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How to prevent transformer saturation in 
push-pull converters

Introduction
The push-pull converter has emerged as a popular topol-
ogy to create isolated power supplies in the 1-W to 10-W 
range. This topology is pairable with digital isolators, 
isolated amplifiers, isolated analog-to-digital converters, 
isolated interfaces such as isolated Controller Area 
Network and isolated RS-485, and isolated gate drivers. 
See Figure 1.

The popularity of the push-pull converter stems from its 
simplicity of operation, low electromagnetic emissions, low 
peak currents, high efficiency, high immunity and low 
system cost.[1] It is possible to design an isolated power 
rail with a push-pull topology using just a few discrete 
components: two power switches, a center-tapped trans-
former and rectifier diodes. Because it is a feed-forward 
topology, an optocoupler-based feedback is not needed, 
and thus, there are no loop stability concerns.

Although the push-pull converter has many advantages, 
one major concern is the possibility of transformer satura-
tion. This converter relies on good matching between the 
two phases of operation to avoid flux buildup in the trans-
former core. Transformer saturation can lead to an expo-
nential increase in primary current, resulting in input 
supply collapse or even damage to the converter. This 
article describes the likely scenarios that can cause trans-
former saturation in push-pull converters, and also param-
eters that can mitigate or prevent transformer saturation.

The basic operation of a push-pull converter
In the push-pull converter shown in Figure 1, field-effect 
transistors (FETs) Q1 and Q2 are designed to be equal in 

drive strength and turned on for the same time (T) in 
alternate cycles. The two primary windings are wound 
such that the flux created by Q1 turning on is exactly 
equal and opposite to the flux created by Q2 turning on. 
The flux buildup in each phase (∆B) is proportional to the 
voltage applied across the transformer primary (V) and 
the T for which the voltage is applied. With all components 
fully matched, the flux in the transformer core operates in 
two quadrants around zero, as shown in Figure 2. Because 
of exact flux cancellation in the two phases, the converter 
operates in a steady state, with no continuous flux 
buildup. The magnetizing current (Im) correspondingly 
swings in a triangular wave around zero.
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Figure 1. A push-pull converter
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Figure 2. Flux in the transformer and Im
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The effects of mismatches
If there is a mismatch between the two phases of opera-
tion—for example, if the voltage applied is different or if 
the time duration is different—the flux buildup in the 
transformer in one cycle is not fully canceled in the other 
cycle. This leaves a slight residual flux after one full period 
of operation that will slowly build up over time, eventually 
walking the transformer into the saturation region. See 
Figure 3. The Im builds up either in the positive or nega-
tive region based on the polarity of the mismatch. In the 
saturation region, the current through the transformer 
primary winding can increase drastically, potentially 
causing catastrophic damage to the transformer and driver 
transistors.

Compensating for mismatches
A practical push-pull converter always has mismatches. 
Even the smallest mismatch can cause significant flux 
buildup over time. Does this mean that a push-pull 
converter will always saturate? No.

Negative feedback from Q1 and Q2 on-resistance (RON), 
current limiting, and Im transfer to the load during dead 
time can all help prevent transformer saturation. The use 
of these techniques and their effects are described next.

Negative feedback from FET RON
As shown in Figure 3, in the presence of flux imbalance, 
the Im in one phase is higher than the other. The phase 
that has the higher current flowing sees a higher drop 
through the power FET, and thus a lower voltage is 
applied across the transformer in that phase. Less flux 
builds up in that phase, which reduces Im. If the mismatch 
in the converter is small, this negative feedback is enough 
to keep the converter in a stable equilibrium.

However, depending on the values of FET RON and Im, 
this negative feedback may not be able to compensate for 
converter mismatches. For example, if the input voltage 
(VIN) is 5 V, the peak Im is 100 mA and the FET RON is 1 Ω, 
then the maximum negative feedback the FET RON can 
provide is 100 mA × 1 Ω = 100 mV over 5 V, which is 2%. 
That is, the FET RON can compensate for up to 2% of 
mismatches (caused by, for example, an on-time mismatch 
between the two phases). This 2% compensation is suffi-
cient to prevent saturation in most cases. However, if the 
FET RON is only 0.25 Ω, then the negative feedback can 
only compensate for 0.5% of mismatches, which may not 
be sufficient to always prevent saturation.

This approximate analysis is useful to get a sense of the 
extent of mismatches for which negative feedback from 
FET resistance can compensate. For high-power convert-
ers where the FET RON is designed to be low in order to 
reduce conduction losses, negative feedback from FET 
resistance may not be enough to prevent transformer 
saturation.

Current limiting
Another technique to prevent saturation is cycle-by-cycle 
current limiting, which monitors the current through the 

FETs for each cycle. If the current exceeds a safe limit 
(usually set at two to three times the operating current 
range), the cycle terminates. While current limiting can be 
a reliable safety net, this method can cause higher overall 
I2R power losses, since the peak currents in the converter 
are allowed to rise to a higher value than required. The 
impact on efficiency is higher at light loads, where the 
absence of load current means that Im must increase to 
much higher values to hit the current limit. Figure 4 shows 
the effect of current limiting on Im, which cannot exceed 
the set current limit.

Figure 4. Current limiting prevents Im from 
building up to unsafe levels
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Figure 3. Magnetic flux buildup and the 
rise of Im caused by a mismatch
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Effect of dead time on transformer saturation in a 
push-pull converter
To prevent shoot-through currents, push-pull converters 
always have a certain dead time between the two phases. 
During dead time, FETs Q1 and Q2 are both off. The 
favorable effects of dead time in preventing transformer 
saturation are described below.

In Figure 5, the magnetizing inductance is modeled as 
Lm. Current through Lm is Im. Since FETs Q1 and Q2 are 
both off during dead time, the Im raises the drain voltages 
of either Q1 or Q2 such that either Diode1 or Diode2 is 
forward-biased. The current path depends on the polarity 
of Im at the beginning of the dead time. The secondary-
side voltage appears across the core of the transformer, 
thereby decaying the core flux. In other words, Im has a 
way to decay through secondary-side diodes Diode1 or 
Diode2 during dead time. The current flow through the 
secondary diodes stops when Im (and thus the core flux) 
reaches zero.

If the total dead time as a percentage of on-time T is 
greater than the percentage mismatch in the flux between 
the two phases, then the flux will always decay to zero 
during the dead time. The push-pull converter now oper-
ates in a single quadrant, as shown in Figure 6. If in the 
steady state, the slightly higher flux developed in one 
phase (∆B1) compared to the other phase (∆B2) causes a 
net positive Im at the end of the full cycle, then this posi-
tive Im decays through the secondary diode during the 
dead time (∆B3 and ∆B4) until the flux and Im drop to 
zero. As shown in Figure 6, Im does not build up indefi-
nitely and reaches a steady state where it remains posi-
tive. Similarly, if the mismatch causes a net negative Im at 
the end of two phases, Im will reach a steady state with a 
net negative Im.

Silicon measurement results
We tested the impact of 
dead time on the 
SN6505B push-pull 
converter by intention-
ally adding a timing 
mismatch between the 
two phases through test 
modes. Without a mis-
match, the on-time of 
each phase was 625 ns. 
Adding a mismatch to 
skew the two on-times 
(T1 and T2) all the way 
to 540 ns and 710 ns 
amounted to a total 
mismatch of 170 ns. 
The power-converter 
efficiency and over-
shoots on the switching 
node were then observed to get an indication of trans-
former saturation. A sudden increase in Im will show up as 

Figure 6. Flux and Im remain stable in spite of a mismatch, 
decaying to zero during dead time (DT)
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Figure 5. Decay of Im through diodes
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an inflection point for power-converter efficiency and 
overshoots.
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The total built-in dead time per clock period for the 
SN6505B is 160 ns, or 80 ns of dead time after each 
on-time. Figure 7 shows the converter efficiency vs. the 
load current as the mismatch between phases increases 
from 90 ns to 170 ns. Figure 8 plots the switching nodes 
(drains of Q1 and Q2) for three mismatch values: 150 ns, 
160 ns and 170 ns. As these two figures indicate, the effi-
ciency curves of the converter as well as overshoot on the 
switching nodes show an inflection point when the 

Figure 7. Efficiency vs. load current for different values of on-times T1 and T2
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mismatch is around 150 ns to 160 ns, which is close to the 
total dead time in the SN6505B and Im. These measure-
ment results support the analysis in the previous section, 
and prove that mismatches up to the dead time as a 
percentage of the on-time do not saturate the push-pull 
converter.

The results also show that the SN6505B is able to 
remain stable, not saturating even for 10% to 12% of an 
intentionally added mismatch. This percentage is a much 
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higher mismatch than what is usually present in push-pull 
converters (2% to 3%). For further protection, the 
SN6505B also features a built-in current limit.

Conclusion
Flux decay through the secondary diodes during dead 
time is very effective in preventing saturation. As long as 
the mismatches are lower than the dead time, in percent-
age terms, it is possible to prevent transformer saturation. 
Isolated power supplies designed with the SN6505B do not 
saturate, thus remaining stable in the presence of large 
mismatches.
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