Blind Sink Support & Max Power - Scenario 1
Figure 5-9. FSP Negotiation with Blind Sink Support & Max Power - Scenario 2

Total VBUS USB Power = 75W

<table>
<thead>
<tr>
<th>Source Port A</th>
<th>Source Port B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min power: 15W</td>
<td>Min power: 15W</td>
</tr>
<tr>
<td>Max power: 60W</td>
<td>Max power: 60W</td>
</tr>
<tr>
<td>Blind sink support: Yes</td>
<td>Blind sink support: Yes</td>
</tr>
<tr>
<td>(with Max Power)</td>
<td>(with Max Power)</td>
</tr>
<tr>
<td>Conn Stat: On</td>
<td>Conn Stat: Off</td>
</tr>
</tbody>
</table>

Guaranteed Fair Shared Power: 37.5W

Port B is still disconnected & 15W allocated

Port A is replaced with a Blind Sink and power is negotiated as below

*Sink actions vary

Step 1

Initial VBUS on Port B = 5V

Step 2

Port Min Power is advertised

Port A: Source Capability(15W)

(5V 3A, 9V 1.67A, 15V 1A)

*Request 15V 1A with cap mismatch = 0 or 1

Step 3

Accept

VBUS on Port B = 15W w/ Requested voltage 15V 1A

Step 4

Get Sink Capability

Step 5

*Possible Blind Sink Capability

5V 1.5A (less than requested power);
5V 3A, 9V 1.67A, 15V 1A (blindly copy);
“Not supported”;
No response

Step 6

Sink Cap is ignored and Port Max Power is advertised

Port A: Source Capability(60W)

(5V 3A, 9V 3A, 15V 3A, 20V 3A)

Step 7

*Request 20V 3A with cap mismatch = 0

Step 8

Accept

VBUS on Port A = 60W with Requested voltage 20V 3A
Figure 5-10. FSP Negotiation with Blind Sink Support & Max Power - Scenario 3
5.3 Hybrid Mode Example

This section provides examples of power distribution when the Source ports are in Hybrid Mode. Table 5-10 shows the configurable SPM Engine parameters used in this section's example. Table 5-11 shows the Hybrid Mode parameters used in the power distribution method.

<table>
<thead>
<tr>
<th>SPM Engine Parameters</th>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total USB VBUS Power (System Max Power)</td>
<td>54 W(^{(1)})</td>
<td>Total system power capacity allocated for Port A and B</td>
</tr>
<tr>
<td>Port A Max Power</td>
<td>45 W</td>
<td>Maximum Port A Power</td>
</tr>
<tr>
<td>Port B Max Power</td>
<td>45 W</td>
<td>Maximum Port B Power</td>
</tr>
<tr>
<td>Port A Min Power</td>
<td>9 W</td>
<td>Minimum Port A power</td>
</tr>
<tr>
<td>Port B Min Power</td>
<td>9 W</td>
<td>Minimum Port B power</td>
</tr>
<tr>
<td>Assured Mode(^{(2)})</td>
<td>Max Init Power</td>
<td>Source initially sends Source Capabilities advertising max power</td>
</tr>
</tbody>
</table>

(1) The Total USB VBUS Power is 54 W; less than the sum of Port A Max Power and Port B Max Power. This is how Hybrid Mode is enabled from the GUI.
(2) Hybrid Mode is enabled with the Assured Capacity Policy selected in the GUI configurations.

<table>
<thead>
<tr>
<th>Fair Share Power Policy Parameters</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equally Divided System Power</td>
<td>54/2=27 W</td>
<td>Equally divided Total USB VBUS power that is distributed to each port when two PD-Sinks are connected: Total USB VBUS Power / Total number of ports.</td>
</tr>
<tr>
<td>Single Port Max Power Capacity</td>
<td>54-9 W=45 W</td>
<td>System Max Power - Port Min Power (limited up to Port Max Power)</td>
</tr>
<tr>
<td>Non-PD USB-C Power</td>
<td>15 W</td>
<td>USB Type-C 5 V output for non-PD based USB Type-C charging</td>
</tr>
</tbody>
</table>

Three scenarios of Hybrid Mode power distribution are listed in Table 5-12 as examples.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Port A</th>
<th>Port B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1: Port A is unconnected. Port B connects to a Sink that requires 45 W.</td>
<td>27 W</td>
<td>27 W</td>
</tr>
<tr>
<td>Power Required by Sink</td>
<td></td>
<td>45 W</td>
</tr>
<tr>
<td>Power Distributed to Sink</td>
<td></td>
<td>45 W</td>
</tr>
<tr>
<td>Scenario 2: Port A connects to a Sink that also requires 45 W.</td>
<td>45 W</td>
<td>45 W</td>
</tr>
<tr>
<td>Power Required by Sinks</td>
<td>45 W</td>
<td>45 W</td>
</tr>
<tr>
<td>Power Distributed to Sinks</td>
<td>27 W</td>
<td>27 W</td>
</tr>
<tr>
<td>Scenario 3: Port B’s Port Partner is replaced with a non-PD Sink.</td>
<td>45 W</td>
<td>15 W</td>
</tr>
<tr>
<td>Power Required by Sink</td>
<td></td>
<td>45 W</td>
</tr>
<tr>
<td>Power Distributed to Sinks(^{(1)})</td>
<td>39 W</td>
<td>15 W</td>
</tr>
</tbody>
</table>

(1) Power distribution updates after roughly 8.5 seconds when the TPS257xx-Q1 firmware identifies a non-PD Sink.

Figure 5-11, Figure 5-12, and Figure 5-13 show the PD negotiation flow following the Hybrid Mode examples from Scenario 1, Scenario 2, and Scenario 3 of Table 5-12, respectively.
Total VBUS USB Power: 54W

Source Port A
Min power: 9W
Max power: 45W
Conn Stat: On

Source Port B
Min power: 9W
Max power: 45W
Conn Stat: Off

Sink Port B
Sink Capability: 45W with
5V 3A, 9V 3A, 15 3A, 20V 2.25A

Max Init Power (Enabled)
Port A is disconnected & 27W is allocated
Now Port B is connected and power is negotiated as below
*Sink actions vary

Step 1
Port Max Power is advertised
Port B: Source Capability(45W)
(5V 3A, 9V 3A, 15V 3A, 20V 2.25A)

Step 2
*Request 15V 1A

Step 3
Accept

VBUS on Port B = 15W w/ Requested voltage 15V 1A

Step 4
Get Sink Capability

Step 5
*Sink Capability of max 45W
(5V 3A, 9V 3A, 15V 3A, 20V 2.25A)

Step 6
Port B: Source Capability(45W)
(5V 3A, 9V 3A, 15V 3A, 20V 2.25A)

Step 7
*Request 20 2.25A

Step 8
Accept

VBUS on Port B = 45W with Requested voltage 20V 2.25A

Figure 5-11. Hybrid Mode Negotiation Flow - Scenario 1
Total VBUS USB Power: 54W

Source Port A
- Min power: 9W
- Max power: 45W
- Conn Stat: On

Source Port B
- Min power: 9W
- Max power: 45W
- Conn Stat: On

Sink Port A
- Sink Capability: 45W with
 5V 3A, 9V 3A, 15 3A, 20V 2.25A

Max Init Power (Enabled)
Port B is already connected and has a 45W contract
Now Port A is connected and power is negotiated as below
*Sink actions vary

Step 1
Equally Divided System Power is advertised
- Port A: Source Capability (27W)
 (5V 3A, 9V 3A, 15V 1.8A, 20V 1.35A)
- Port B: Source Capability (27W)
 (5V 3A, 9V 3A, 15V 1.8A, 20V 1.35A)

Step 2
*Request 15V 1A

Step 3
Accept

VBUS on Port A = 15W w/ Requested voltage 15V 1A

Step 4
Get Sink Capability

Step 5
*Sink Capability of max 45W
 (5V 3A, 9V 3A, 15V 3A, 20V 2.25A)

Step 6
Port A: Source Capability (27W)
 (5V 3A, 9V 3A, 15V 1.8A, 20V 1.35A)
- Port B: Source Capability (27W)
 (5V 3A, 9V 3A, 15V 1.8A, 20V 1.35A)

Step 7
*Request 9V 3A

Step 8
Accept

VBUS on Port A = 27W with Requested voltage 9V 3A
VBUS on Port B = 27W with Requested voltage 9V 3A

Figure 5-12. Hybrid Mode Negotiation Flow - Scenario 2
Total VBUS USB Power: 54W

Source Port A
Min power: 9W
Max power: 45W
Conn Stat: On

Source Port B
Min power: 9W
Max power: 45W
Conn Stat: On

Sink Port A
Sink Capability: 45W

Sink Port B (Non-PD Sink)
Sink Capability: n/a

Max Init Power (Enabled)
Now Port B is replaced with a non-PD Sink

Figure 5-13. Hybrid Mode Negotiation Flow - Scenario 3

Step 1
Equally Divided System Power is advertised
Port A: Source Capability(27W)
(5V 3A, 9V 3A, 15V 1.8A, 20V 1.35A)
Port B: Source Capability(27W)
(5V 3A, 9V 3A, 15V 1.8A, 20V 1.35A)

Step 2
*Port A: Request 20V 1.35A
Port B: No Response*

Step 3
Port A: Accept
Port B: FW identifies non-PD Sink

Step 4
Get Sink Capability

Step 5
*Port A: Sink Capability of max 45W
(5V 3A, 9V 3A, 15V 3A, 20V 2.25A)*

Step 6
Port A: Source Capability(39W)
(5V 3A, 9V 3A, 15V 2.6A, 20V 1.95A)

Step 7
Port A: Request 20V 1.95A

Step 8
Accept

Step 9
Port A: Request 20V 1.95A

**VBUS on Port A = 27W with Requested voltage 9V 3A
VBUS on Port B = 15W (Type-C Current configured to 3A)*

**VBUS on Port A = 39W with Requested voltage 20V 1.95A
VBUS on Port B = 15W (Type-C Current configured to 3A)**
References

- Texas Instruments, *TPS25772-Q1 Automotive Dual USB Type-C® Power Delivery Controller with Buck-Boost Regulator* data sheet.
- Texas Instruments, *TPS25762-Q1 Automotive USB Type-C® Power Delivery Controller with Buck-Boost Regulator* data sheet.
- Universal Serial Bus Type-C Cable and Connector Specification, Revision 2.2.
7 Revision History

Changes from Revision * (September 2022) to Revision A (November 2023)

<table>
<thead>
<tr>
<th>Change Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updated the numbering format for tables, figures, and cross-references throughout the document</td>
<td>1</td>
</tr>
<tr>
<td>Updated images throughout publication to reflect new GUI changes</td>
<td>1</td>
</tr>
<tr>
<td>Updated Source description</td>
<td>2</td>
</tr>
<tr>
<td>Updated section name to SPM Engine Overview</td>
<td>3</td>
</tr>
<tr>
<td>Updated definition of assured and shared capacity policy power allocation</td>
<td>3</td>
</tr>
<tr>
<td>Updated section title to Multi-Port Power Allocation Policy</td>
<td>4</td>
</tr>
<tr>
<td>Updated SPM Engine Configurable Parameters – Advanced Configuration image</td>
<td>4</td>
</tr>
<tr>
<td>Deleted Physical Port Priority Policy section</td>
<td>7</td>
</tr>
<tr>
<td>Added Assured Capacity Policy section</td>
<td>11</td>
</tr>
<tr>
<td>Added information about having six phases</td>
<td>14</td>
</tr>
<tr>
<td>Added Multi-Port Power Allocation Policy Examples section</td>
<td>22</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated