

1

AN-1425 Differences Between 10/100 Mb/s Ethernet Physical Layer Devices

ABSTRACT

This application report discusses the differences between the 10/100 Mb/s Ethernet Physical Layer devices, DP8384x.

	Contents	
1	Purpose	
2	Hardware Differences	2
	2.1 Termination and PMD Biasing	
	2.2 Physical Layer Product Pin Comparison	
3	Configuration (Software related) Differences	6
	3.1 Register Differences	6
	List of Figures	
1	DP83848 PMD Connections (Termination & Biasing)	3
2	DP83847/6 PMD Connections (Termination & Biasing)	4
3	DP83843 PMD Connections (Termination & Biasing)	4
	List of Tables	
1	Feature Differences	2
2	Package Differences	2
3	Supply Differences	
4	Operating Temperature Differences	2

5	Configuration Changes	3
6	Termation and Biasing Differences	3
7	Pinout Differences Physical Layer Product Pin Comparison	4
8	Register Bit Definitions	6

All trademarks are the property of their respective owners.

Purpose

1 Purpose

This is an informational document detailing points to consider when updating an existing 10/100 Mb/s Ethernet design, using one of Texas Instruments' Ethernet Physical Layer (PHY) products, to the new DP83848 PHYTER[™] product. Although the basic functions of the device are similar, differences include feature set, pin functions, package and pinout, and possibly register operation. The impact to a design is dependent on which, and how, features of the previous device are used or implemented.

2 Hardware Differences

This section documents differences in the hardware as it relates to features, packages, operating voltages and environments, power requirements, and connections.

System Interfaces:	DP83848	DP83847	DP83846	DP83843
MII	3.3V	5V*	5V*	5V
RMII	Yes	No	No	No
SNI	Yes	No	No	Yes
JTAG	Available	No	No	No
100Base-FX Compliant	No	No	No	Yes
Auto-MDIX	Yes	No	No	No
Energy Detect	Yes	No	No	No
LED Outputs	3	6	6	6
INT Output	Yes	No	No	No
CLK-to-MAC Output	Yes	No	No	No
Temperature Range:				
0 to 70°C	Yes	Yes	Yes	Yes
-40 to 85°C	Available	No	No	No
-40 to 125°C	Available	No	No	No
* 5V tolerant				

Table 1. Feature Difference	Table	1.	Feature	Differences
-----------------------------	-------	----	---------	-------------

Table 2. Package Differences

	DP83848	DP83847	DP83846	DP83843
Package	48-LQFP	56-LLP	80-LQFP	80-PQFP
Footprint	7x7mm	9x9mm	14x14mm	14x14mm
Package Drawing	VBH48A	LQA56A	VHG80A	VJE80

Table 3. Supply Differences

	DP83848	DP83847	DP83846	DP83843
Supply Voltage	3.3v	3.3v	3.3v	5v
Active Power (Typ)	267mW	351mW	495mW	675mW

Table 4. Operating Temperature Differences

Temperature Range	DP83848	DP83847	DP83846	DP83843
0 to 70°C	Yes	Yes	Yes	Yes
-40 to 85°C	Available	No	No	No
-40 to 125°C	Available	No	No	No

3

Internal circuitry biasing of the DP83848 has changed from previous devices.

		0	0	
	DP83848	DP83847	DP83846	DP83843
Bias Resistor Value	4.87K Ohm	10K Ohm	9.31K Ohm	4.87K Ohm, 70K Ohm
Bias Capacitor Value	n/a	n/a	n/a	.0033u, .10uF

Table 5. Configuration Changes

2.1 Termination and PMD Biasing

Termination of the PMD receive pair (TPRD-/+) on previous Physical Layer devices consisted of a pair of 54.9 Ohms, AC biased to GND. This value, when seen in parallel with the internal receiver circuitry, provided an equivalent 100 Ohms impedance. The DP83848 has changed the internal receiver circuitry and now requires a pair of 49.9 Ohm resistors, DC biased to VDD of the device.

This matching of the termination resistors and common biasing, between the receiver and transmitter of the DP83848, allows the addition of the Auto-MDIX feature to the device.

	DP83848	DP83847	DP83846	DP83843
TX Termination	49.9 Ohms	49.9 Ohms	49.9 Ohms	49.9 Ohms
TX Bias	3.3V	3.3V	3.3V	AC to GND
RX Termination	49.9 Ohms	54.9 Ohms	54.9 Ohms	49.9 Ohms
RX Bias	3.3V	AC to GND	AC to GND	AC to GND

Refer to the next set of figures for a graphic explanation of this.

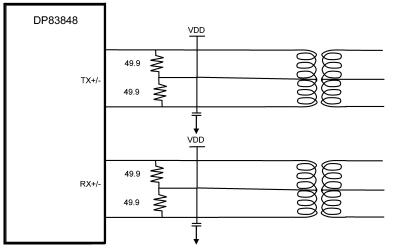


Figure 1. DP83848 PMD Connections (Termination & Biasing)

Hardware Differences

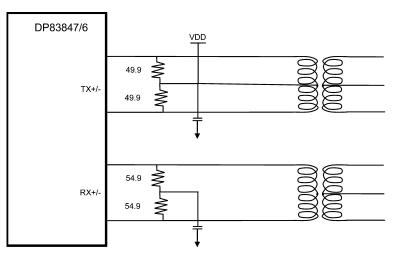


Figure 2. DP83847/6 PMD Connections (Termination & Biasing)

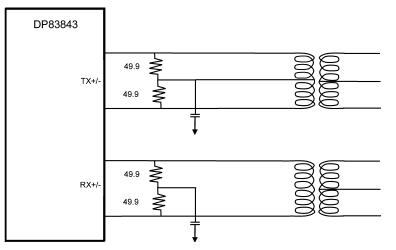


Figure 3. DP83843 PMD Connections (Termination & Biasing)

2.2 Physical Layer Product Pin Comparison

DP83848 Signal Name	848 Pin #	847 Pin #	846 Pin #	843 Pin #	Description		
VII Interface Pins							
MDC	31	25	37	35	MGMT DATA CLOCK		
MDIO	30	24	36	34	MGMT DATA I/O		
RXD0/PHYAD1:4	43,44, 45,46	30,29, 27,26	41,40, 39,38	15,14, 13,12	MII RX DATA		
RX_CLK	38	32	45	18	MII RX CLOCK		
RX_ER/MDIX_EN	41	33	46	19	MII RX ERROR		
RX_DV/MII_MODE	39	31	44	20	MII RX DATA VALID		
RX_EN	n/a	n/a	n/a	23	MII RX ENABLE		
TXD0:3	3,4, 5,6	38,39, 40,41	54,55, 85,59	31,30, 29,28	MII TX DATA		
TX_CLK	1	36	51	24	MII TX CLOCK		
TX_EN	2	37	52	33	MII TX ENABLE		
TX_ER	n/a	35	50	25	MII TX ERROR		

www.ti.com

Table 7. Pinout Differences	Physical Layer Product Pir	Comparison (continued)

DP83848 Signal Name	848 Pin #	847 Pin #	846 Pin #	843 Pin #	Description				
COL/PHYAD0	42	43	60	21	MII COL DETECT				
CRS/LED_CFG	40	45	61	22	MII CARRIER SENSE				
PMD Interface Pins									
RD-/+	13,14	6,7	10,11	65,67	RX DATA				
TD-/+	16,17	11,10	17,16	73,74	ΤΧ ΔΑΤΑ				
FXRD-/+_/AUIRD-/+	n/a	n/a	n/a	49,50	100FX or 10AUI RX DATA				
FXTD-/+_/AUITD-/+	n/a	n/a	n/a	44,43	100FX or 10AUI TX DATA				
FXSD-/+_/CD-/+	n/a	n/a	n/a	47,48	SIG DET or AUI COL DET				
Clock Interface Pins									
X1	34	49	67	9	XTAL/OSC INPUT				
X2	33	48	66	8	XTAL OUTPUT				
LED Interface Pins			ļ	ļ	-				
LED_ACT/COL/AN_EN	26	22	32	42	COL LED STATUS				
LED_ACT/COL/AN_EN	26	23	33	38	DUPLEX LED STATUS				
LED_LINK/AN_0	28	21	31	39	LINK LED STATUS				
LED_SPEED/AN_1	27	18	28	5	SPEED LED STATUS				
LED_ACT/COL/AN_EN	26	n/a	n/a	n/a	ACT LED STATUS				
LED_RX/PHYAD4	n/a	19	29	40	RX ACTIVITY LED				
LED_TX/PHYAD3	n/a	20	30	41	TX ACTIVITY LED				
Reset Function Pin		-							
RESET_N	29	46	62	1	RESET				
Strap Pins									
PHYAD0:4	42,43,44, 45,46	23,22,21, 20,19	33,32,31, 30,29	42,41,40, 39,38	PHY ADDRESS				
MDIX_EN/RX_ER	41	n/a	n/a	n/a	AUTO MDIX ENABLE				
MII_MODE/RX_DV	39	n/a	n/a	n/a	MII MODE SELECT				
SNI_MODE/TXD3	6	n/a	n/a	n/a	MII MODE SELECT				
LED_CFG/CRS	40	45	61	n/a	LED CONFIGURATION				
PAUSE_EN/RX_ER	n/a	33	46	n/a	PAUSE ENABLE				
SERIAL10	n/a	n/a	n/a	69	10 SERIAL/NIBBLE SELECT				
FXEN/COL	n/a	n/a	n/a	21	FIBER ENABLE				
SYMBOL/CRS	n/a	n/a	n/a	22	SYMBOL MODE				
THIN/REPEATER	n/a	n/a	n/a	63	THIN AUI/REPEATER				
Bias Function Pins. Please	e refer to Table	5 for additional ir	nformation on the	ese pins.					
RBIAS	24	3	3	61	BIAS RES CONNECTION				
C1	n/a	42	n/a	n/a	REF BYPASS CAP				
TXAR100	n/a	n/a	n/a	78	100TX AMP REF CTRL				
TWREF	n/a	n/a	n/a	60	TWISTER REF RESISTOR				
VCM_CAP	n/a	n/a	n/a	66	CM BYPASS CAP				
Test Mode Pins									
ТСК	8	n/a	n/a	n/a	JTAG TEST CLOCK				
TDI	12	n/a	n/a	n/a	JTAG TEST DATA INPUT				
TDO	9	n/a	n/a	n/a	JTAG TEST OUTPUT				
TMS	10	n/a	n/a	n/a	JTAG TEST MODE SELECT				
TRST#	11	n/a	n/a	n/a	JTAG TEST RESET				
AN_0/LED_LINK	28	15	25	4	TEST MODE SELECT				
AN_1/LED_SPEED	27	16	26	3	TEST MODE SELECT				
AN_EN/LED_ACT/COL	26	17	27	n/a	TEST MODE SELECT				

AN-1425 Differences Between 10/100 Mb/s Ethernet Physical Layer Devices 5

www.ti.com

DP83848 Signal Name	848 Pin #	847 Pin #	846 Pin #	843 Pin #	Description
Special Function Pins			· · ·		+
25MHz_OUT	25	n/a	n/a	n/a	25 MHz CLOCK OUTPUT
PWR_DOWN/INT	7	n/a	n/a	n/a	POWER DOWN/INT
PFBIN1,2	18,37	n/a	n/a	n/a	POWER FEEDBACK IN
PFBOUT	23	n/a	n/a	n/a	POWER FEEDBACK OUT
Supply Pins			· · · · ·		+
VDD	22,32,48	14,28,56, 57,59,63	4,7,12, 14,24,35, 43,49,57, 65,72	6,10,16, 26,36,46, 52,54,68, 72,76,79	3.3V (5.0V FOR DP83843)
GND	15,19,35, 36,47	58,60,62, 64,65	2,6,9,13, 15,18,48, 73,34,42, 53,56,64, 19,76,79	7,11,17,27, 32,37,45, 51,53,57, 64,70,71, 75,77,80	GROUND
Reserved Pins					
RESERVED	12,20	1,2,4, 5,8,9, 12,13,34, 44,47,50, 51,52,53, 54,55, 61	1,5,8, 20,21,22, 47,63,68, 69,70,71, 74,75,77, 78, 80	2,55,56, 58,59,62	RES (N/C FOR DP83843)

Table 7. Pinout Differences	Physical Layer Produce	ct Pin Comparison	(continued)

3 Configuration (Software related) Differences

This section covers differences between the devices as it relates to software configuration of the devices.

3.1 Register Differences

All the IEEE specified registers of NSC Physical Layer devices comply with the respective IEEE standards. Only vendor specific registers have functions that may vary from device to device. If none of the vendor specific registers are modified, for operation in the system application, the devices will have similar operation. In designs that do access or adjust any of these optional registers, the system may use the PHY_ID register, offset 03h, to determine appropriate settings of device registers. Specific functions, of these vendor defined registers, may be available in another register, or possibly in a different bit within the same register location. For additional information, or more specific definitions, please refer to the applicable datasheet(s).

Register Address	Register Name	Register Description	Device			
Hex			DP83848	DP83847	DP83846	DP83843
00h	BMCR	Basic Mode Control	No Change			
01h	BMSR	Basic Mode Status	No Change			
02h	PHYIDR1	PHY ID 1	2000h	2000h	2000h	2000h
03h	PHYIDR2	PHY ID 2	5C90h	5c30h	5C23h	5C10h
04h	ANAR	Auto-Neg Adv	11 ASM_DIR	Res	Res	Res
05h	ANLPAR	Auto-Neg Link Partner Ability	11 ASM_DIR 10 Pause	Res	Res	Res
07h	ANER	Auto-Neg Exp	No Change			
08h-Fh	RES		Res	Res	Res	Res

Table 8. Register Bit Definitions

www.ti.com

7

Register Address	Register Name	Register Description	Device				
Hex			DP83848	DP83847	DP83846	DP83843	
10h	PHYSTS	PHY Status	15:4 Register Changes 3 Loopback Status 2 Duplex Status 1 Speed Status 0 Link Status				
11h	MICR	MII Interrupt Control	2 Test Interrupt 1 Interrupt Enable 0 Int Output Enable	Res	Res	0 Test Interrupt	
12h	MISR	MII Interrupt Status	New Register Functions	Res	Res	15 MII Int Pending 14:0 Res	
13h	RES		Res	Res	Res	Disconnect Counter	
14h	FCSCR	False Carrier Sense Counter	15:8 Res 7:0 FCSR Count	15:8 Res 7:0 FCSR Count	15:8 Res 7:0 FCSR Count	15:0 FCSR Count	
15h	RECR	RX Error Counter	15:8 Res 7:0 RxErr Count	15:8 Res 7:0 RxErr Count	15:8 Res 7:0 RxErr Count	15:0 RxErr Count	
16h	PCSR	PCS Sub- Layer cfg and sts	15:0 Register Changes	PCSR	PCSR	PCSR	
17h	RBR	RMII and Bypass	New Register	Res	Res	LBR	
18h	LEDCR	LED Direct Control	New Register	Res	Res	10BTSCR	
19h	PHYCR	PHY Control	15:5 Register Changes 4:0 PHY Address	4:0 PHY Addr	4:0 PHY Addr	4:0 PHY Addr	
1Ah	10BTSCR	10 Base-T Status/Control	15:0 Register Changes	15:9 Unused	15:9 Unused	Res	
1Bh	CDCTRL1	CD Test Control	15:0 Register Changes			Res	
1Ch	RES		Res	Res	Res	Res	
1Dh	EDCR	Energy Detect Control	New Register	Res	Res	Res	
1Eh-1Fh	RES		Res	Res	Res	Res	

Table 8	. Register	Bit	Definitions	(continued)
---------	------------	-----	-------------	-------------

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated