Application Report

AN-31 amplifier circuit collection

ABSTRACT

This application report provides basic circuits of the Texas Instruments amplifier collection.

Table of Contents

1 Basic Circuits ... 3
2 Signal Generation .. 15
3 Signal Processing ... 24
4 References ... 41
Revision History .. 41

List of Figures

Figure 1-1. Inverting Amplifier .. 3
Figure 1-2. Non-Inverting Amplifier .. 3
Figure 1-3. Difference Amplifier .. 4
Figure 1-4. Low-Power Difference Amplifier ... 4
Figure 1-5. Inverting Summing Amplifier ... 5
Figure 1-6. Non-Inverting Summing Amplifier ... 5
Figure 1-7. Inverting Amplifier With High Input Impedance .. 6
Figure 1-8. Two-Stage Inverting Amplifier With High Input Impedance ... 6
Figure 1-9. AC Coupled Non-Inverting Amplifier ... 7
Figure 1-10. Practical Differentiator ... 7
Figure 1-11. Integrator .. 8
Figure 1-12. Current to Voltage Converter (Transimpedance Amplifier) ... 8
Figure 1-13. Reference Voltage Generator .. 9
Figure 1-14. Neutralizing Input Capacitance to Optimize Response Time .. 9
Figure 1-15. Threshold Detector for Photodiodes .. 10
Figure 1-16. Double-Ended Limit Detector ... 10
Figure 1-17. Multiple Aperture Window Discriminator .. 11
Figure 1-18. Offset Voltage Adjustment for Inverting Amplifiers .. 12
Figure 1-19. Offset Voltage Adjustment for Non-Inverting Amplifiers .. 12
Figure 1-20. Offset Voltage Adjustment for Voltage Followers .. 13
Figure 1-21. Offset Voltage Adjustment for Difference Amplifiers ... 13
Figure 1-22. Offset Voltage Adjustment for Inverting Amplifiers With Source Resistance 14
Figure 2-1. Sine Wave Generator With Low Component Count ... 15
Figure 2-2. Sine Wave Generator .. 15
Figure 2-3. Free-Running Multivibrator ... 16
Figure 2-4. Function Generator .. 16
Figure 2-5. Pulse Width Modulator ... 17
Figure 2-6. Improved Howland Current Pump ... 18
Figure 2-7. Wien Bridge Oscillator With Automatic Gain Control .. 18
Figure 2-8. Positive Output Voltage Reference .. 19
Figure 2-9. Buffered Positive Voltage Reference .. 19
Figure 2-10. Negative Output Voltage Reference ... 20
Figure 2-11. Buffered Negative Voltage Reference .. 20
Figure 2-12. Current Sink ... 21
Figure 2-13. Current Source ... 21
Figure 2-14. Voltage-to-Current Converter With BJT Output ... 22
Figure 2-15. Voltage-to-Current Converter With Darlington Pair Output .. 22
Figure 2-16. Voltage-to-Current Converter With MOSFET Output .. 23
Figure 3-1. Instrumentation Amplifier ... 24
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-2</td>
<td>Variable Gain Instrumentation Amplifier</td>
<td>25</td>
</tr>
<tr>
<td>3-3</td>
<td>Instrumentation Amplifier With ±100-V Common Mode Range</td>
<td>25</td>
</tr>
<tr>
<td>3-4</td>
<td>Instrumentation Amplifier With ±10-V Common Mode Range</td>
<td>26</td>
</tr>
<tr>
<td>3-5</td>
<td>High Input Impedance Instrumentation Amplifier</td>
<td>26</td>
</tr>
<tr>
<td>3-6</td>
<td>Bridge Amplifier With Temperature Sensitivity</td>
<td>27</td>
</tr>
<tr>
<td>3-7</td>
<td>Precision Diode</td>
<td>27</td>
</tr>
<tr>
<td>3-8</td>
<td>Precision Clamp</td>
<td>27</td>
</tr>
<tr>
<td>3-9</td>
<td>Fast Half Wave Rectifier</td>
<td>28</td>
</tr>
<tr>
<td>3-10</td>
<td>AC to DC Converter</td>
<td>28</td>
</tr>
<tr>
<td>3-11</td>
<td>Peak Detector</td>
<td>29</td>
</tr>
<tr>
<td>3-12</td>
<td>Absolute Value Amplifier</td>
<td>29</td>
</tr>
<tr>
<td>3-13</td>
<td>Sample and Hold I</td>
<td>30</td>
</tr>
<tr>
<td>3-14</td>
<td>Sample and Hold II</td>
<td>30</td>
</tr>
<tr>
<td>3-15</td>
<td>Adjustable Q Notch Filter</td>
<td>31</td>
</tr>
<tr>
<td>3-16</td>
<td>Easily Tuned Notch Filter</td>
<td>32</td>
</tr>
<tr>
<td>3-17</td>
<td>Sallen-Key Two-Stage Bandpass Filter</td>
<td>32</td>
</tr>
<tr>
<td>3-18</td>
<td>Two-Stage Capacitance Multiplier</td>
<td>33</td>
</tr>
<tr>
<td>3-19</td>
<td>Simulated Inductor</td>
<td>33</td>
</tr>
<tr>
<td>3-20</td>
<td>Capacitance Multiplier</td>
<td>34</td>
</tr>
<tr>
<td>3-21</td>
<td>High Pass Sallen-Key Active Filter</td>
<td>34</td>
</tr>
<tr>
<td>3-22</td>
<td>Low Pass Sallen-Key Active Filter</td>
<td>35</td>
</tr>
<tr>
<td>3-23</td>
<td>Current Monitor</td>
<td>35</td>
</tr>
<tr>
<td>3-24</td>
<td>Saturating Servo Preamplifier With Rate Feedback</td>
<td>36</td>
</tr>
<tr>
<td>3-25</td>
<td>Power Booster</td>
<td>36</td>
</tr>
<tr>
<td>3-26</td>
<td>Fast Zero Crossing Detector</td>
<td>37</td>
</tr>
<tr>
<td>3-27</td>
<td>Amplifier for Piezoelectric Transducer</td>
<td>37</td>
</tr>
<tr>
<td>3-28</td>
<td>Temperature Probe</td>
<td>38</td>
</tr>
<tr>
<td>3-29</td>
<td>Photodiode Amplifier I</td>
<td>38</td>
</tr>
<tr>
<td>3-30</td>
<td>Photodiode Amplifier II</td>
<td>39</td>
</tr>
<tr>
<td>3-31</td>
<td>High Input Impedance AC Follower</td>
<td>39</td>
</tr>
<tr>
<td>3-32</td>
<td>Multiplier/Divider</td>
<td>40</td>
</tr>
</tbody>
</table>

Trademarks

All other trademarks are the property of their respective owners.
1 Basic Circuits

![Inverting Amplifier Circuit](image1)

\[V_{out} = \frac{R_2}{R_1} V_{in} \]

* R Optional to Protect LM358 & LM324

Devices from Transient Current Spikes

Figure 1-1. Inverting Amplifier

See Analog engineer's circuit cookbook: amplifiers or [2] for more information. Simulate this design by downloading TINA-TI and the schematic. To learn more about *R and how to protect LM358/LM2904 devices from transient current spikes at the input, see [23].

![Non-Inverting Amplifier Circuit](image2)

\[V_{out} = \left(1 + \frac{R_2}{R_1}\right) V_{in} \]

Figure 1-2. Non-Inverting Amplifier

See Analog engineer's circuit cookbook: amplifiers or [2] for more information. Simulate this design by downloading TINA-TI and the schematic.
\[V_{out} = \left(\frac{R_4}{R_3 + R_4} \right) \left(1 + \frac{R_2}{R_1} \right) V_2 - \frac{R_3}{R_1} V_1 \]

For \(R_1 = R_3 \) and \(R_2 = R_4 \)

\[V_{out} = \frac{R_2}{R_1} (V_2 - V_1) \]

Figure 1-3. Difference Amplifier

See Analog engineer's circuit cookbook: amplifiers or [2] for more information. Simulate this design by downloading TINA-TI and the schematic.

\[V_{out} = \left(\frac{R_4}{R_3 + R_4} \right) \left(1 + \frac{R_2}{R_1} \right) V_2 - \frac{R_3}{R_1} V_1 \]

For \(R_1 = R_3 \) and \(R_2 = R_4 \)

\[V_{out} = \frac{R_2}{R_1} (V_2 - V_1) \]

\[f_{outff} = \frac{1}{2 \pi C_2 R_2} \]

Figure 1-4. Low-Power Difference Amplifier

See Analog engineer's circuit cookbook: amplifiers or [2] for more information. Simulate this design by downloading TINA-TI and the schematic.
Figure 1-5. Inverting Summing Amplifier

See Analog engineer's circuit cookbook: amplifiers or [2] for more information. Simulate this design by downloading TINA-TI and the schematic.

\[V_{out} = -R_1 \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right) \]

* R5 Optional for Input Bias Current Cancellation

Figure 1-6. Non-Inverting Summing Amplifier

See Analog engineer's circuit cookbook: amplifiers for more information. Simulate this design by downloading TINA-TI and the schematic.

\[V_{out} = \left(1 + \frac{R_2}{R_1} \right) \left(\frac{R_4}{R_3 + R_4} \right) \left(V_1 + V_2 \right) \]

\[V_{out} = \left(1 + \frac{R_2}{R_1} \right) \left(\frac{R_4}{R_3 + R_4} \right) \left(V_1 + V_2 \right) \text{ if } R_3 = R_4 \]
Figure 1-7. Inverting Amplifier With High Input Impedance

Simulate this design by downloading TINA-TI and the schematic.

\[V_{out} = -\frac{R_2}{R_1}V_{in} \]

* R3 Optional for Input Bias Current Cancellation

Figure 1-8. Two-Stage Inverting Amplifier With High Input Impedance

Simulate this design by downloading TINA-TI and the schematic.

\[V_{out} = -\frac{R_2}{R_1}V_{in} \]
Figure 1-9. AC Coupled Non-Inverting Amplifier

See Analog engineer's circuit cookbook: amplifiers for more information. Simulate this design by downloading TINA-TI and the schematic.

\[
V_{\text{out}} = \left(1 + \frac{R_2}{R_1}\right) V_{\text{in}}
\]

\[R_3 = R_1 || R_2 \text{ for CMRR}\]

\[
f_{\text{cutoff low}} = \frac{1}{2\pi C_1 R_3}
\]

Figure 1-10. Practical Differentiator

See Analog engineer's circuit cookbook: amplifiers or [2] for more information. Simulate this design by downloading TINA-TI and the schematic.

\[
V_{\text{out}} = -\frac{dV_{\text{in}}}{dt}
\]

\[
f_c = \frac{1}{2\pi R_1 C_1} V_{\text{in}}
\]

\[
f_s = \frac{1}{2\pi R_1 C_1} = \frac{1}{2\pi R_2 C_2}
\]

\[
f_c \ll f_s \ll f_{\text{unity gain}}
\]

* R3 Optional for Input Bias Current Cancellation
Figure 1-11. Integrator

See Analog engineer's circuit cookbook: amplifiers or [2] for more information. Simulate this design by downloading TINA-TI and the schematic.

Figure 1-12. Current to Voltage Converter (Transimpedance Amplifier)

See Analog engineer's circuit cookbook: amplifiers or [2] for more information. Simulate this design by downloading TINA-TI and the schematic.
$V_{out} = \frac{R_2}{R_1 + R_2} V_{in}$

Figure 1-13. Reference Voltage Generator

Simulate this design by downloading TINA-TI and the schematic.

$C_1 \leq \frac{R_1}{R_2} C_2$

Figure 1-14. Neutralizing Input Capacitance to Optimize Response Time

Simulate this design by downloading TINA-TI and the schematic.
Figure 1-15. Threshold Detector for Photodiodes

For more information on modeling photodiodes, see [8]. Simulate this design by downloading TINA-TI and the schematic.

Figure 1-16. Double-Ended Limit Detector

Simulate this design by downloading TINA-TI and the schematic.
Figure 1-17. Multiple Aperture Window Discriminator

Simulate this design by downloading TINA-TI and the schematic.
Figure 1-18. Offset Voltage Adjustment for Inverting Amplifiers

Simulate this design by downloading TINA-TI and the schematic.

Figure 1-19. Offset Voltage Adjustment for Non-Inverting Amplifiers

Simulate this design by downloading TINA-TI and the schematic.
Offset Range = $V_{\text{supply}} \frac{R_2}{R_1}$

$V_{\text{out}} \approx V_{\text{in}}$

$R_1 \gg R_2$

Figure 1-20. Offset Voltage Adjustment for Voltage Followers

Simulate this design by downloading TINA-TI and the schematic.

$R_2 = R_4 + R_5$

$R_1 = R_3$

Offset Range = $V_{\text{supply}} \left(\frac{R_5}{R_5 + R_4} \right) \left(\frac{R_3}{R_3 + R_4} \right)$

$V_{\text{out}} = \left(\frac{R_2}{R_1} \right) (V_2 - V_1)$

$R_5 \ll \text{Offset Equivalent Resistance}$

Figure 1-21. Offset Voltage Adjustment for Difference Amplifiers

Simulate this design by downloading TINA-TI and the schematic.
Figure 1-22. Offset Voltage Adjustment for Inverting Amplifiers With Source Resistance

Simulate this design by downloading TINA-TI and the schematic.
2 Signal Generation

For more information on this configuration, also known as a phase-shift oscillator, see [9] and [10]. Simulate this design by downloading TINA-TI and the schematic.

For more information on this configuration, also known as a buffered phase-shift oscillator, see [9] and [10]. Simulate this design by downloading TINA-TI and the schematic.
\[f_{\text{oscillation}} = \frac{1}{2R_1C_1 \ln \left(1 + \frac{R_2}{R_3} \right)} \]

Figure 2-3. Free-Running Multivibrator

Simulate this design by downloading TINA-TI and the schematic.

\[\text{Amplitude}_{\text{triangle}} = \frac{V_{\text{in}}}{R_1} \frac{R_3}{R_1 + R_2} \]
\[f_{\text{oscillation}} = \frac{2}{\pi C_1(R_3 + R_4)} \quad \text{for} \ R_3 + R_4 > 100k\Omega \]

Figure 2-4. Function Generator

See [2] for more information. Simulate this design by downloading TINA-TI and the schematic.
Figure 2-5. Pulse Width Modulator

See Analog engineer's circuit cookbook: amplifiers for more information. Simulate this design by downloading TINA-TI and the schematic.
Figure 2-6. Improved Howland Current Pump

For an in-depth dive into this configuration, see our [11]. Simulate this design by downloading TINA-TI and the schematic.

\[I_{\text{out}} = \frac{R_3 V_{\text{in}}}{R_1 R_5} \]
\[R_3 = R_4 + R_5 \]
\[R_1 = R_2 \]

Figure 2-7. Wien Bridge Oscillator With Automatic Gain Control

Simulate this design by downloading TINA-TI and the schematic.
Figure 2-8. Positive Output Voltage Reference

See [2] for more information. Simulate this design by downloading TINA-TI and the schematic.

Figure 2-9. Buffered Positive Voltage Reference

See [2] for more information. Simulate this design by downloading TINA-TI and the schematic.
Figure 2-10. Negative Output Voltage Reference

See [2] for more information. Simulate this design by downloading TINA-TI and the schematic.

Figure 2-11. Buffered Negative Voltage Reference

See [2] for more information. Simulate this design by downloading TINA-TI and the schematic.
Figure 2-12. Current Sink

See [2] for more information. Simulate this design by downloading TINA-TI and the schematic.

\[I_p = \frac{V_{in}}{R_1} \]
\[V_{in} \geq 0V \]
Ensure \(R_1 \gg R_{Load} \)

Figure 2-13. Current Source

See [2] for more information. Simulate this design by downloading TINA-TI and the schematic.

\[I_{out} = \frac{V_{out}}{R_1} \]
\[V_{in} < 0 \]
Figure 2-14. Voltage-to-Current Converter With BJT Output

\[I_{out} = \frac{V_{in} R_2}{R_1(R_1 + R_2)} \]
\[R_s = \frac{V_{in, max}}{I_{out, max}} \]

Simulate this design by downloading TINA-TI and the schematic.

Figure 2-15. Voltage-to-Current Converter With Darlington Pair Output

\[I_{out} = \frac{V_{in} R_2}{R_1(R_1 + R_2)} \]
\[R_s = \frac{V_{in, max}}{I_{out, max}} \]

Simulate this design by downloading TINA-TI and the schematic.
Figure 2-16. Voltage-to-Current Converter With MOSFET Output

Simulate this design by downloading TINA-TI and the schematic.
3 Signal Processing

![Instrumentation Amplifier Diagram]

\[
V_{\text{out}} = \frac{R_3}{R_1} (V_{\text{in+}} - V_{\text{in-}})
\]

\[
\frac{R_3}{R_1} = \frac{R_4}{R_2}
\]

Figure 3-1. Instrumentation Amplifier

Simulate this design by downloading TINA-TI and the schematic.
Figure 3-2. Variable Gain Instrumentation Amplifier

Simulate this design by downloading TINA-TI and the schematic.

Figure 3-3. Instrumentation Amplifier With ±100-V Common Mode Range

Simulate this design by downloading TINA-TI and the schematic.
Figure 3-4. Instrumentation Amplifier With ±10-V Common Mode Range

Simulate this design by downloading TINA-TI and the schematic.

\[V_{out} = \frac{R_6}{R_2} \left(1 + \frac{2R_3}{R_5} \right) V_{in} \]

Figure 3-5. High Input Impedance Instrumentation Amplifier

Simulate this design by downloading TINA-TI and the schematic.

\[V_{out} = \left(1 + \frac{R_2}{R_3} \right) V_{in} \]
Figure 3-6. Bridge Amplifier With Temperature Sensitivity

Simulate this design by downloading TINA-TI and the schematic.

Figure 3-7. Precision Diode

For more information on this configuration, see [12]. Simulate this design by downloading TINA-TI and the schematic.

Figure 3-8. Precision Clamp

For more information on this configuration, see [12]. Simulate this design by downloading TINA-TI and the schematic.
Figure 3-9. Fast Half Wave Rectifier

For more information on this configuration, see [12]. See Analog engineer's circuit cookbook: amplifiers for more information. Simulate this design by downloading TINA-TI and the schematic.

\[V_{\text{out}} = |V_{\text{in}}| \]

*R_4 Optional for Input Bias Current Cancellation

Figure 3-10. AC to DC Converter

For more information on this configuration, see [12]. Simulate this design by downloading TINA-TI and the schematic.

\[V_{\text{out}} = V_{\text{in,avg}} \]
\[0 < V_{\text{in}} < V_{cc} - V_{D1} \]

Ensure Op Amps Remain in Linear Range

*R_4 and R_5 Optional for Input Bias Current Cancellation
\[V_{out} = V_{peak} \]

Figure 3-11. Peak Detector

Simulate this design by downloading TINA-TI and the schematic.

\[V_{out} = |V_{in}| \]

\[R_2 = R_1 \]

\[\frac{GBW_{U2}}{4} = \frac{1}{2\pi R_1 C_1} \]

Figure 3-12. Absolute Value Amplifier

For more information on this circuit, see [13]. Simulate this design by downloading TINA-TI and the schematic.
Figure 3-13. Sample and Hold I

For more information on this circuit, see [14]. Simulate this design by downloading TINA-TI and the schematic.

Figure 3-14. Sample and Hold II

For more information on this circuit, see [14]. Simulate this design by downloading TINA-TI and the schematic.
Figure 3-15. Adjustable Q Notch Filter

For more information on this configuration, see [15] and [16]. Simulate this design by downloading TINA-TI and the schematic.
Figure 3-16. Easily Tuned Notch Filter

For more information on this configuration, see [15] and [16]. Simulate this design by downloading TINA-TI and the schematic.

\[
f_0 = \frac{1}{2\pi R_1 C_2}
\]

\[
\begin{align*}
R_4 &= R_5 \\
R_1 &= R_3 \\
R_3 &= \frac{R_1}{2}
\end{align*}
\]

Figure 3-17. Sallen-Key Two-Stage Bandpass Filter

For more information on this configuration, see [17]. Simulate this design by downloading TINA-TI and the schematic.

\[
f_0 = \frac{1}{2\pi \sqrt{R_1 R_2 C_1 C_2}}
\]
Figure 3-18. Two-Stage Capacitance Multiplier

Simulate this design by downloading TINA-TI and the schematic.

Figure 3-19. Simulated Inductor

For more information on this configuration, see [19]. Simulate this design by downloading TINA-TI and the schematic.
Figure 3-20. Capacitance Multiplier

Simulate this design by downloading TINA-TI and the schematic.

Choose m and n for desired f_c and Q

Figure 3-21. High Pass Sallen-Key Active Filter

For more information on this configuration, see [17]. Simulate this design by downloading TINA-TI and the schematic.
Figure 3-22. Low Pass Sallen-Key Active Filter

For more information on this configuration, see [17] and [18]. Simulate this design by downloading TINA-TI and the schematic.

Figure 3-23. Current Monitor

Simulate this design by downloading TINA-TI and the schematic.
Figure 3-24. Saturating Servo Preamplifier With Rate Feedback

For more information on modeling photodiodes, see [8]. More information on this configuration can be found in [20]. Simulate this design by downloading TINA-TI and the schematic.

Figure 3-25. Power Booster

Simulate this design by downloading TINA-TI and the schematic.
Figure 3-26. Fast Zero Crossing Detector

Simulate this design by downloading TINA-TI and the schematic.

Figure 3-27. Amplifier for Piezoelectric Transducer

For more information on this configuration, see [21] and [22]. Simulate this design by downloading TINA-TI and the schematic.
\[V_{\text{out}} = 103.9 \text{mV/°C} - 383 \text{mV} \]

*Value Can Be Changed for 0V at 0°C

^Value Can Be Changed for 100mV/°C

Figure 3-28. Temperature Probe

Simulate this design by downloading TINA-TI and the schematic.

\[V_{\text{out}} = R_f I_D \]

Figure 3-29. Photodiode Amplifier I

For more information on modeling photodiodes, see [8]. See Analog engineer’s circuit cookbook: amplifiers or [2] for more information on this circuit. Simulate this design by downloading TINA-TI and the schematic.
\[V_{out} = \frac{5V}{\mu A} \times \frac{R_f}{R_1} \]

Figure 3-30. Photodiode Amplifier II

For more information on modeling photodiodes, see [8]. See *Analog engineer’s circuit cookbook: amplifiers* for more information on this circuit. Simulate this design by downloading TINA-TI and the schematic.

\[V_{out} = \frac{(R_1 + R_2)C_1s + C_1C_2R_1R_2s^2}{1 + (R_1 + R_2)C_1s + C_1C_2R_1R_2s^2}V_{in} \]

Figure 3-31. High Input Impedance AC Follower

Simulate this design by downloading TINA-TI and the schematic.
$E_{out} = \frac{E_1 E_2}{E_3}$

$R_1 = R_2 = R_3 = R_4$

Figure 3-32. Multiplier/Divider

Simulate this design by downloading TINA-TI and the schematic.
4 References

1. To learn more about the design of many of these and other amplifier configurations, consult our *Analog engineer's circuit cookbook on amplifiers*.
2. Alternatively, more information on several of these circuits can be found in our app note entitled, *AN-20 an applications guide for op amps*.
3. To learn more about the characteristics of amplifiers, common techniques used in amplifier circuit design, and a variety of other amplifier topics, consult our *Texas Instruments Precision Labs video series on amplifiers*.
4. For specific questions regarding your design, reach out to our engineers via e2e, our online forum.
5. For a handy reference guide for your analog designs, check out the *Analog Engineer's Pocket Reference Guide* available for free in pdf form.
6. Use our *Analog Engineer's Calculator* to help crunch design equations.
7. Check out our *Amplifier's Product Page* to quickly sort through our products and find the amplifier(s) that best fit your needs.
8. For more information on modeling photodiodes including the model used in this design, see the *1 MHz, single-supply, photodiode amplifier reference design*.
9. For more information on sine-wave oscillators, check out TI's app note on the *Sine-wave oscillator*.
10. Alternatively, see our note on the *Design of op amp sine wave generators*.
11. For more on the Howland Current Pump, see *AN-1515 a comprehensive study of the Howland current pump*.
12. For more information on the Precision Diode, Precision Clamp, Half Wave Rectifier, and AC to DC Converter circuits, see our *LB-8 precision AC/DC converters* application note.
13. More information on the Absolute Value Amplifier can be found in our app note on *Precision absolute value circuits*.
14. To learn more about Sample-and-Hold configurations, see our application note on the *Specifications and architectures of sample-and-hold amplifiers*.
15. For more information on Q Notch Filters, see our *LB-5 high Q Notch filter* on the subject.
16. Further analysis of notch filters can be found in our app note on *High-speed notch filters*.
17. For more information on Sallen-Key filter design, see our *Analysis of the Sallen-Key architecture* application note on the subject.
18. For more information on Low Pass Sallen-Key filter design, see our *Active low-pass filter design* application note.
19. More information on simulated inductors can be found in our application note entitled, *An audio circuit collection, part 3*.
20. More information on a variety of circuits can be found in our *AN-4 monolithic op amp—the universal linear component* application note.
21. To learn more about the theory behind, design of, and simulation of piezoelectric transducers and their amplifiers, see this *Signal conditioning piezoelectric sensors* application note.
22. Additional information on piezoelectric transducers can be found in our analog applications journal entry, *Signal conditioning for piezoelectric sensors*, on the subject.
23. For more information on the LM324/LM358 device family and how to properly connect unused inputs, see *Application design guidelines for LM324/LM358 devices*.

Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

<table>
<thead>
<tr>
<th>Changes from Revision C (March 2019) to Revision D (October 2020)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Changed TINA-TI hyperlinks throughout document..................</td>
<td>3</td>
</tr>
<tr>
<td>• Changed Figure 2-3 Free-Running Multivibrator equation.......</td>
<td>15</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated