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Analog Applications Journal is a collection of analog application articles 
designed to give readers a basic understanding of TI products and to provide 
simple but practical examples for typical applications. Written not only for 
design engineers but also for engineering managers, technicians, system 
designers and marketing and sales personnel, the book emphasizes general 
application concepts over lengthy mathematical analyses.

These applications are not intended as “how-to” instructions for specific 
circuits but as examples of how devices could be used to solve specific design 
requirements. Readers will find tutorial information as well as practical 
engineering solutions on components from the following categories:

• Data Acquisition

• Power Management

• Interface (Data Transmission)

• Amplifiers: Audio

• Amplifiers: Op Amps

• Low-Power RF

• General Interest

Where applicable, readers will also find software routines and program 
structures. Finally, Analog Applications Journal includes helpful hints and 
rules of thumb to guide readers in preparing for their design.

Introduction
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Easy solar-panel maximum-power-point 
tracking for pulsed-load applications

Introduction
Many solar-panel-powered applications need only 
pulses of power to operate. Systems for data col-
lection or measurement sampling  frequently need 
to turn on, perform a measurement or some other 
task, transmit the processed or measured data, and 
return to sleep. In many cases, wirelessly trans-
mitting the data consumes the largest portion of 
output power. These required power pulses, either 
for the system itself or for transmitting data, typi-
cally are difficult to support with a power- limited 
supply such as a solar panel. By operating at the 
solar panel’s maximum power point (MPP) and by 
intelligently drawing the power from the panel, 
energy can be successfully harnessed to power a 
pulsed load. This article presents a simple and cost-
effective solution for maximum-power-point track-
ing (MPPT) for use in such pulsed-load systems.

Solar-panel characteristics
Solar panels provide peak output power when 
operated at their MPP. The MPP is a voltage and current 
corresponding to the panel’s highest obtainable output 
power. MPPT harnesses this power from a solar panel even 
as the amount of illumination varies. A characteristic of 
solar panels is that the panel voltage decreases as the cur-
rent drawn from the panel increases. If the current drawn 
is too high, the voltage collapses and the amount of power 
drawn becomes very low. Figure 1 illustrates a particular 
solar panel’s output current and output power versus its 
output voltage. The MPP is labeled. A horizontal green line 
on the graph shows where the output power is at least 
90% of the MPP. Above this line, between Points 1 and 2, 
the panel provides the most power.

When the solar-panel-powered load requires only pulses 
of power and does not need to be powered 100% of the 
time, one simple way to operate within 90% of the MPP is 
to turn on the load at Point 1 and turn it off at Point 2. 
When the load is on, it draws its required power, which 
lowers the panel voltage. This moves the operating point 
from Point 1, through the MPP point, and over to Point 2. 
At Point 2, the load is turned off and the panel voltage 
rises again. Even with this simple operation, there are 
three issues that must be overcome.

First, the load likely requires a different voltage than 
what the panel outputs. Thus, a high-efficiency power sup-
ply is required to convert the variable and relatively high 
panel voltage into a constant voltage for the load.

Second, the panel voltage should be measured and the 
power supply disabled or enabled based on that voltage. 
Most power supplies have a digital input to enable or dis-
able them. Such an input has a very imprecise threshold 
to differentiate a logic low from a logic high. With an 
imprecise threshold, the panel voltage cannot be wired 
directly to the enable input. Instead, an external circuit 
with a precise threshold is required. A supply-voltage 
supervisor can be used, but this adds the cost and com-
plexity of a second device.

Third, the quickly changing panel voltage must be 
greatly slowed down to allow sufficient operating time to 
accomplish the required tasks. Changing the panel voltage 
from Point 1 to Point 2 requires almost no time—theoreti-
cally zero seconds. During this time, when the voltage 
 varies from Point 1 to Point 2, the power supply for the 
load must turn on and the load must perform its task. This 
requires a power supply with a very fast turn-on and a 
long enough holdup of the panel voltage to perform the 
necessary tasks.

The MPPT solution
There are few single-device, cost-effective solutions that 
operate from the wide voltage range of power-limited 
solar-panel inputs while efficiently providing a regulated 
output voltage, a quick start-up, and operation within 90% 
of the MPP. However, the Texas Instruments TPS62125 is 

Power Management

By Chris Glaser
Applications Engineer
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one such device that accepts 
input voltages of up to 17 V, 
operates with efficiencies in 
excess of 90%, starts up in less 
than 1 ms, and has an enable 
input pin with a precise thresh-
old that can be directly wired 
to the solar panel’s voltage for 
MPPT. This eliminates the need 
for an additional device to per-
form this function. Figure 2 
shows a complete solution.

The voltage divider, formed 
by R1 and R2, is configured to 
turn on the power supply at 
Point 1 in Figure 1. Until the 
power supply is enabled, the 
device itself holds the node 
between R2 and R3 at ground 
potential. After the supply is 
enabled, the device releases this node, and R3 is then part 
of the voltage divider. When the solar-panel voltage falls to 
Point 2, the device turns off and holds the node low 
between R2 and R3 again. At this point, the panel voltage 
begins to rise again until it reaches the turn-on threshold. 
This provides a fully programmable turn-on and turn-off 
voltage that can be configured to any solar panel.

The bulk input capacitor, C3, stores enough energy from 
the solar panel to power the load for the required duration 
and provides the charge for starting up the power supply. 
The panel delivers a current corresponding to its voltage 
to either the power supply or C3. When the power supply 
is off, the solar panel delivers its current to the capacitor. 
When the power supply is on, the capacitor and solar 
panel provide the necessary current to power the load. 
Since C3 merely stores energy and this energy is released 
over a relatively lengthy period of time, C3 can be a low-
cost electrolytic capacitor.

Computing the required bulk input capacitance
The first step in designing the MPPT circuit is determining 
the load’s power needs and then computing the amount of 
required bulk input capacitance based on these power 
requirements and the chosen solar panel. As an example, 
assume a remote sensing circuit requires 3.3 V at 250 mA 
(825 mW) for a duration of 15 ms. These are typical needs 
for a system that contains a measurement device, a micro-
processor, and an RF transmitter.

After the load’s power needs are determined, the 
required value for C3 is calculated. First, the input current 
required to power the load is found from Equation 1:

 
IN

IN

Output Power
I

V
=

× h
 (1)

VIN is the average solar-panel voltage between Points 1 and 
2 in Figure 1, and η is the power-supply efficiency at the 
given output power. Notice that the typical efficiency of 

the power supply at a VIN of about 7.8 V and an output 
power of 825 mW is around 87%. Using these numbers,  
IIN = 122 mA. This is much greater than what Figure 1 
shows the solar panel to be capable of providing, so C3 
must store enough energy to provide the remaining cur-
rent for 15 ms. Equation 2 determines the required C3 
value based on the load requirements and solar-panel 
characteristics:

 

IN Panel(Avg) ON

P1 P2

(I I ) t
C3

V V

− ×
≥ −

 (2)

VP1 and VP2 are the voltages at Points 1 and 2, which are 
respectively about 9 V and 6.5 V for this panel, and corre-
spond to the voltage change across C3 as it discharges. 
The required load operating time, given by tON, is 15 ms. 
Finally, IPanel(Avg) is the average current from the solar 
panel when the panel is operated within 90% of its MPP. 
As seen in Figure 1, this current is about 19 mA.

From Equation 2, it is determined that C3 should be 
greater than 618 µF. A 680-µF capacitor is used to provide 
some margin in the operating time.

Calculating the enable pin’s voltage divider
R1, R2, and R3 form a fully configurable voltage divider 
with hysteresis for the enable (EN) pin. Equations 3 and 4 
are used to set the resistor values:

 
P1

R1
V 1.20 V 1

R2
 = × +  

 (3)

 
P2

R1
V 1.15 V 1

R2 R3
 = × +  +

 (4)

R1 is chosen first, and 1 MΩ is a good starting value. With 
this, R2 is calculated to be 153.8 kΩ. The closest standard 
value of 154 kΩ is chosen. R3 should be 60.9 kΩ, and 
60.4 kΩ is the nearest standard value.

TPS62125

C2
10 µF

R4

L1
10 µH

R5
R6
100 kΩ

Power
Good

R1

C3 C1
10 µF

R2

R3

Solar
Panel

Load
EN

VIN
VOUT

FB

PG

SW

GND

ETPAD

VOS

EN_HYS

EN

+

+

Figure 2. MPPT circuit for a pulsed load
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Additional MPPT circuit configuration
Another feature that can be configured to benefit 
the typical application is using the power good 
(PG) output to control the load’s enable (EN) 
input. The PG pin is held low when the power  
supply is off. The pull-up resistor, R6, pulls it high, 
but only when the power supply is enabled and the 
output voltage is in regulation. Connecting the PG 
output directly to the load’s EN input keeps the 
load disabled until the input voltage has risen 
above VP1 and until the output voltage is high 
enough to properly power the load. As the power 
supply is disabled from the input voltage falling 
below VP2, the PG pin is actively pulled low, which 
also disables the load. This configuration ensures 
that the load is enabled only when its supply volt-
age is in regulation, avoiding a low supply voltage 
that possibly could corrupt the load’s performance 
or data.

Test results
Figure 3 shows the MPPT circuit in operation. The 
panel voltage, VIN, remains between 9 V and 6.5 V 
(VP1 and VP2, respectively). Once VOUT enters reg-
ulation, the load enables and draws 250 mA. When 
the panel’s voltage drops to 6.5 V, VOUT is disabled 
and thereby disables the load current. The solar 
panel provides an average of 19 mA at all times. The 
load has a run time of around 18 ms in Figure 3, 
meeting the 15-ms requirement. This run time 
roughly matches the calculations, since the value of 
C3 increased above the result of those calculations.

Figure 4 replaces the output-voltage trace in 
Figure 3 with the trace for ICap, the current from 
C3. As VIN decreases, the current leaving the 
capacitor is positive—the capacitor provides its 
stored energy to the power supply, which then sup-
plies that energy to the load. Once the load turns 
off, due to the panel voltage decreasing to 6.5 V 
and the power supply disabling, the current from 
C3 goes negative—the capacitor recharges from 
the panel and stores energy for the next cycle. The 
current from C3 spikes briefly before the load is 
enabled, as the power supply turns on when the 
panel voltage is sufficiently high. Additional input 
current provided by C3 is needed during start-up.

Conclusion
This article has demonstrated a simple and cost- 
effective circuit for tracking a solar panel’s MPP for a 
pulsed-load system, such as a remote measurement 
 system that transmits its data via RF transmitters. This 
topology also can be configured to any solar panel and any 
pulsed load.

Related Web sites
power.ti.com
www.ti.com/energyharvesting
www.ti.com/product/TPS62125
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Designing a Qi-compliant receiver coil  
for wireless power systems, Part 1

Overview
The implementation of the Wireless Power Consortium’s 
(WPC’s) Qi standard1 brings wireless power to many dif-
ferent end applications. The receiver (Rx) coil for each 
application may have different geometries and/or power 
requirements. Since the Rx coil is a key component in a 
successful and efficient design of a Qi-compliant Rx and 
there are many design options and trade-offs to consider, 
the designer must take a careful and methodical approach 
when realizing a solution. This article provides the techni-
cal insight needed to realize a successful Rx-coil design. It 
covers the Qi-compliant system model as a basic trans-
former; Rx-coil measurements and system-level influ-
ences; and methods of qualifying a design for successful 
operation. It is assumed that the reader has a general 
understanding of the Qi-compliant inductive power sys-
tem. Background information can be found in Reference 2.

Qi-compliant system as a transformer
For many near-field wireless power systems such as the 
one specified by the WPC, the behavior of the magnetic 
power transfer can be modeled by a simple transformer. A 
traditional transformer usually has a single physical struc-
ture with two windings around a core material that is 
highly permeable compared to air (Figure 1). Since the 
traditional transformer uses a highly permeable material to 
carry the magnetic flux, most (not all) of the flux produced 
by one coil couples to the second coil. This coupling, which 
can be measured through a parameter known as the cou-
pling coefficient, is denoted as k (a measure that can have 
a value between 0 and 1).

Three parameters define a two-coil transformer:

L11 is the self-inductance of coil 1.

L22 is the self-inductance of coil 2.

L12 is the mutual inductance of coils 1 and 2.

The coefficient for coupling between the two coils can be 
formulated as

 

12

11 22

L
k

L L
= . (1)

The ideal transformer then can be modeled by using a 
coupled inductor as shown in Figure 2.

Using the voltage and current relationship of an induc-
tor can provide the nodal equations of this two-coil  
transformer:

 

1 2
1 11 12

di di
V  L L

dt dt
= +  (2a)

 

2 1
2 22 12

di di
V  L L

dt dt
= +  (2b)

For circuit analysis, the model in Figure 2 can be repre-
sented by what traditionally is referred to as a cantilever 
model, shown in Figure 3. Here the magnetic coupling and 
mutual inductance are simplified to leakage and magnetiz-
ing inductances. This allows the physical nature of the 

By Bill Johns, Applications Engineer,
Tony Antonacci, System Engineer,
and Kalyan Siddabattula, System Engineer
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Figure 1. Traditional transformer with one 
physical structure
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transformer

1:Ne

Ideal
Transformer

LLeak

LMagV1 V2

i1 i2

+ +

– –

Figure 3. Cantilever model of a traditional 
transformer
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coupling to be understood through a circuit implementa-
tion. For the ideal transformer, the turns ratio is calcu-
lated by using the following equations:

 

22
e

11

1 L
N  

k L
=  (3a)

 
2

Mag 11L  k L=  (3b)

In a tightly coupled system, the leakage inductance is a 
small percentage of the magnetizing inductance, allowing 
this parameter to be neglected for a first-order approxima-
tion. In addition to high coupling, the series resonant capac-
i tors utilized in the Qi-compliant system reduce the effect 
of leakage inductance. Therefore, the voltage gain from the 
primary coil to the secondary coil can be approximated for 
the first order as

 

2 22

1 11

V L
k .

V L
∝  (4)

The transformer in a Qi-compliant system consists of 
two separate physical devices, the transmitter (Tx) and 
the receiver (Rx), each with an isolated coil. When a Tx 
and Rx are placed near one another, they form a coupled-
inductor relationship, simply modeled as a two-coil trans-
former with an air core (Figure 4). The shielding material 
on both sides serves as a magnetic-flux short. This allows 
the magnetic field lines (flux) to be contained between 
the two coils. Figure 5 illustrates a 2D simulation of the 
magnetic field lines found during typical operation.

For a typical Qi-compliant system, the coupling coeffi-
cient (k) is much lower than for a traditional transformer. 
A traditional transformer has coupling in the range of 0.95 
to 0.99. For example, 95 to 99% of the magnetic flux cou-
ples to the secondary coil; whereas, for a Qi-compliant 
system, the coupling coefficient is on the order of 0.2 to 
0.7, or 20 to 70%. For the most part, the Qi standard 
attempts to mitigate this lower coupling with a series  
resonant cap on the Tx and Rx that can compensate for 
the leakage inductance at resonance.

Electrical requirements of the Rx coil
In some Rx ICs, the target voltage of the dynamically con-
trolled rectifier varies as a function of the output current. 
Since the rectifier output dictates the voltage gain needed 
across the transformer, the highest output voltage on the 
rectifier must be considered along with the output load, or 
demand for output power. As shown in Figure 6, the recti-
fier output varies from ~7 to 5 V over a 1-A load, which 
sets the required voltage gain across the transformer. It is 
important to ensure that the Rx coil, when tuned per the 
WPC specification (see the section “Tuning the Rx coil” 
later in this article), can achieve this voltage demanded by 
the Rx IC.

Transmitter (Tx) Receiver (Rx)

k 0.2 to 0.7≈

Send
Energy

Receive
Energy

Figure 4. Simple inductively coupled 
transformer with an air core

Figure 5. Example magnetic field lines 
between two mutually coupled coils
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Figure 6. Rectifier output versus load
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The flowchart in Figure 7 illustrates a recommended 
approach for specifying a new Rx coil. The design flow has 
limited choices for the shield, the wire gauge, and the 
number of turns. Each of these will be discussed next.

The shield
The shield has two primary functions: (1) providing a low-
impedance path for the magnetic flux so that very few flux 
lines impinge upon surrounding metallic objects, and (2) 
permitting a higher-inductance coil to be realized with 
fewer turns so that excessive resistance is not introduced 
(from additional turns).

Thick shields, which can absorb a large amount of mag-
netic flux (i.e., they have a high flux saturation point), can 
be used to prevent heating in the material behind the Rx 
coil. Thick shields also are less susceptible to drops in effi-
ciency than thinner shields when they encounter a Tx or 
Rx with a magnet used for alignment. (See the section 
“Measuring the Rx-coil inductance” later in this article for 
details on this effect.) Typical materials from vendors such 
as Vishay, TDK, Panasonic, E&E, Elytone, and Mingstar 
can help minimize efficiency degradation. Note that high-
permeability ferrite materials, such as powdered iron, don’t 
always perform better than distributed-gap materials. 
Although ferrite materials have a high permeability, they 
exhibit a lower flux saturation point when the shield thick-
ness is reduced. This factor must be carefully considered.

The Rx-coil wire gauge
The choice of wire gauge for the Rx coil is based on cost 
versus performance. Large-diameter wire or bifilar wire 
(two parallel wires) can provide high efficiencies but is 
costly and can result in thick Rx-coil designs. For instance, 
a PCB coil might be cheaper in overall cost but incurs a 
much higher equivalent series resistance than a bifilar 
counterpart.

The number of turns
Once the wire and shield have been chosen, the number of 
turns determines the Rx-coil inductance. Coil inductance 
and coupling determine the voltage gain observed at the 
Rx’s rectifier output as well as the total available power to 
the Rx. This voltage-gain target is shown in Figure 6.

Three procedures offer a general approach to determine 
the inductance target:

1. The Tx’s type-A1 coil should be used as the basis for the 
primary coil’s characteristics (for example, 1500-mm2 
area, 24-µH inductance, and 19-V primary voltage).

2. When a shield material with a permeability significantly 
higher than air (>20) is used, the coil area is a good 
proxy for the coupling coefficient. Note that this only 
applies to planar coils with either a single layer or two 
layers of turns. Exotic coil structures do not utilize this 
principle. In order to ensure a reasonable coupling and 
high efficiency, an Rx coil can be used with an area 
approximately 70 to 80% of the area of A1 coil for a 5-W 
system. This ensures a coupling coefficient of approxi-
mately 50% for most reasonable designs with a distance, 

Create Rx-coil build
specification that can be sent
to magnetics vendor; and
create Rx custom BOM

Build and test prototype
on tester specified by TI

End of coil
design

Use circuit shown later to
run simulations for best
positioned case of Rx

No

No Are curves
acceptable?

Yes

Yes

Understand
physical design limitations:

– X, Y, and Z limits of coil
– Estimate interface gap

Need
wireless power Rx

Will
current

catalog part
work?

Pick following parameters:
– Power needed at load
– Expected coupling coefficient

between Tx and Rx
– Allowable space for the Rx coil

Display load-line
curves

Figure 7. Flowchart of methodology for 
Rx-coil design

dZ, of up to 5 mm between the Tx and Rx coils as speci-
fied by the WPC.

3. The desired voltage gain is determined based on the 
average expected rectifier voltage—for example, 6 V 
found in the plot in Figure 6. In this example case, the 
voltage gain is ~0.32 (6 V/19 V).
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A typical design for a 5-V/5-W output-voltage system 
shows that with the coupling coefficient around 0.5, a sec-
ondary inductance of about 10 µH is sufficient to produce 
the target voltages required. There are two relationships 
to consider in the system design:

 

22
2 IN

11

L
V kV

L
∝  (5a)

 
2

22 2L N∝  (5b)

Therefore, if the coupling coefficient is changed from 0.5 
to 0.4, the inductance for the same power output can 
increase by up to 1.6 times the previous inductance. This 
means that the new inductance is ~16 µH. As shown in 
Equation 5b, coil inductance is proportional to the number 
of coil turns squared.

Table 1 shows the secondary inductance and coupling 
for some common coils designed for the system.

vary in different system scenarios. Due to the interopera-
bility nature of the Qi standard, the Rx coil can be placed 
on many different types of Tx’s that may influence the 
Rx-coil inductance—and hence the electrical response.

Per Section 4.2.2.1 of the WPC specification,1 the 
Rx-coil inductance, L′S, is measured with the test configu-
ration in Figure 8. The spacer and Tx shield provide a ref-
erence to emulate Tx components near the Rx coil. In this 
test configuration, the Tx shield is a 50 × 50 × 1-mm piece 
of ferrite material (PC44) from TDK Corporation. The gap 
dZ is set to 3.4 mm by means of a nonmetallic spacer. The 
Rx coil is then placed on the spacer, and L′S is measured 
with a stimulus of 1-V RMS and 100 kHz. In addition, the 
free-space Rx-coil inductance, LS, is measured without the 
Tx shield.

What is not detailed in the WPC specification is the influ-
ence of common system scenarios on the L′S and LS mea-
surements. The most common influence on these parame-
ters is the presence of a battery behind the Rx coil. Due to 
the casing material and the battery cell’s makeup, the 
Rx-coil inductance generally is reduced when the battery 
is placed behind it. In addition to the battery, the presence 
of a magnet on a Tx-coil structure influences the induc-
tance. (See Section 3.2.1.1.4 of the WPC specification.1) 
The magnet functions as a stressor on the Rx-coil shield-
ing material where the shield’s magnetic saturation point 
is of key interest. If the Rx-coil shielding material saturates 
when a magnet is present, the coil inductance drops dra-
matically. Because the Qi standard specifies Tx coil assem-
blies with and without a magnet, the designer needs to 
understand how the inductance varies in both scenarios, 
as any shift in inductance will shift the resonant tuning of 
the Rx. Note that the test configuration in Figure 8 does 
not include a magnet. When a magnet is included, its flux 
density should be between 75 and 150 mT and its diame-
ter should be a maximum of 15.5 mm. This means that the 
typical 30-mT magnetic field of the Tx coil during power 
transfer is about 20% of the magnet’s field strength.

Table 1. Examples of typical coils

COIL  
DIMENSIONS 

(mm) TURNS
VOUT
(V)

POUT
(W)

L22
(µH) k

48 × 32 15 5 5 12 ~0 .6

28 × 14 24 5 2 .5 33 ~0 .25

35 × 35 24 7 5 22 ~0 .5

Tx Shield

Rx Shield Rx Coil
Rx Interface

Surface

Spacer d = 3.4 mmZ

Magnetic
Attractor

Figure 8. Test configuration for measuring Rx-coil inductance (L′S)

One caveat is that these rules of thumb apply to general 
planar coils and are preliminary, meant to serve as a start-
ing point for a design. The actual design is best optimized 
by using simulation tools, as shown in the flowchart in 
Figure 7.

Measuring the Rx-coil inductance
The Rx-coil inductance is a very important parameter that 
dictates the electrical response (such as voltage gain and 
output impedance) of the Rx AC/DC power stage. To pre-
serve a consistent response, the inductance must minimally 
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For the purpose of understanding the performance 
of the Rx-coil inductance, Table 2 defines parameters 
in addition to the recommended measurements of L′S 
and LS. When the battery is introduced into the mea-
surement, it should be placed in the same orientation/
location as it will be in the final system. Note that the 
materials used in the final industrial design could also 
influence the final inductance measurement. Therefore, 
when the tuning circuit is configured, all components of the 
final industrial design of the mobile device should be used 
for the final measurement. The measurements found in 
Table 1 can be used to screen and qualify potential Rx coils.

Table 3 summarizes the measured inductances from an 
acceptable coil design and the resonant frequency with a 
fixed series and parallel resonant capacitor. Here L′S_b 
was used for the capacitor calculations. (See the next sec-
tion, “Tuning the Rx coil,” for details.) Note that the varia-
tion could be linearly scaled as a percentage of L′S and 
used as a reference for acceptance of a prototype coil.

Tuning the Rx coil
The simplified Rx-coil network consists of a series reso-
nant capacitor, C1, and a parallel resonant capacitor, C2. 
These two capacitors make up the dual resonant circuit 
with the Rx coil (see Figure 9) and must be sized cor-
rectly per the WPC specification.

To calculate C1, the resonant frequency of 100 kHz is 
used along with L′S:

 ( )1 2
S

1C
100 kHz 2 L

=
′× π ×

 (6)

Table 3. Measured inductances of a sample coil

L′S L′S_m L′S_b L′S_m_b LS LS_b

Inductance (µH) 12 .9 13 .1 10 .5 10 .6 10 .9 9 .52

Resonance (kHz) 90 .15 89 .63 100 99 .72 98 .15 105 .02

Table 2. Rx-coil-inductance parameters to be measured during development 

PARAMETER

Rx COIL 
WITH  

Tx SHIELD

Rx COIL 
WITHOUT  
Tx SHIELD BATTERY MAGNET SUMMARY

L′S Included — — — Standard L′S measurement

L′S_m Included — — Included Exposes the effect of the magnet

L′S_b Included — Included — Exposes the effect of the battery

L′S_m_b Included — Included Included Exposes the effect of the battery 
and the magnet together

LS — Included — — Standard LS measurement

LS_b — Included Included — Exposes the effect of the battery

To calculate C2, a secondary resonance of 1.0 MHz is used 
along with LS. This calculation requires that C1 be deter-
mined first and used in Equation 7:

 

( )
2

2
S

1

1C
11.0 MHz 2 L

C

=
 

× π × −  

 (7)

Finally, the quality factor must be greater than 77 and is 
calculated as

 

S2 1.0 MHz L
Q ,

R

π × ×
=  (8)

where R is the DC resistance of the coil.

Load-line analysis of the Rx coil
When choosing an Rx coil, a designer needs to understand 
the transformer characteristics by comparing the primary 
and Rx coils via load-line analysis (I-V curves). This analy-
sis captures two important conditions in the Qi-compliant 
system: (1) operating-point characteristics and (2) tran-
sient response. These will be discussed next.

C2L′S

C1

Figure 9. Dual resonant circuit with Rx coil
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Operating-point characteristics
An example test configuration for con-
ducting load-line analysis is shown in 
Figure 10, whose parameters are defined 
as follows:

VIN is an AC power source that should 
have a peak-to-peak operation of 19 V.

CP is the primary series-resonant capac i-
tor (100 nF for type-A1 coil).

LP is the primary coil of interest (type A1).

LS is the secondary coil of interest.

C1 is the series resonant capacitor chosen 
for the Rx coil under test.

C2 is the parallel resonant capacitor 
chosen for the Rx coil under test.

CB is the bulk capacitor for the diode bridge. CB should be 
at least 10 µF at 25 V.

V is a Kelvin-connected voltage meter.

A is a series ammeter.

RL is the load of interest.

The diode bridge should be constructed of Schottky 
diodes in either a full bridge or a synchronous half bridge 
with low-side n-type MOSFETs and high-side Schottkys. 
Three test procedures are used for the analysis:

VIN

C1CP

C2 CB RLLP LS

A

V

Figure 10. Test setup for load-line analysis

1. A 19-V AC signal is supplied to LP, starting at a fre-
quency of 200 kHz.

2. The resulting rectified voltage is measured from no load 
to the expected full load.

3. The preceding two steps are repeated for lower fre-
quencies, stopping at 110 kHz.

An example load-line analysis is shown in Figure 11. 
The plot conveys that specific load and rectifier conditions 
result in a specific operating frequency. For example, at  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
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1-A Load
Operating Point

1-A Load-
Step Droop

Figure 11. Results of example load-line analysis
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1 A, the target for the dynamic rectifier is 5.15 V. Therefore, 
the operating frequency is between 150 and 160 kHz, 
which is an acceptable operating point. If the operating 
point falls outside the WPC-specified frequency range of 
110 to 205 kHz, the system will never converge and will 
become unstable.

Transient response
For transient analysis, there are two major points of inter-
est, shown in Figure 11: (1) the rectifier voltage at the ping 
frequency (175 kHz), and (2) the rectifier voltage droop 
from no load to full load at the constant operating point.

In this example, the ping voltage is ~5 V. This is above 
the VUVLO of the chip. Therefore, start-up in the Qi-
compliant system can be guaranteed. If the voltage is 
near or below the VUVLO at this frequency, start-up may 
not occur.

If the maximum load step is 1 A, the droop in this exam-
ple is ~1 V with a voltage of 6 V at the 140-kHz load line in 
Figure 11. To analyze the droop, the 140-kHz load line that 
starts at 7 V at no load is followed to the maximum load 
current expected. Droop voltage is the difference between 
the voltages at the ends of the load line. Acceptable full-
load voltage at the selected operating frequency should be 
above 5 V. If it descends below 5 V, the power-supply  
output also droops to this level. This type of analysis for 
transient response is necessary due to the Qi-compliant 
system’s slow feedback response. The analysis simulates 
the step response that would occur if the system did not 
adjust the operating point of the resonant transformer.

Note that coupling between the primary and secondary 
coils worsens with Rx-coil misalignment. Therefore, an 
additional analysis of the load lines at multiple misalign-
ments is recommended to determine where in the planar 
space the Rx discontinues operation.

Conclusion
This article has shown that traditional transfer fundamen-
tals can be employed to simplify the design of Rx coils for 
wireless power systems. However, the nature of interoper-
ability and mobile-device characteristics can impose unique 

deviations from standard magnetics design practices. 
Identifying and addressing coil-design details up front 
increases the probability of greater success on the first 
pass. The evaluation methods introduced allow specifica-
tion and characterization of a custom Rx coil in a very 
methodical approach.

Part 2 of this article series will provide design details of 
different types of custom Rx coils. The results will exer-
cise the methods and theory presented in Part 1.
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Data-rate independent half-duplex repeater 
design for RS-485

A question frequently posed by engineers 
is how to design a data-rate independent 
half-duplex repeater for RS-485 applica-
tions. Examples include designing a long-
haul network beyond the suggested maxi-
mum cable length of 1200 m, adding long 
stubs to an existing network, or designing 
a network using a star topology. The data 
rates applied can vary between systems 
from 10 kbps up to 200 kbps.

Ground-potential differences (GPDs) 
between remotely located nodes can 
assume voltages exceeding the maximum 
common-mode voltage range of most bus 
transceivers, making galvanic isolation 
necessary between the network node elec-
tronics and the bus.

In Reference 1, the characteristic for 
cable length versus data rate suggests that 
a maximum cable length of 1200 m, or 
about 4000 ft, should be used (Figure 1). 
At this length, the resistance of the com-
monly applied 120-Ω, AWG24 unshielded 
twisted-pair (UTP) cable approaches the value of the ter-
mination resistor and reduces the bus signal swing by half, 
or 6 dB.

In RS-485 literature, transceiver datasheets often show 
a full-duplex repeater design for simplicity’s sake. In long-
haul networks, however, it is undesirable to run a full-
duplex cable for thousands of meters because cable and 
wiring are very expensive.

To operate an extended long-haul network in half-duplex 
mode, implementing a half-duplex repeater is a must. A 
system block diagram is shown in Figure 2. Because a half-
duplex repeater interfaces to two bus segments, the 
repeater must comprise two separate transceivers, each 
connecting to its respective bus via signal isolators, and a 
control logic isolated from both transceiver sections. The 
control logic performs timely enabling and disabling of the 
repeater’s driver and receiver sections. This is initiated by 
the incoming data signal from either direction.

Interface (Data Transmission)

By Thomas Kugelstadt
Applications Engineer
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Figure 1. Cable length versus data rate
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Figure 2. Bus extension with dual isolated half-duplex repeater
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The two most commonly applied timing-control methods 
are the one-shot circuit in Figure 3 and the inverting buffer 
with a time delay in Figure 4. To ensure correct switching 
behavior, both methods require defined start conditions 
after power up and bus idling. This is accomplished through 
fail-safe biasing resistors, RFS, which create a fail-safe 
voltage, VFS, above the receiver input sensitivity of VFS > 
+200 mV when no transceiver is actively driving the bus.

A run-through of the one-shot circuit’s functional 
sequence (numbered here and in Figure 3) clarifies the 
repeater operation:

1. During bus idling, the receiver outputs of both repeater 
ports are high due to VFS. Thus, both transceivers hold 
each other in receive mode.

2. Next, the arriving start bit of an incoming data packet 
on port 1 drives the output of RX1 low. This transition 

triggers the one-shot circuit, driving its output high and 
enabling driver DR2.

3. The time constant, RD × CD, must be so calculated that 
the one-shot circuit’s output remains high for the entire 
time of the data packet.

4. DR2 continues driving bus 2 for the duration of the one-
shot time constant. XCVROUT represents the receiver 
output state of a remote transceiver on bus 2. Note that 
while DR2 is enabled, the pull-up resistor, RPU, pulls the 
disabled receiver’s (RX2’s) output high in order to keep 
RX1 enabled.

A drawback of this solution is that the R-C time con-
stant depends on the data-packet length and the data rate 
at which the signal is transmitted. Also, one-shot circuits 
are sensitive to noise transients, which can cause false 
triggering and repeater breakdown.
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RPU
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RFS

RFS

RT
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VCC

VFS
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3
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S
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Figure 3. Transceiver timing control with a one-shot circuit
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Figure 4. Transceiver timing control with an inverting buffer
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Nevertheless, one-shot circuits are used often in inter-
face bridges such as RS-232 to RS-485 converters. These 
converters directly connect an RS-485 network to the 
RS-232 ports of older PCs or RS-232-controlled machinery.

A more robust and data-rate-independent alternative to 
the one-shot circuit is timing control through an inverting 
Schmitt-trigger buffer with different charge and discharge 
times. The underlying principle is to actively drive a bus 
during logic-low states and to disable the driver during 
logic-high states. The enabling and disabling sequences 
then occur on a per-bit basis, which makes the repeater 
function independent of data rate and packet length.

A run-through of the inverter-controlled repeater’s func-
tional sequence (numbered here and in Figure 4) clarifies 
its operation:

1. During bus idling, the receiver outputs of both repeater 
ports are high due to VFS. The delay capacitor, CD, is 
fully charged, driving the inverter output low to main-
tain the transceiver in receive mode.

2. Then a low bit on bus 1, driving the output of RX1 low, 
rapidly discharges CD and enables driver DR2.

3. When the bus voltage turns positive (VBus > 200 mV), 
the output of RX1 turns high, which drives DR2’s output 
high and slowly charges CD via RD. The minimum time 
constant (RD × CD) must be so calculated that at the 
maximum supply voltage, VCC(max), and the minimum 
positive inverter input threshold, VTH+(min), the delay 
time, tD, exceeds the maximum low-to-high propagation 
delay, tPLH(max), of the driver by, say, 30%. For example, 
given a capacitance of CD = 100 pF, the required resis-
tor value for RD is

( )
PLH(max)

D
D TH (min) CC(max)

1.3 t
R .

C ln 1 V V+

×
=

× −

4. The driver enable time is extended by the delay time 
(tD) versus the actual data-bit interval to establish a 
valid high signal on the bus. This is done prior to switch-
ing from transmit to receive mode in order to keep the 
receiver output continuously high. Because the propa ga-
tion delays of receivers are shorter than those of drivers, 
it is impossible for the receiver to turn low, not even for 
a short instant. Once the driver is disabled, the external 
fail-safe resistors bias bus 2 to above 200 mV, which is 
seen by the active receiver as a defined high.

5. The differential output voltages on bus 2 are VOD = 
VFS > +200 mV during an idle bus, VOD < 1.5 V for a low 
bit, and VOD > 1.5 V for the time delay (tD) at the begin-
ning of a high bit. Afterwards, VOD = VFS > +200 mV for 
the remainder of a high bit.

Again, XCVROUT represents the receiver output state of a 
remote transceiver on bus 2. While legacy repeater designs 
typically were limited to data rates of 10 kbps, modern 
transceivers with shorter propagation delays allow for 
higher data rates of up to 100 kbps and more.

For simplicity, the repeater discussion has so far excluded 
the important aspect of galvanic isolation. However, in long- 
haul networks—the main application field of repeaters—
large ground-potential differences (GPDs) between net-
work nodes are common. These GPDs present themselves 
as large common-mode voltages across the transceiver 
inputs and can damage a device if not eliminated through 
galvanic isolation. When a transceiver’s bus circuitry is iso-
lated from its control circuitry, the bus system is floating 
and independent from a local node’s ground potential.

Figure 2 shows the driver and receiver section of a bus 
node being isolated from the node’s control circuitry. 
However, in the case of the repeater, dual isolation is 
required because the inner control logic must be isolated 
from bus 1 and bus 2. Furthermore, the two buses must 
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be isolated from each other. A repeater circuit 
accomplishing this is shown in Figure 5, accom-
panied by its bill of material (BOM) in Table 1. 
The circuit uses two isolated RS-485 transceiv-
ers, each requiring a separate, isolated supply, 
VISO, derived from the central 3.3-V supply of 
the control section (Figure 6).

Conclusion
A repeater can be used as a bus extender or a 
stub extender. For a bus extender, a repeater 
builds the end of one bus and the beginning of 
another. This allows a fixed installation of fail-
safe and termination resistors at both ports. 
When a repeater is used as an extender for long 
stubs, however, it can be located anywhere in 
the network. In this case the resistors at the port side con-
necting to the bus should be removed, while the resistors 
at the stub port can remain installed.
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Table 1. BOM for the repeater’s signal path

DESIGNATOR FUNCTION DEVICE/VALUE SUPPLIER

U1, U2 Isolated half-duplex transceiver ISO15DW Texas 
 InstrumentsU3 Dual Schmitt-trigger inverter SN74LVC2G14DBV

RPU Pull-up resistor 4 .7 kΩ

Vishay

RFS Fail-safe resistor 348 Ω
RT Termination resistor 120 Ω
RD Delay resistor 10 kΩ
CS Storage capacitor 10 µF

CB Bypass capacitor 0 .1 µF

CD Delay capacitor 100 pF

DD Discharge diode 1N4448
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Figure 5. Dual isolated half-duplex repeater
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Using a fixed threshold in ultrasonic  
distance-ranging automotive applications

Introduction
In ultrasonic distance-ranging 
automotive applications such as 
ultrasonic park assist (UPA) and 
blind-spot detection (BSD), 
ultrasonic waves transmitted by 
the system are reflected by 
objects present in the vicinity. 
The system receives the reflected 
wave, or echo, and compares the 
object’s echo amplitude against a 
threshold to detect the object. 
The echo for objects that are 
closer to the system is stronger 
than that for objects that are farther from the system. 
Hence, it is relatively common for the threshold to be var-
ied with time. This article shows that a variable threshold 
is not required and that the threshold can remain fixed.

Ultrasonic distance ranging
One application for ultrasonic distance ranging is an 
advanced driver-assistance system (ADAS) in a passenger 
car. Ultrasonic transducers installed in the front and rear 
bumpers and wing mirrors of an automobile transmit ultra-
sonic waves and then receive the ultrasonic waves reflected 
back by nearby objects. An ultrasonic wave’s time of flight 
(TOF) is used to calculate the distance to the objects to 
assist the driver in parking the car, identifying parking 
spots, or detecting objects in the driver’s blind spot. Up to 
four transducers are installed in the front and rear bump-
ers, and one transducer is installed in each wing mirror.

In an ultrasonic ADAS, piezoelectric transducers typi-
cally are used to convert electrical signals into ultrasonic 
waves, and reflected ultrasonic waves into electrical sig-
nals. The low receiver sensitivity of piezoelectric ultra-
sonic transducers usually results in very small electrical 
signals when the reflected waves are received.

Figure 1 shows a typical signal chain used to process the 
echo voltage. The Texas Instruments (TI) PGA450-Q1 is 
an example of an integrated automotive ultrasonic sensor 
signal conditioner for applications such as UPA systems.

The echo signal, s(t), received by the ultrasonic receiver 
is corrupted with noise. The input-referred noise, h(t), in 
Figure 1 is the sum of noise from the external environment 
and all signal-chain components as a function of time (t). 
This corrupted signal, u(t), is amplified by an amplifier 
with gain, K, and is digitized with an analog-to-digital con-
verter (ADC). The digitized AM signal is routed through a 
bandpass filter (BPF), which is primarily used to improve 

the signal’s signal-to-noise ratio. The filtered signal, y(t), is 
compared against a threshold, L, to detect the presence of 
an object. BPFs typically are followed by an amplitude 
demodulator that translates the signal to baseband for 
comparison. However, for the purpose of this article, the 
demodulator can be ignored. Thus, the key to detecting 
the object is the choice of threshold (L). So how does one 
go about choosing L?

Echo amplitude
Ultrasonic waves generated by the transmitter are a series 
of sinusoid pulses at carrier frequency and are character-
ized by sound pressure level (SPL). The SPL is given by

 

rms
10

ref

p
SPL 20 log ,

p
 

=   
 (1)

where p
rms

 is the RMS sound pressure, and p
ref

 is the ref-
erence sound pressure. The commonly used reference 
sound pressure is 20 µPa, or 0.0002 µbar.

The SPL of ultrasonic waves created by the transducer 
at an object depends on the object’s distance from the 
transducer. Specifically, the pressure is inversely propor-
tional to the distance:

 

1
p ,

d
∝

 

where p is the pressure of the sound waves, and d is the 
distance of the object from the transducer. Ultrasonic 
transducer specifications provide the SPL at 30 cm from 
the transducer. Given this value, the SPL at arbitrary dis-
tance x from the transducer can be calculated by using 
the distance law,

 

30_ rms

x _ rms

p x
,

p 30
=  (2)
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Figure 1. ADAS using echo processing to detect objects
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where x is the distance between the transducer 
and the object, and x > 30 cm. Therefore, the 
SPL at x is given by

x 30 10
x

SPL SPL 20 log .
30

 = −   

That is, there is loss of sound pressure as the 
ultrasonic wave travels from the transducer to 
the object.

The sound waves reflect from the object and 
return to the transducer, further losing sound 
pressure. Additionally, due to absorp tion in air 
and by the object, the SPL of the received 
echo can be approximated by Equation 3, 
shown at the bottom of this page, where a is 
the absorption coefficient of air. Note that the 
SPL absorbed in air is proportional to the dis-
tance traveled by the sound waves in air. In 
other words, the SPL loss is proportional to x. 
A factor of 2 is used because the sound waves 
travel twice between the transducer and the 
object—once from the transducer to the object, 
and once from the object to the transducer. 
Based on Equation 1, the sound pressure of the echo 
pulse received by the transducer can be calculated as

 

echoSPL

20
echo _ rms refp p 10 .= ×  (4)

The ultrasonic receiver converts the received waves into 
electrical signals. The conversion process is characterized 
by receiver sensitivity, which is specified in dB. A receiver 
has 0 dB of receiver sensitivity when it produces 10 V for 
1 µPa of sound pressure. Thus, receiver sensitivity speci-
fied in dB can be converted to V/µPa by using Equations 5 
and 6.

 
10

 V/ Pa
RxSensitivity_dB 20 log ,

10 V / Pa

 γ µ=   µ 
 (5)

where γ is the receiver sensitivity in V/µPa. Equation 5 can 
be rearranged as

 

RxSensitivity_ dB
1

20 V/ Pa 10 .
+

γ µ =  (6)

Equations 4, 5, and 6 can be combined into Equation 7, 
shown at the bottom of this page, to find the voltage pro-
duced by the ultrasonic receiver. Equation 7 can be simpli-
fied as

 
echo _ rms ref 0.1 x

30
Kp ,

2x 10 aγ = ×
×  

(8)

where the gain (K) is a constant.
Equation 8 shows that as the distance x of the object 

from the transducer increases, the echo voltage decreases. 
In other words, if the object is closer, the echo amplitude 
is large, and if the object is farther away, the echo ampli-
tude is small.

Figure 2 shows the received voltage as a function of the 
object’s distance from the transducer, assuming these 
parameters:

• Transmitted SPL = 106 dB at 30 cm

• Air absorption = 1.3 dB/m

• Object absorption = 0 dB

• Receiver sensitivity = –85 dB

echo transmitted 10 absorbed by object
2x

SPL SPL 20 log 2 x SPL ,
30

 = − − a −  
 (3)

transmitted 10 absorbed by object
2x

SPL 20 log 2 x SPL RxSensitivity_dB
30

1
20

echo _ rms refp 10

 − − a − +  
+

γ = ×  (7)
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Figure 2. Receiver voltage as a function of the object’s 
distance from the transducer
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Variable-threshold scheduling
The previous section showed that the amplitude of the 
echo received from objects decreases in magnitude as the 
object’s distance from the transducer increases. Further, 
it is known from Figure 1 that the input signal to the 
echo-processing path is u(t) = s(t) + h(t), where s(t) is 
the echo signal and h(t) is the input-referred noise. In 
other words, the echo-processing system has to detect 
the presence of an object by processing the echo signal 
that not only decreases in amplitude with distance but 
also is corrupted by noise. One approach normally taken 
when choosing threshold values is threshold scheduling. 
In this method, the threshold value is varied with time. 
Specifically, the threshold value is set to a high value just 
after the ultrasonic waves are transmitted and is then 
decreased as elapsed time increases. The rationale behind 
this approach is to use the predictable decay in signal 
amplitude to determine the threshold values: The closer 
the object, the larger are the echo and the threshold for 
detect ing the object. The farther away the object, the 
smaller are the echo and the threshold.

The concept of the variable threshold is illustrated in 
Figure 3. This figure shows several sample demodulated 
echoes for objects at different distances. A test setup with 
TI’s PGA450-Q1 evaluation module was used to collect the 
waveform data. This figure shows one possible threshold 
schedule.

While the method of variable-threshold scheduling 
works in principle, it suffers from two weaknesses:

1. Variable-threshold scheduling requires memory inside 
the device to store the time-versus-threshold values in 
the schedule table. If the threshold has 3 possible values 

as shown in Figure 3, the table will have 6 possible 
entries. Moreover, for an advanced driver-assistance 
system (ADAS) in an automobile, customers can store 
entries for multiple potential installation locations 
because the transducer can be fitted anywhere on the 
bumpers or wing mirrors. For example, if the trans-
ducer has 10 possible installation locations, up to 60 
entries have to be stored in the device. This adds to the 
device’s cost because additional memory is required.

2. System manufacturers “calibrate” the schedule table 
after installing the transducers in the bumpers and wing 
mirrors. Calibration is the process of determining the 
threshold values and times at which the threshold 
should be switched. The calibration process usually is 
time-consuming (and hence expensive), especially if 
multiple entries in the table are needed.

In summary, the main weakness of variable-threshold 
scheduling is that it increases the overall cost of the ultra-
sonic ranging system.

Fixed threshold
In contrast to the variable-threshold approach, which uses 
time-based threshold values, the fixed-threshold approach 
uses signal noise as the baseline. The noise in the system 
is used to determine the threshold so that the absence of 
objects does not result in detection of objects.

Again, from Figure 1 it is known that the input signal to 
the echo-processing path is u(t) = s(t) + η(t). The echo 
signal is a series of sinusoid pulses at a carrier frequency, 
fc(t), and is given by

 cs(t) S sin(2 f t),= × π  (9)

where S is the amplitude of the echo signal. Therefore, 
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Figure 3. Demodulated echo-signal waveforms with 
one possible threshold schedule
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Equation 10 gives the RMS value of the amplified signal:

 
rms

KS
s

2
=  (10)

Note that this series of pulses occurs for only a short duration, making the signal’s amplitude appear to be modulated over a 
long duration of time.

The y(t) output of the bandpass filter (BPF) can be expressed as

 [ ]{ }y(t) (BPF) (ADC) K s(t) (t) ,= → → + hƒ ƒ  (11)

where ƒ(BPF) is the digital-filter function of the BPF and ƒ(ADC) is the quantization function of the ADC. Assuming that 
the reference time for the echo signal is t0 = 0 (which usually is the time at which ultrasonic waves are transmitted by the 
transmitter), an object is declared to be present at time tobject under the conditions y(t) < L, tend < t < tobject, and y(tobject) 
≥ L, where tend is greater than zero and is the end of the initial burst of transmitted pulses.

The question is, “Can one choose a fixed threshold instead of using variable-threshold scheduling?” To answer this ques-
tion, the noise components can be considered by using Equation 12 and assuming that t is an instantaneous value:

 
ext amp ADC BPF

1 1 1
(t) (t) (t) (t) q(t) (t)

K K K
h = h + h + h + + h  (12)

The variables are defined as follows:

K = amplifier gain

hext(t) = external noise

hamp(t) = amplifier noise

hADC(t) = ADC circuit noise

q(t) = ADC quantization

hBPF(t) = mathematical errors in BPF calculations

The individual noise components are independent of each other. Further, it is assumed that each noise component is 
Gaussian with zero mean and non-zero variance.

When Equations 9 and 12 are substituted into Equation 11, the BPF output becomes

 

{ }c

c ext amp ADC BPF

y(t) (BPF) (ADC) K S sin(2 f t) (t)

KS sin(2 f t) (BPF) K (t) K (t) (t) q(t) (t) .

= → → × π + h  
 = × π + → h + h + h + + h 

ƒ ƒ

ƒ
 (13)

Based on Equation 9, the RMS of the BPF noise is

 
( ) ( )22 2 2 2c

rms ext amp ADC BPF
s

1 f
K K q ,

Q f
 h = × × h + h + h + + h    

(14)

where Q is the quality factor of the BPF, fs is the ADC sampling frequency, and all noise terms are RMS values.
Given the RMS of noise described by Equation 14, and assuming a 6.6 crest factor, the chosen threshold is

 
( ) ( )22 2 2 2c

ext amp ADC BPF
s

1 f
L 6.6 K K q .

Q f
 = × × h + h + h + + h    

The preceding equation can be expressed as

 

2 2 2
2 2c ADC BPF

ext amp 2
s

1 f q
L 6.6K .

Q f K

h + + h
= × × h + h +

 
(15)
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Figure 4. Fixed threshold for echo data

In other words, a fixed threshold can be chosen by using 
Equation 15. Figure 4 shows an example echo response 
with a fixed threshold.

The obvious advantage of using this method is that it 
requires only one entry to be stored in memory. If the 
trans ducer has the potential to be installed in 10 locations, 
a total of 10 entries must be stored. This is a sixfold 
decrease in memory requirements from the variable-
threshold method described earlier. Note that Equation 15 
also provides a mechanism to scale the threshold, if the 
amplifier gain (K) is changed.

Equation 15 provides an analytical method to determine 
the threshold value. Usually, determining the threshold by 
using noise analysis could be involved. An alternative to 
performing noise analysis is to calibrate the transducer on 

the automobile for one threshold. This calibration can be 
performed by placing the object at the maximum required 
ranging distance from the transducer. A threshold value 
can be chosen that is high enough to exceed the noise 
value of the processed signal when no object is present 
and that ensures that the signal crosses the threshold only 
in the presence of an object. Note that when this method 
is used to choose the threshold, the BPF decay should 
also be considered. Finally, to increase robustness of 
object detection, the signal’s amplitude must be greater 
than the fixed threshold for a certain duration.

Related Web sites
amplifier.ti.com
www.ti.com/product/PGA450-Q1
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Applying acceleration and deceleration 
profiles to bipolar stepper motors

Introduction
With a DC motor, ramping up the voltage (or duty cycle if 
pulse-width modulation is being used) controls how fast 
the motor’s shaft reaches any given speed. With stepper 
motors, however, changing the voltage does not have any 
effect on the motor speed. While it is true that changing 
the voltage changes the rate of current charge across the 
windings and thus the maximum speed the stepper can 
reach, the motor speed is set by the rate at which the cur-
rent through the windings is switched, or commutated.

Can it be assumed that steppers are machines not 
requiring controlled acceleration profiles? If so, can step-
pers be run at any target speed desired without conse-
quences? The truth is that stepper-motor motion needs to 
be actuated through acceleration and deceleration profiles 
more than any other motor topology. Trying to start at any 
speed may have dire effects.

In this article it is assumed that the reader is well-
versed in how a commercially available integrated micro-
stepping driver is used to control a stepper motor. The 
output of a stepper driver, such as the Texas Instruments 
(TI) DRV8818, is directly proportional to the frequency of 
a square wave (STEP input). Each STEP pulse equals a 
step (or microstep) as defined by the driver’s stepping 

logic. Hence, changing the frequency of the square wave 
also changes the stepper’s rate accordingly.

Figure 1 shows a motor manufacturer’s conventional 
stepping rate/torque curve with an important parameter, 
fs, called the starting frequency. It must be understood 
that, for this particular motor to start properly, a stepping 
rate smaller than fs must be employed. To start the motor 
with a stepping rate larger than fs may induce the motor to 
stall and lose synchronization. Once this happens, motion 
control is severely compromised. This appears to be a major 
problem but actually can be solved quite easily. All that is 
needed is to start the motor at a stepping rate below fs and 
then increase the speed until the target speed is reached. 
Following this guideline, the stepper motor can be actuated 
with stepping rates far exceeding fs—as long as the speed 
is kept below the shown torque/speed curve.

Equally important, one should not attempt to stop the 
motor simply by halting the STEP pulses. Instead, the 
stepping rate should be decreased from the target speed 
to a lower rate at which the motor can stop without the 
shaft inertia inducing extra and unwanted steps. Remember 
that if the stepper is being utilized in a positioning applica-
tion, the motor shaft can lose position if it keeps on moving 
after it should have stopped. Since closed-loop position 

By Jose I. Quinones
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feedback is seldom used for driving steppers, it is crucial 
to ensure that only the commanded steps take place.

Acceleration/deceleration profile
To accelerate a stepper from a starting speed to a desired 
target speed, the current speed just needs to be changed 
at periodic intervals. Most engineers use microcontrollers 
to achieve stepper control. The most common implemen-
tation uses only two timers. The first is a steps-per-second 
(SPS) timer used to generate an accurate timing function 
for the stepping rate. The second is an acceleration timer 
used to alter the first timer on a periodic basis. Since the 
speed is being changed at timely intervals, in essence the 
angular velocity with respect to time (dv/dt) is being 
derived. This derivation is called acceleration, or how 
speed changes across time. Figure 2 shows an enlarged 
view of a typical microcontroller-based acceleration profile 
and what is happening as the stepper is accelerated 
towards a target speed.

The SPS is the desired number of steps per second, or 
the stepping rate, at which the motor should move. The 
SPS timer must be programmed to issue pulses at this 
rate. Depending on the timer’s oscillator frequency, a  
typical equation is

timer _ oscillator
SPS_timer_register = ,

SPS

where SPS_timer_register is a 16-bit number that tells the 
timer how long it takes to generate subsequent STEP 
pulses, and timer_oscillator is a constant of how fast the 
timer is running in megahertz.

This equation is stored in a function because it is used 
quite frequently. To see how it works, assume that the timer 
oscillator is running at 8 MHz and the desired stepping 
rate for the motor is 200 SPS. According to the equation, 
the program code makes the value of SPS_timer_register 
equal to 40,000. So every 40,000 timer clicks, a STEP pulse 

is generated. This results in a timer-based output of 200 
pulses per second and a shaft rotation equal to 200 SPS.

Every time such an event takes place, an interrupt is 
generated and the timer is cleared. The timing of the rising 
edge at the STEP input is crucial to the microstepping 
driver’s accuracy, but the falling edge can happen at 
almost any time as long as it is well before the next STEP 
rising edge.

Two parameters are needed to define the acceleration 
curve: (1) how often to change the SPS value, and (2) by 
how much. The acceleration curve is directly proportional 
to both parameters; that is, the more often the SPS value 
is updated and the higher its value, the steeper will be the 
acceleration curve. The acceleration timer handles both 
parameters: The timer function fires as many times per 
second as is desired to change the SPS value, and the  
timer’s interrupt-service routine (ISR) determines what 
the new speed is by incrementing the current SPS by a 
predetermined factor.

The acceleration rate is measured in steps per second 
per second (SPSPS), or by how many times per second 
the current SPS rate is changed. If the SPS value is changed 
by adding a one, the acceleration timer’s ISR must be called 
(triggered) for each change in the acceleration rate. For 
example, with an acceleration rate of 1000 SPSPS, the 
motor speed can be started at 200 SPS and incremented 
by one until it reaches 1200 SPS. The acceleration timer’s 
ISR would then need to be called 1000 times.

Another option is to call the acceleration timer half as 
frequently and then increment the SPS by two. Compared 
to the previous example, the acceleration timer’s ISR is 
called only 500 times, but the motor still starts up at  
200 SPS and reaches 1200 SPS within a second. The  
difference is more real-time availability at the expense of 
resolution. In other words, to achieve an accurate acceler-
ation rate of 999 SPSPS, the first option must be used.

Target Speed

Starting Speed

Acceleration
Rate

Acceleration-Timer Interval

Speed
Increase

Figure 2. Close-up of a typical acceleration profile
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The trade-offs of choosing one option versus the other 
must not be ignored, as the choice defines what kind of 
motion quality can be obtained. For instance, if a lot of 
granularity is required in order to achieve every possible 
acceleration profile, the acceleration timer’s ISR will need 
to be called as much as possible.

However, in the SPS-timer equation given earlier, there 
is a division operation. Depending on which processor core 
is being employed, this division may considerably limit how 
many times the ISR can effectively be called and still cor-
rectly generate the new SPS rate. In an implementation 
using TI’s MSP430™ with the CPU running at 16 MHz, a 
division operation takes about 500 µs. As a result, the most 
the ISR can be called per second is 2000 times. This limit 
then defines the incrementing factor. For any acceleration 
rate larger than 2000, an increment larger than one must 
be used.

The acceleration rate is computed once, shortly before 
the motor is started. The software in charge of this com pu-
tation determines what the acceleration timer’s interval 
and increment factor will be, then configures the variables 
accordingly. These variables are used concurrently until 
the SPS rate is modified enough to reach the target speed. 
Once the target speed is met, the acceleration profile ends.

The deceleration profile is basically identical to the accel-
eration profile, except that the increment factor is negative 
rather than positive. Also, a new target speed must be 
speci fied at which the motor can be safely stopped.  
Figure 3 shows an acceleration/deceleration profile where 

Target Speed

Starting Speed

Acceleration Rate
(same as

deceleration rate)

Stopping Speed

Figure 3. Acceleration/deceleration profile

the acceleration and deceleration rates are symmetric. 
Asymmetric rates can also be employed.

Position control
Up to this point, operating the motor in a speed-control 
loop has seemed fairly simple. The motor is brought into  
a target speed and at some point commanded to stop. 
However, what happens when a predetermined number of 
steps needs to be executed in a predetermined amount of 
time? The acceleration/deceleration profiles then become 
more important than ever. In this motion-control topology, 
it is crucial that the motor stop when all the programmed 
steps have been executed. The variable that specifies how 
many steps will be issued is called number_of_steps.

The motion profile must be coded to make the motor 
stop at the required time rather than wait for a command 
to start deceleration. One way to achieve this is to pro-
gram a variable called steps_to_stop to be smaller than  
number_of_steps. The software then determines when 
deceleration needs to be engaged by monitoring  
steps_to_stop.

Acceleration will not complete execution until the  
target speed has been reached. Once this happens, the 
stepper is allowed to run until it reaches the steps_to_stop 
count, at which time deceleration begins. For example, for 
a 1000-step run, steps_to_stop is set to 800. Hence, the 
motor is started via an acceleration profile and runs until 
step 800 is reached, at which time the motor decelerates 
until it stops.
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Depending on how all of the system’s vari-
ables are configured, five important  scenarios 
need to be examined (see Figure 4).

Scenario 1: All steps are issued before the 
motor reaches the target speed.

Scenario 2: All steps are issued while the 
motor is at the target speed.

Scenario 3: All steps are issued before the 
stopping speed is reached.

Scenario 4: All steps are issued as the 
stopping speed is reached.

Scenario 5: All steps are issued after the 
stopping speed is reached.

Stopping the motor right as the stopping 
speed is reached (Scenario 4) is the ideal 
case. Stopping the motor shortly before the 
stopping speed is reached (Scenario 3) or 
after it is reached (Scenario 5) can be 
acceptable depending on how many steps 
away from the ideal case these events occur. 
For instance, if all steps are issued while the 
motor is moving too fast, the motor shaft 
may lose position due to rotor inertia. But if 
the stopping speed is reached before all the 
steps are executed, the total time needed to 
execute the profile can become too long.

Scenarios 1 and 2, portrayed for illustra-
tive purposes only, should not take place, as 
the designer should always ensure that 
steps_to_stop is smaller than number_of_
steps. Knowing all the possible scenarios, 
the designer can easily tune the system to 
acquire the optimal response.

General Interest
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Figure 4. Five acceleration/deceleration scenarios
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Another option that may result in less 
tuning is to segment the total number of 
steps into percentages assigned to each 
particular region of the acceleration/decel-
eration profile. In this algorithm implemen-
tation, 20% of the total number of steps can 
be selected to accelerate the motor, 60% to 
run the motor at a constant (reached) 
speed, and the remaining 20% to deceler-
ate the motor (see Figure 5). If number_
of_steps is 1000, the stepper accelerates at 
the programmed acceleration rate for 200 
steps and stops acceleration at whatever 
step rate it reaches. It then executes 600 
steps at this rate, with the last 200 steps 
being executed throughout the decelera-
tion profile.

Notice that with an algorithm of this nature, assuming 
that the percentages are selected correctly, it is impossible 
to run out of steps on the wrong portion of the motion 
profile. For the example in Figure 5, since both the accel-
eration and deceleration portions are balanced, the motor 
most likely starts and stops at the same speed. The disad-
vantage of this method is that it is very hard to ensure 
what the target speed will be. If the target speed is not 
important, then this algorithm can be used to ensure that 
the motor will always stop at a safe speed.

If the speed reached is too slow for the application, the 
only means to speed up the motor shaft with this algo-
rithm is to increase the acceleration rate or increase the 
percentages of the number of steps used in the accelera-
tion/deceleration regions. However, the designer must be 
careful not to take the motor into a speed that violates the 
motor’s torque/speed curve.

Conclusion
Accelerating and decelerating a bipolar stepper motor is  
a crucial part of designing any application that uses one. 
While power-stage control has been simplified consider-
ably throughout the last decade, the application of accel-
eration and deceleration profiles still resides in the realm 
of the application’s processor. Because of the wide avail a-
bility of stepper solutions, the algorithms to process proper 

Acceleration
(20%)

Deceleration
(20%)

Running
(60%)

Reached Speed

Starting
Speed

Stopping
Speed

Number of Steps

Figure 5. Acceleration/deceleration profile based 
on percentages

motion control for the application’s stepper motor are eas-
ier to code and tune. By accelerating and decelerating the 
motor properly, the designer ensures that the appli cation 
will operate efficiently and according to specifications.

Please see Reference 1 for more information about the 
code structure for an acceleration/deceleration-based 
implementation that revolves around a power stage similar 
to the DRV8818 and uses an MSP430 microcontroller.

Reference
For more information related to this article, you can down-
load an Acrobat® Reader® file at www.ti.com/lit/litnumber 
and replace “litnumber” with the TI Lit. # for the 
materials listed below.

Document Title TI Lit. #
1. Jose Quinones, “Intelligent stepper motor  

driver with DRV8811/18/24/25,”  
Application Report. . . . . . . . . . . . . . . . . . . . . . . SLVA488

Related Web sites
www.ti.com/motor
www.ti.com/product/partnumber
Replace partnumber with DRV8811, DRV8818, DRV8824, 
or DRV8825

http://www.ti.com/aaj
http://www.ti.com/lit/SLVA488
http://www.ti.com/motor
http://www.ti.com/product/DRV8811
http://www.ti.com/product/DRV8818
http://www.ti.com/product/DRV8824
http://www.ti.com/product/DRV8825


29

Analog Applications Journal

Texas Instruments Incorporated

3Q 2012 www.ti.com/aaj High-Performance Analog Products

While most smartphone and tablet users already have 
experienced haptics, the term itself is mostly unknown to 
consumers. In its basic definition, “haptics” refers to the 
science of tactile feedback. The most basic form of haptics 
is when a cell phone vibrates, indicating either an incoming 
call or the arrival of a message in the phone’s inbox. In 
these cases, the user’s attention is grabbed by a tactile alert.

About one-third of smartphones include tactile feedback 
that extends beyond a vibration alert. A common example 
is the subtle vibrations a user feels when typing an email 
or texting. Each vibration confirms that a keystroke has 
registered. Users tend to commit fewer typing errors  
and have a more satisfactory experience when tactile 
feedback exists.

Enhancing the user experience with haptics
More and more mobile devices such as cell phones and 
tablets are now touch-enabled. Touch interface is so  
intuitive that toddlers can unlock a smartphone and click 
on the YouTube icon to view the playlist. However, touch 
screens have one major limitation in that there is no physi-
cal or mechanical feedback for user interactions or alerts. 
Well-designed haptics can significantly enhance the overall 
user experience of a touch-enabled mobile device.

Haptics has more usage than just serving as an alert or 
typing confirmation. Standard gestures like swipe to unlock, 
pinch to zoom, and push/pull to scroll could have their own 
haptic/tactile signatures. The feedback could increase as 
the user zooms in to the maximum enlargement of the 
view. Faster scrolling could provide faster tactile feedback. 
If this kind of context-sensitive feedback were combined 
with audiovisual feedback, the resulting consumer experi-
ence would be highly satisfactory and intuitive.

Haptics also brings in an element of fun. Many people 
play games on their mobile devices. Tactile feedback can be 
used to make the gaming experience significantly better. 
For example, in a first-person shooter game, the shooter 
could actually feel the weapons being fired. The user could 

High-definition haptics: Feel the difference!

feel crashes and bumps in a racing game, feel tension when 
releasing the string in the popular Angry Birds game, feel 
the guitar strings or piano keys, and so on. The possibilities 
are as endless as the game developer’s imagination!

Inertial haptic actuators (ERMs/LRAs)
The standard haptics in a cell phone is due to a small 
motor called the eccentric rotating mass actuator (ERM). 
As the motor is driven with a voltage and starts to spin, a 
vibration is felt. A haptic driver chip drives this motor dif-
ferentially, so the motor spins when a positive voltage is 
applied and brakes when reverse polarity, or a negative 
voltage, is applied. This works perfectly for vibration 
alerts. However, trying to use an ERM for other haptic 
applications, like gaming, quickly runs down the battery.

The ERM is inertial and needs overdrive to spin faster. 
Start-up time, defined as the time it takes for the motor to 
reach 90% of the rated acceleration, is usually in the range 
of 50 to 100 ms. Braking or stopping the motor involves a 
similar time frame. For a very simple haptic event like a 
click, the overhead is about 100 to 200 ms. If the applica-
tion demands repeated haptic events, the latency associ-
ated with motor-based haptics may be undesirable.

Another aspect of the ERM is the buzzing or audible 
noise associated with the spinning motor. This is less of a 
concern if the haptic feedback is combined with audio 
feedback. However, in a silent conference room, everyone 
can hear the motor as someone types a message. The 
ERM also has few discernible haptic effects that can be 
generated by the user. The vibration frequency and ampli-
tude are tied to a single control voltage.

Another type of inertial actuator, the linear resonant 
actuator (LRA), is used in some smartphones for haptics 
and vibration alerts. The LRA is of a different mechanical 
construction than the ERM. It consists of spring-mounted 
mass and vibrates in a linear motion. The LRA must be 
driven at a narrow resonant frequency. It also tends to 
have a slightly better start-up time than the ERM. 

General Interest
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Depending on the manufacturer, start-up 
time varies from 40 to 60 ms (Figure 1). 
This offers a slight improvement over the 
ERM start-up time of between 50 and 100 
ms. By modulating the resonance-carrier 
amplitude, it is possible to produce a variety 
of different haptic effects.

High-definition haptics
Just as high-definition (HD) TV offers 
higher resolutions than standard-definition 
TV to create a sharper and more discernible 
image, HD haptics lets users feel more dis-
cernible vibration effects than the buzz of 
inertial actuators. Piezoelectric (piezo) or 
ceramic haptic actuators are used to imple-
ment HD haptics and offer compelling  
differences from ERMs/LRAs).

Piezo actuators
When differential voltage is applied across 
both ends of a piezo actuator, it bends or 
deforms, generating a vibration. Piezo actu-
ators need high voltage to deform. Depend-
ing on the manufacturer, voltage can vary 
from 50 to 150 VPP. At higher voltages, the 
number of required piezo layers decreases; so at 150 VPP 
the piezo actuator has approximately 4 layers, whereas at 
50 VPP there may be as many as 16 to 24 layers. At higher 
voltages, due to the reduced number of layers, the piezo 
actuator’s capacitance is lower. In other words, less cur-
rent is needed to drive lower-capacitance haptic actuators.

Piezo actuators are available as disks or as rectangular 
strips, also called benders. Piezo disks deform vertically 

Start-up Time:
52.955 ms (90%)

22.99 ms (50%)

V = 3.6 VDD

Time (20 ms/div)

Accelerometer:
203 mV (100%)

PP
182.7 mV (90%)

101.5 mV (50%)
PP

PP

Figure 1. Typical start-up time of an LRA is 40 to 60 ms

Touch
Screen

Piezo BenderScreen
Mount

Screen
Mount

Figure 2. Form factors for piezo actuators

Actuator

(a) Vibration of screen only (b) Whole-body vibration

and can be used for z-axis vibration. Piezo benders can be 
mounted directly to a “floating” touch screen to vibrate 
only the screen (Figure 2a). Piezo benders can also be 
mass mounted in a small module that can be mounted to 
the device’s case or PCB to provide vibration for the whole 
device (Figure 2b). Piezo modules have become popular 
because mechanical integration is easy.
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What makes piezo actuators HD?
Four key elements differentiate piezo actuators from iner-
tial actuators:

1. Faster start-up time: Due to inherent mechanical prop-
erties of piezo actuators, start-up time is very fast—typ-
ically less than 15 ms, which is three to four times faster 
than ERMs. Compared to ERMs, the duration of the 
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Figure 4. Higher bandwidth of piezo actuators 
(ideal model)

overall haptic event may be shortened by 70 ms. This is 
further illustrated in Figure 3.

2. Higher bandwidth: The higher bandwidth of piezo 
actuators, illustrated in Figure 4, provides a more 
detailed haptic palette with a greater number of effects.

3. Lower audible noise: Unlike ERMs, piezo actuators 
have no spinning mass to create mechanical noise.

Start-up Time:
14.665 ms (90%)

10.145 ms (50%)

V = 3.6 V
Differential Output:
208-Hz,

DD

150-V
sine wave, 80 cycles

PP

Accelerometer:
236 mV (100%)

PP
212.4 mV (90%)

118 mV (50%)
PP

PP

Time (20 ms/div)

Figure 3. Typical start-up time of a piezo module is ~14 ms
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4. Stronger vibration: Piezo modules tend to gen-
erate higher vibration strengths. Figure 5 shows 
the acceleration characteristics of a commercially 
available piezo module, and Figure 6 shows the 
acceleration characteristics of a commercially 
available LRA. It can be seen that the piezo actua-
tor generated a peak-to-peak acceleration of 3 GPP, 
compared to less than 1.5 GPP in the case of the 
LRA. This higher vibration strength implies that 
piezo modules are a great candidate for bigger-
screen smartphones and tablets.

Current consumption of piezo actuators
Even though piezo actuators need higher voltage 
than standard inertial actuators, the actual current 
consumption is lower than that of ERMs and on a 
par with that of LRAs (see Table 1).

Conclusion
Piezo actuators deliver significant performance and 
cost advantages compared to inertial actuators. Their 
faster start-up time helps create sharp and crisp 
clicks for keyboard applications. Their higher band-
width helps create more user-perceivable haptic 
effects that are critical for gaming applications. The 
stronger vibration strength of piezo actuators can 
be used to generate haptic feedback for bigger con-
sumer devices like tablets and e-readers. Overall, 
piezo haptics offers compelling features to enhance 
the tactile feedback experience and helps improve 
the overall user experience of mobile devices.

Texas Instruments (TI) offers both analog-input 
(DRV8662) and digital-input (DRV2665) piezo hap-
tic drivers that interface with a wide variety of piezo 
actuators on the market. TI also has demos that let 
designers “feel the difference.”

Related Web sites
www.ti.com/haptics-ca 
www.ti.com/product/DRV2665
www.ti.com/product/DRV8662

Table 1. Power consumption of haptic actuators

USAGE

PIEZO  
ACTUATOR 

(mAh)
LRA 

(mAh)
ERM 

(mAh)

Per 25 phone calls  2 .685  1 .497   3 .540

Per 50 text messages 25 .660 11 .869  27 .480

Per 4 hours of e-mail access 28 .076 12 .150  29 .078

Crossword game (60 min)  1 .094  0 .487   1 .150

DoodleJump game (30 min)  6 .270  3 .975   8 .170

Shooting game (30 min) 24 .976 37 .777  61 .558

Total power 88 .761 67 .755 130 .975

Discharge percentage of 
1200-mAh battery  7 .4%  5 .6%  10 .9%
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Figure 6. Acceleration characteristics of an LRA
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