DP83265

AN-730 BSI Device Software Design Guide

I3 Texas

INSTRUMENTS

Literature Number: SNOA198

BSI™ Device Software
Design Guide

Table of Contents

1.0 INTRODUCTION

2.0 INITIALIZATION

3.0 SERVICING INTERRUPTS

4.0 MEMORY MANAGEMENT SCHEMES
5.0 SENDING FRAMES

6.0 RECEIVING FRAMES

7.0 QUEUE MANIPULATION

1.0 INTRODUCTION

This application note describes how to initialize the National
Semiconductor BSI device (DP83265) and interact with it.
Initialization and data service support occur through the
Control Bus and via memory that is accessible by both the
BSI device and the host. The host processor must be able
to respond to interrupts and have access to both the BSI
device Control Bus and some mutually accessible memory.
This application note should be read in conjunction with the
BSI datasheet.

2.0 INITIALIZATION

Before BSI device operation can begin, the device must be
initialized. The BMAC™ and PLAYERTM devices must also
be individually initialized. To initialize the BSI device, the
steps shown below should be followed. Each action is ex-
plained further in the subsections that follow.

e Put the BSI Device in Stop Mode

e Set the Mailbox Address Register

® Load the Pointer RAM

® Set the Event Notify Registers

Set the Mode Register

Set the Request Configuration Registers
Set the Request Expected Frame Status Registers
Set the Indicate Configuration Register
Set the Indicate Mode Register

Set the Indicate Threshold Register

Set the Indicate Header Length Register
Load the Limit RAM

® Clear the Attention Register

e Put the BSI Device in Run Mode

2.1 Put the BSI Device in Stop Mode

During initialization the BSI device must be in “Stop Mode”.
This is necessary to prevent the device from attempting to
perform any actions or respond to any external stimulus pri-
or to the completion of the initialization sequence. The BSI
device may be placed in Stop Mode by setting three bits in
the State Attention Register (STAR).

Since the State Attention Register (STAR) is a conditional
write register, it must be read before it is written. By doing so
the original contents of the STAR register are loaded into
the Compare Register (CMP). When a subsequent write to
the STAR register occurs, only those bits that match the

BSI™ and PLAYERT™ are trademarks of National Semiconductor Corporation.

National Semiconductor
Application Note 730

Robert Macomber, Mark Travaglio
November 1990

corresponding bits in the CMP register will be actually
stored in STAR. With the BSI device in “Stop Mode”, and
no intervening accesses to the BSI device Control Bus, it is
guaranteed that all 8 bits will match.

Finally, write 0x07 to the STAR. This clears all the error bits
and sets all the stop bits (the STAR is automatically loaded
with 0x07 upon reset of the BSI device).

2.2 Set the Mailbox Address Register

When loading Pointer RAM data into the BSI device, a
“mailbox” mechanism is used. The mailbox is a 32-bit word
in off-chip memory which the BSI device uses to load or
dump the Pointer RAM Registers. This mailbox may be lo-
cated anywhere within the 28-bit ABus address space of the
BSI device and accordingly its address must be explicitly
defined. This is accomplished via the 8-bit Mailbox Address
Register (MVBAR).

To load the Mailbox Address Register (MBAR) first load
0x00 into the Pointer RAM Control and Address Register
(PCAR). This tells the BSI device to internally point to the
first byte of the mailbox address. Then execute four succes-
sive writes to the MBAR to load the full mailbox address;
writing the most significant bytes first. Each write automati-
cally increments the byte pointer to the next byte.

When the BSI device is reset, the Mailbox Address Register
(MBAR) is loaded with a hardware revision code. The host
may obtain this revision code by sequentially reading four
bytes from the MBAR before loading the mailbox address.

2.3 Load the Pointer RAM

The BSI device maintains pointer registers for accessing
and manipulating the various queues. Prior to normal opera-
tion, some of these pointer registers must be initialized with
queue addresses (see Table I). For active Request queues
the host software must load the Confirmation Message
(CNF) Queue Pointer Register and the Request (REQ)
Queue Pointer Register. For Indicate queues the host soft-
ware must load the Indicate Data Unit Descriptor (IDUD)
Queue Pointer Register and the Pool Space (PSP) Queue
Pointer Register. For information about choosing initial
Pointer RAM values see Section 7 on Queue Manipulation.

TABLE I. Pointer Registers Used
during Queue Initialization

Pointer Registers Addr
CNF Queue Pointer Register (RCHN1) 0x02
REQ Queue Pointer Register (RCHN1) 0x03
CNF Queue Pointer Register (RCHNO) 0x06
REQ Queue Pointer Register (RCHNO) 0x07
IDUD Queue Pointer Register (ICHN2) 0x09
PSP Queue Pointer Register (ICHN2) 0x0a
IDUD Queue Pointer Register (ICHN1) 0x0d
PSP Queue Pointer Register (ICHN1) 0x0e
IDUD Queue Pointer Register (ICHNO) 0x11
PSP Queue Pointer Register (ICHNO) 0x12

Before loading a Pointer RAM Register, first read the Serv-
ice Attention Register (SAR) to verify that the PTOP bit is

©1995 National Semiconductor Corporation TL/F/11088

RRD-B30M75/Printed in U. S. A.

apiny ubisaq aiemipos a2IAaQ ISg

0€.-NV

set; signifying that a previous Pointer RAM operation has
completed. If this bit is not set wait for the previous opera-
tion to finish.

Write the value one wishes to store in the Pointer RAM
Register (i.e., the base address of the relevant queue) in the
memory location selected as the BSI device Mailbox.

Next configure the Pointer RAM Control and Address Regis-
ter (PCAR) with the PTRW bit cleared and the address of
the Pointer RAM Register placed in the least significant five
bits. A zero value in the PTRW bit specifies that the next
Pointer RAM operation will read from the Mailbox and write
to the Pointer RAM Register. The two most significant bits in
the PCAR (BP0, BP1) are not used in this context and may
be loaded with 0’s. For example, when loading the PSP
Queue Pointer for Indicate Channel 0, one would write 0x12
to the PCAR.

Finally, clear the PTOP bit in the Service Attention Register
(SAR). The SAR is a conditional write register, so it is nec-
essary to read it immediately before writing to it. Clearing
the PTOP bit causes the BSI device to perform the actual
Pointer RAM operation. The device signals the completion
of the operation by setting the PTOP bit in the SAR.

The above steps must be done for all pointers associated
with those channels that will be used.

2.4 Set the Event Notify Registers

You may specify which events will trigger an interrupt by
setting the corresponding bit in the Notify Registers; where
a 1 enables interrupts from that event and a 0 disables
those interrupts. The Notify Registers may be written with-
out being read previously (not conditional write registers).

See Section 3, Servicing Interrupts, for a more complete
treatment of this subject.

2.5 Set the Mode Register

Load the BSI device Mode Register (MR) to configure the
BSI device with global bus and queue parameters. For ex-
ample a value of 0x52 causes the BSI device to generate 32
byte bursts when accessing the data bus, use 1k (small)
queues, operate in a physical memory environment, use
“big-endian” data alignment, check parity on access to the
ABus and Control Bus and optimize operation for clock
speeds over 12.5 MHz.

2.6 Set the Request Configuration Registers

Load the Request Configuration Registers (ROCR and
R1CR) for both Request Channels (RCHNO and RCHN1) to
establish channel specific operating parameters; such as
Source Address and Frame Control Transparency.

2.7 Set the Request Expected Frame Status Registers

Load the Request Expected Frame Status Registers
(ROEFSR and R1EFSR) for both Request Channels
(RCHNO and RCHN?1) to set up the expected status for
frame confirmation services. A value of 0x00 in these regis-
ters means that any frame status is acceptable.

2.8 Set the Indicate Configuration Register

Load the Indicate Configuration Register (ICR) to establish
copy control parameters for each Indicate Channel. A typi-
cal register value is 0x49; which instructs the BSI device to
copy frames addressed for the owned MAC address or to
an externally matched group address.

2.9 Set the Indicate Mode Register

Load the Indicate Mode Register (IMR) to set the frame
sorting mode, skip option and the desired Indicate break-
points.

Indicate breakpoints are instances that generate interrupts.
You may configure the BSI device to interrupt at the end of
each service opportunity, at the end of a burst (i.e., channel
change) or after a user defined number of frames have
been received. Prudent use of Indicate breakpoints can sig-
nificantly reduce interrupt processing overhead by reducing
the number of interrupts generated by the BSI device.

2.10 Set the Indicate Threshold Register

The Indicate Threshold Register (ITR) specifies how many
frames must be received before a threshold breakpoint is
realized. The value in this register is only used when the
appropriate bits are set in the IMR.

Loading the ITR with 0x00 specifies a value of 256. This
value is loaded into an internal working register each time
the state of any Indicate Channels change.

2.11 Set the Indicate Header Length Register

If the Header/Info frame sorting mode is specified, one
must load the Indicate Header Length Register (IHLR) with
the length (in units of four byte words) of the header portion
of the frame. The FC field occupies an entire word. For ex-
ample, to separate an 8 octet header when using long, six-
octet MAC addresses, one would load a value of 6 (FC = 1,
DA/SA = 3, header = 2) into this register.

2.12 Load the Limit RAM

During normal operation of the BSI device, the CNF and
IDUD queues must be given status space. This may be
done as part of the initialization procedure. For information
about choosing initial Limit RAM values see Section 7 on
Queue Manipulation.

Before loading a Limit RAM Register, first read the Service
Attention Register (SAR) to verify that the LMOP bit is set
(signifying that the previous Limit RAM operation has com-
pleted). If this bit is not set wait for the previous operation to
finish.

Next load the Limit Address Register (LAR). The top four
bits of the LAR define the target Limit RAM Register, the
LMRW bit specifies what the next Limit RAM operation will
be (LMRW = 0 means a write to the Limit RAM) and the
MSBD bit contains the most-significant data bit of the 9-bit
Limit value.

Next load the Limit Data Register (LDR) with the lower 8 bits
of the limit value.

Finally, write a 0 into the LMOP bit in the Service Attention
Register (SAR). The SAR is a conditional write register,
making it necessary to read it immediately before writing to
it. Clearing the LMOP bit causes the BSI device to perform
the actual Limit RAM operation. The BSI device signals the
completion of the operation by setting the LMOP bit in the
SAR.

Repeat the above steps for all desired limits.

2.13 Clear the Attention Registers

Clear the Request Attention (RAR) and Indicate Attention
Registers (IAR) by first reading the register, to load the
Compare Register (CMP), and then writing a 0x00 value to
the register. Both of these registers are automatically initial-
ized to 0 upon BSI device reset.

The No Space Attention Register (NSAR) should be initial-
ized to reflect the state of space of all the queues. If space
was given to all of the CNF and PSP queues, read and write
0x00 into NSAR.

2.14 Put the BSI Device in Run Mode

Initialization of the BSI device is now complete. The device
may be made fully operational by reading the State Atten-
tion Register (STAR) and immediately writing 0x00 to it. This
will clear the stop bits for the Indicate, Request and Status/
Space machines; putting them in “Run Mode”.

The BSI device should immediately begin fetching PSP De-
scriptors for the Indicate Channels to use for frame recep-
tion. At this point a write to one of the REQ queue Limit
RAM Registers would cause the BSI device to begin fetch-
ing REQ Queue Descriptors for frame transmission.

3.0 SERVICING INTERRUPTS

The BSI device provides facilities for selecting which events
will generate an interrupt and a mechanism for determining
which events are present after an interrupt has been raised.

3.1 Event Registers

The BSI device supports a two-level hierarchy of Event Reg-
isters; where the presence of attention signals in lower level
attention registers is recorded in a single upper level atten-
tion register. Attention signals may be disabled at either of
the two levels. Events may only be cleared by resetting the
attention bits in the lower level registers.

The upper level attention register is called the Master Atten-
tion Register (MAR). It contains five attention bits that indi-
cate the presence or absence of any events recorded in
each of the five corresponding attention lower level regis-
ters. Those registers are listed in Table II.

TABLE Il. Attention Registers

Master Attention Register (MAR)
State Attention Register (STAR)

No Space Attention Register (NSAR)
Service Attention Register (SAR)
Request Attention Register (RAR)
Indicate Attention Register (IAR)

The host may control which attention bits will generate an
interrupt by configuring the Notify Registers (see Table Ill).

TABLE lll. Notify Registers

Master Notify Register (MNR)
State Notify Register (STNR)

No Space Notify Register (NSNR)
Service Notify Register (SNR)
Request Notify Register (RNR)
Indicate Notify Register (INR)

For each Attention Register a corresponding Notify Register
exists. Each Attention Register is ANDed with its corre-
sponding Notify Register and then all of the resulting signals
are ORed together and presented to the next level (see
Figure 1).

For example, to disable all interrupts caused by service
events: clear the Service Attention Register Notify (SVAN)
bit in the Master Notify Register (MNR). To disable only in-
terrupts caused by Pointer RAM Operations: set the SVAN
bit in the MNR and clear the PTOPN bit in the Service Notify
Register (SNR).

Interrupt Signal

Master Notify

Master Attention

Service Notify

Service Attention

No Space Notify

No Space Attention

Indicate Notify

Indicate Attention

Request Notify

Request Attention

State Notify

State Attention

TL/F/11088-1

FIGURE 1. BSI Device Event/Notify Registers

When checking attention registers for the cause of an inter-
rupt, one should perform a bit-wise AND operation between
the attention and notify registers and examine the result.
Just checking the attention registers may be misleading. For
example, to disable an Indicate Channel one may wish to
leave its PSP queue empty and mask off the “Low Data
Space” attention bit for that channel; via the Indicate Notify
Register (INR). Under these circumstances the IAR, by it-
self, may contain misleading information.

3.2 Example Procedure

A typical procedure for servicing BSI device interrupts is as

follows:

e disable host interrupts

® determine the event that triggered the interrupt by check-
ing the Master Attention Register and then querying the
appropriate lower level attention register

® process the event (or post the event to a service queue)

® clear the attention bit (or mask the attention bit)

® enable host interrupts

4.0 MEMORY MANAGEMENT SCHEMES

The BSI device may be configured to use memory shared
between itself and the host or it may be configured to use
the host’s memory. In addition, it can be made to operate in
a vitural memory environment.

Although the BSI device manages space for incoming data
(from channel specific Pool Space (PSP) queues); the host
must implement a memory management mechanism to re-
plenish the PSP queues and manage the space needed to
hold output data (ODU) and ODU Descriptors (ODUDs).

4.1 Memory Requirements

Up to ten distinct queues may be established; two for each
channel. Depending upon the value of the Small Queue
(SMLQ) bit in the Mode Register (MR), these queues will
each consume 1k or 4k of memory; collectively occupying
either 10k or 40k of memory.

A 4 byte word must be allocated as the BSI device Mailbox.
This word is only used when accessing the BSI device
Pointer RAM Registers.

Space must also be allocated for buffering frames. Any buff-
ers drawn from this space must be no larger than 4 kbytes
and may not cross a 4 kbyte boundary. At the current time
the Count (CNT) field in the PSP Descriptor is ignored by the
BSI device. Pool space is intended to be allocated in
4 kbyte pages.

Space must be allocated for buffering ODU Descriptors
(ODUDs). As with frame data, buffers drawn from this space
must be no larger than 4 kbytes and may not cross a 4 kbyte
boundary.

4.2 Dedicated Buffer Pools

To simplify memory management, buffer pages may be ded-

icated to individual PSP queues. When using dedicated buff-

ers, the Indicate buffer management task becomes a matter

of:

® detecting page boundary crosses; as an indication that
the BSI device has finished filling the previous page

® obtaining confirmation that the host has finished pro-
cessing all frames in the previous page

e attaching the previous page to a PSP Descriptor of the
same queue

e incrementing the PSP Limit Register for that queue

The management of space for ODUs (outgoing frame data)
and ODU Descriptors (ODUDs) must be done by the host.

A fully allocated 1k PSP queue consumes 512 kbytes of
buffer space. A fully allocated 4k PSP queue uses 2 MB of
buffer space.

4.3 Shared Buffer Pool

To maximize memory utilization, multiple Indicate Channels
may share a single pool of data buffers. This does not mean
that Indicate Channels can be made to share a Pool Space
(PSP) queue, but rather that data buffers attached to the
various PSP queues are allocated and freed from a global
buffer pool on an “as needed” basis. When using a shared
buffer pool, the Indicate buffer management becomes the
following:

® Detecting page boundary crosses; to determine when
the BSI device is finished filling the previous page
Obtaining confirmation that the host has finished pro-
cessing all frames in that page

Returning that page to a shared buffer pool or, upon de-
termining that the page has been dedicated to a given
channel, reattach the page to the channel’s PSP queue
Responding to interrupts caused by a “Low Space” con-
dition by allocating buffer space to one or more PSP De-
scriptors and incrementing the PSP Limit Register for
that queue

Again, the management of space for ODUs (outgoing frame
data) and ODU Descriptors (ODUDs) must be done by the
host.

One danger with sharing pool space is that a heavily used
low priority channel may starve a high priority channel by
consuming all of the buffer space. This is contrary to the
idea of priority. It is recommended that some mechanism be
implemented for reserving memory for a given channel and
that at least four buffer pages be dedicated to Indicate
Channel 0 (ICHNO). This is to ensure that FDDI-SMT frames
will not be dropped when there is a greal deal of activity on
the other Indicate Channels.

5.0 SENDING FRAMES

This section describes how to use the BSI device to queue a
frame for transmission on an FDDI ring. It is assumed that
the BSI device has been initialized and that the Request
Configuration Registers (ROCR and R1CR) and the Request
Expected Frame Status Registers (ROEFSR and R1EFSR)
have been previously loaded with the desired values.

The mechanism for sending a frame is as follows:
e Obtain space for data structures

e [oad the ODU(s)

® Process previous CNFs (optional)

® Build the ODUD(s)

® Build the REQ

e Signal the BSI device

Subsection 5.7 describes some special considerations for
sending multiple frames in a single request object.

5.1 Obtain Space for Data Structures

BSI device addressable memory must be obtained to:
® hold the frame data

e hold the ODU Descriptor(s)

* hold the Request Descriptor

It is the responsibility of the host software to manage space
for frame data and the ODUDs. Section 4, Memory Manage-
ment Schemes, describes two simple memory allocation
methods. If multiple ODUDs are required, these must be
contiguously allocated in the form of an array of ODUDs.

Space for the Request Descriptor must be located within
the area designated as the Request queue (see Section
2.3). It must also be allocated in a serially contiguous fash-
ion; immediately following the previously allocated descrip-
tor. All BSI device queue pointers “wrap” to the first loca-
tion upon reaching the end of the queue area.

The frame data may need to be divided between multiple
ODUs. Each ODU may start anywhere within a 4k page, but
it must end at or before the next 4k boundary. Multiple
ODUs must be generated for frames over 4k in length.

For each ODU, space must be allocated for a correspond-
ing ODU Descriptor (ODUD). System configurations in
which the BSI device directly addresses host memory, may
be able to contrive ODU Descriptors (ODUDs) that refer di-
rectly to host specific memory buffers.

5.2 Process Confirmation Status Message Descriptors
(CNF)—Optional

When the BSI device processes a request it places confir-
mation messages in the CNF queue for that Request Chan-
nel. By examining these messages, the host may determine
when the BSI device has finished using ODU, ODUD and
REQ queue space.

If the BSI device has been instructed to generate interrupts
after writing confirmation messages, then an autonomous
interrupt handler should be available to asynchronously pro-
cess CNFs. Conversely, if these interrupts have been dis-
abled, then CNFs should be processed when attempting to
send a frame.

5.3 Copy Frame Data to Buffer

If the ODU buffers are distinct from the host specific memo-
ry buffers, copy the frame data from the host buffer(s) to the
ODU buffer(s).

5.4 Build the ODU Descriptor(s)

An ODU Descriptor (ODUD) must be written for each ODU.
The address and size of the ODU must be recorded in the
ODUD.LOC and ODUD.CNT fields, respectively.

When only a single ODUD is needed both the First and Last
bits should be set (only). With multiple ODUDs the first
ODUD should has the just First bit set (first) and the last
ODUD should have the just Last bit set (last). Any interven-
ing ODUDs should have both bits cleared (middle).

5.5 Build the Request Descriptor

A Request Descriptor must be constructed which refer-
ences the ODUD(s) that were just built.

The User Identification (UID) field may be assigned a host
defined value. This UID value will reemerge in one or more
CNFs and may be useful when processing a CNF (i.e., de-
allocating ODUD and buffer space). The SIZE field should

be set to a value of 1; since, in this case, only a single frame
will be transmitted.

The Confirmation Class (CNFCLS) field defines the level of
request confirmation that the BSI device will use and should
be set as needed. To turn off request confirmation put a hex
value of 0x4 in the CNFCLS field; although, the BSI device
will always generate CNF Descriptors whenever an excep-
tion is encountered. Please note that request processing will
halt for a given channel should that channel’s CNF queue
become full. Thus, a provision for processing CNF Descrip-
tors must be included in all applications; even those applica-
tions that do not wish to receive confirmation for most re-
quests.

The Request Class (RQCLS) field defines the class of the
request (i.e., asynchronous, synchronous, restricted token,
etc.). The FC field should be loaded with an appropriate
FDDI Frame Control value.

When sending a single frame, both bits in the First and Last
bits should be set; indicating that this is the only REQ De-
scriptor in this request object. Finally, the address of the first
ODUD should be put into the LOC field.

5.6 Signal the BSI Device about the Request

The BSI device may be caused to examine either of its REQ
queues by writing to the corresponding Limit RAM Register
with a value that raises the limit to reference the new REQ
Descriptor.

5.7 Sending Multiple Frames in a Single Request Object

The BSI device is capable of transmitting multiple frames in
a single service opportunity. This feature becomes impor-
tant on a heavily loaded FDDI ring, with relatively infrequent
service opportunities. The BSI device can be caused to pro-
cess multiple frames by:

® building an ODUD list that contains multiple frames

® building a request object that contains multiple REQ De-
scriptors or

® a combination of the above two methods.

The first method is extremely simple. Allocate and fill the
ODU buffers for all of the frames. Build multiple ODU De-
scriptor objects (demarcated by the First and Last bits in
each ODUD) and concatenate the ODUDs together into one
array of descriptors. Build the REQ Descriptor, as before,
except load the frame count into the SIZE field.

The second method consists of a creating a REQ Descriptor
marked as being “first”, zero or more REQ Descriptors
marked as “middle” descriptors and an ending REQ De-
scriptor marked as being “last”. The Limit RAM Register, for
the given request queue, must be set beyond the last REQ
Descriptor. The parameter fields in first REQ Descriptor are
used for the entire request object.

5.8 Batching Single Frame Requests

On a heavily loaded FDDI ring service opportunities occur
less frequently than on an FDDI ring with only light traffic.
On a loaded network it makes sense to send multiple
frames per service opportunity. However, many network
communication systems send only a single frame at a time.
This subsection tells how one may use the capabilities of
the BSI device to batch single frame requests into a larger
request object.

The BSI device will only attempt to send a single request
object in any given service opportunity. A request object is
defined here to consist of one or more REQ Descriptors
delimited using the First and Last bits found inside each

descriptor. The BSI device interface software needs to build
different types of REQ Descriptors when queuing a frame
such that:

* A single frame request object is generated when the
queue is empty
® The resulting request object is limited to a maximum size

e Optionally the resulting request object is closed whenev-
er a service opportunity is detected.

The following pseudo-code may be used to satisfy the
above requirements.

Transmit Logic

Req__Size = Req__Size + 1

if Queued_Cnt = 0

mark as REQ.ONLY

Open_Req = FALSE

Queued__Cnt = 1

REQ__Size = 0

else

if Open_Req = FALSE
mark as REQ.FIRST
Open_Req = TRUE
Queued__Cnt = Queued__Cnt + 1
Req__Size = 1

else
if Req_Size > Max__Req
mark as REQ.LAST
Open_Req = FALSE
Req__Size = 0
else
mark as REQ.MIDDLE
endif

endif

endif

| rdrmrorerer=
]
)
'
)

Interrupt Service Routine Logic (Optional)

if Open_Req = TRUE

generate empty REQ.LAST

Open_Req = FALSE

Req__Size = 0

endif
Queue__Cnt is the number of queued request objects on
the request queue and is set to 0 queue initialization time.
Req_Size is the number of frames in the currently open
request object and is set to 0 at queue initialization time.
Open__Req is a boolean variable indicating the presence or
absence of an open request object and is set to FALSE at
queue initialization time. Max_Req is a maximum number
of frames per request object defined by the host software.

Please note that the BSI device will not hold the token un-
necessarily when processing an open request object. It will
only hold the token when explicitly instructed to do so, via
the RQCLS field in the Request Descriptor (REQ).

6.0 RECEIVING FRAMES

This section describes how to process incoming frames, us-
ing the BSI device’s data structures. It is assumed that the
Indicate Mode Register (IMR), Indicate Threshold Register
(ITR), Indicate Configuration Register (ICR) and Indicate
Header Length Register (IHLR) have been previously con-
figured. It is also assumed that the host has already select-
ed a particular Indicate Channel for processing; perhaps by
examining the attention register hierarchy.

The host must maintain a minimum of two variables depict-
ing the state of the Indicate machine: current IDUD queue
pointer and the current buffer page address. To reduce ac-
cesses to the BS| device Control Bus, the host software
may wish to also keep its own copy of the channel’s Limit
RAM Register.

For a visual description of the Indicate machine, see Figures
2, 3, and 4.

Memory Space
Allocated for IDUs

A c

TL/F/11088-2

FIGURE 2. BSI Device Indicate Memory Structure

Memory Space
Allocated for IDUs

A c
| PQPI >
1st-Frame
| PQLI >
B D
| 1QPI
TL/F/11088-3
FIGURE 3. BSI Device Indicate Memory Structure
PSP Memory Space
QUEUE Allocated for IDUs
rmmma
H A ¢
| PQPI v PSP A A » >
]
: PSPB_I—>8 1 st-Frame
PSP C J-»C
[P F—» rsp |0 >

2nd Frame

2nd:Frame

| 1P|

NPI

TL/F/11088-4
FIGURE 4. BSI Device Indicate Memory Structure

Figures 2 through 4 describe the operation of an Indicate Channel when receiving two frames.
Key for Figures 2-4
PQPI —PSP Queue Pointer 1QLI —IDUD Queue Limit .0 —Only

PQLI —PSP Queue Limit IPl —IDU Pointer .F —First
IQPI —IDUD Queue Pointer NPl —Next PSP Pointer .L —Last

6.1 Disable Interrupts for the Indicate Channel

Host manipulation of BSI device queues must be atomic;
meaning, in this context, that only a single host agent (pro-
cess, task, thread, etc.) may actively dequeue frames from a
given Indicate Channel at a given time. In support of atomic-
ity, four different granularities of interrupt masking may be
achieved: host level, BSI device level, Indicate service level
or Indicate Channel level. To mask interrupts at the Indicate
Channel level, modify the Indicate Notify Register (INR) to
clear the breakpoint and exception bits for the target chan-
nel.

6.2 Collect an Indicate Object

Indicate objects may be represented by one or more IDU
Descriptors (IDUDs) on the given channel’s IDUD queue.
The host must maintain a queue pointer for the next queue
position. When collecting an Indicate object the host should
scan forward from this position until an entire Indicate object
has been found. If a null descriptor is found in the first posi-
tion, there are no Indicate objects on the queue. The begin-
ning of an Indicate object is marked by an IDUD with the
“First” bit set and, conversely, the end is marked by an
IDUD with the “Last” bit set. An IDUD with both of these
bits set (“Only”) completely describes an incoming frame.
Note that it is the responsibility of the host to nullify descrip-
tors after processing the frame.

6.3 Determine Acceptability of the Frame

There are three fields defined in the IDU Descriptor (IDUD)
that are of use in determining the acceptability of a given
frame. These fields are valid in the last IDUD in the Indicate
object.

The Frame Status field may be examined to determine valid-
ity of the data length and FDDI FCS fields; as well as the
values of the E, A, and C Indicators in the FDDI Frame
Status field.

The Frame Attribute field can be queried to determine how
the frame was recognized (MFLAG, AFLAG) and what the
terminating condition was.

The Indicate Status field contains encoded status informa-
tion (See Table IV).

TABLE IV. Indicate Status Codes

Code Status

0x0 Last IDUD of Queue, Page Cross
Ox1 Page Cross

0x2 Header End

0x3 Page Cross and Header End

Ox4 Intermediate Frame

0x5 Burst Boundary

0x6 Threshold

0x7 Service Opportunity

0x8 Insufficient Data Space

0x9 Insufficient Header Space

Oxa Successful Header Copy, No Info Copy
Oxb No Info Space

Ooxc FIFO Overrun

Oxd Bad Frame

Oxe Parity Error

Oxf Internal Error

6.4 Process the Frame Data

The Location (IDUD.LOC) and Byte Count (IDUD.CNT)
fields in each IDUD describe the address and length of each
Indicate Data Unit (IDU). There may be multiple IDUDs in a
given Indicate object. The frame data referenced by these
IDUDs must be logically concatenated to construct a single
frame. The method of presenting frame data to upper level
software is highly host dependent.

6.5 Reclaim Data Buffer Space

A 4 kbyte data page is available for reuse when the BSI
device has filled it with IDUs and the host has finished pro-
cessing all the IDUs on the page. The BSI device is guaran-
teed to consume space on a channel’s PSP queue in a
serial manner; thus it is possible to tell when the BSI device
has finished using a page by detecting when the device
starts filling a new page. When the host is also done pro-
cessing all of the IDUs on the given page that data space
may be reused. See Section 4 on Memory Management
Schemes for ideas on managing buffer space for the BSI
device.

6.6 Update IDUD Queue Pointers

After extracting all of the needed data from an Indicate
Channel, that channel’s IDUD queue may be updated to
allow reuse of queue space. Three operations should be
performed:

e Mark the processed IDU Descriptors (IDUDs) as null de-
scriptors. A safe method is overlaying the eight byte
queue slot with binary zeros.

Update the host resident current IDUD queue pointer to
point beyond the processed IDUDs.

Update the Limit RAM Register for the given channel. If
this value is maintained by the host, the value may be
incremented and stored in the channel’s Limit RAM Reg-
ister; otherwise it is necessary to read the register first.
The Limit RAM Operation (LMOP) is described above in
Section 2.12.

6.7 Enable Interrupts for the Indicate Channel

Now that the given channel’s queues have been updated,
interrupts may be enabled again. If interrupts were masked
at the Indicate Channel level, the Indicate Notify Register
(INR) should be modified to set the breakpoint and excep-
tion bits for the target channel.

7.0 QUEUE MANIPULATION

The BSI device has two basic classes of queues: those that
it uses to consume descriptors (REQ, PSP) and those that it
uses to produce descriptors (IDUD, CNF). Conversely, the
host software must consume descriptors (IDUD, CNF) and
produce descriptors (REQ, PSP) on the opposite queues.

For Request Channel operation the BSI device reads from
the channel’s Request Descriptor (REQ) queue and writes
to the channel’s Confirmation Message (CNF) queue. For
Indicate Channel operation the BSI device reads from the
channel’s Pool Space (PSP) queue and writes to the chan-
nel’s Indicate Data Unit Descriptor (IDUD) queue.

It is necessary to understand how the BSI device interacts
with each type of queue so that one may design host soft-
ware that interacts with the queues in a complementary
fashion. When writing software that interfaces with the BSI
device, one minimally needs to understand the following:

® How the queues are organized

* How to initialize each type of queue

® How to handle queue “wraps”

e How to detect boundary conditions (empty queue, full
queue)

7.1 Queue Organization

A BSI device queue consists of a contiguous block of BSI
device addressable memory logically sub-divided into eight
byte queue slots. Queues sized at 1 kbytes must be aligned
on 1 kbyte boundaries, while queues sized at 4 kbytes must
be aligned on 4 kbytes boundaries.

The BSI device embodies two indexing variables for each

queue: a pointer to the next available queue position to

read or write (stored in BSI device Pointer RAM) and a

queue limit (stored in BSI device Limit RAM). The BSI de-

vice increments the pointer variable after reading from a

queue or writing to a queue. The host software may control

channel operation by manipulating the value of the limit vari-
able. With this in mind there are a few simple rules govern-
ing queue manipulation by the BSI device.

1. Pointer and limit variables reference a given queue slot by
pointing to the first word of the descriptor.

. The pointer variable always points to the next available
position on the queue.

. The BSI device always increments the pointer variable
after a read or write operation.

. The BSI device halts channel processing when the point-
er and limit variables are logically equal.

. The BSI device tests for pointer/limit equality during
queue read operations (REQ, PSP) and after queue write
operations (IDUD, CNF). When detecting pointer/limit
equality during a read operation, the current read opera-
tion and no further read operations are made.

6. Read operations are triggered by Limit RAM updates.

There are also some special considerations caused by the

pipelined processing of CNF, IDUD and PSP Descriptors.

® The BSI device may generate two additional CNF/IDUD
Descriptors after detecting pointer/limit equality. It is
necessary to set the limit value such that it references
the penultimate available queue slot.

N

w

N

[$2]

hardware/software hardware/software

REQ CNF

— null null
null null
null null
null null

H

null null
null null
null null
null null

e Each active Indicate Channel should have at least two
buffers placed on its PSP queue. With only one buffer,
the BSI device will immediately raise the Low Data Space
attention bit for that channel.

The host software must maintain its own pointer and limit
variables for each queue. For REQ and PSP queues, the
limit variable should reference the next available queue slot
for writing a new descriptor; while the pointer variable
should correspond to the pointer variable on BSI device. For
CNF and IDUD queues, the software pointer should refer-
ence the next queue slot to be used when reading a new
descriptor. The software limit variable must always reflect
the limit variable on the BSI device. The software pointer
variable must be maintained independently from the BSI de-
vice queue pointer.

7.2 Queue Initialization

To initialize queues that the BSI device reads (REQ, PSP)
simply set the pointer (BSI device and software versions)
and software limit to reference the first queue slot. Do not
update the queue’s Limit RAM Register until actually queu-
ing the queue’s first descriptor.

To initialize queues that the BSI device writes (IDUD, CNF)
one must set the limit variable to reference the penultimate
available queue slot (required due to pipelining). For exam-
ple, to make all but one of the queue slots available one
could set the pointer variable to reference the first queue
slot and the limit variable to reference the “next to the next
to the last” queue slot. Also, one should clear the queue
area by overwriting it with binary zeroes; effectively marking
all queue slots as “null descriptors”.

See Figure 5 for a pictorial description of initialized queues.

7.3 Queue “Wraps”

Upon reaching the end of the queue memory block, queue
indexing variables “wrap” to the beginning of the queue
memory block. The BSI device automatically performs
queue “wraps” for pointer variables; while the host software
must perform queue “wraps” for limit variables and soft-
ware queue pointers. The method for calculating the next

| Limit I

software

| Limit |

hardware/software

hardware/software hardware/software
PSP IDUD
— null null
null null
null null
null null
[
[
null null
null null
null null
null null
| Limit I | Limit I
software hardware/software

TL/F/11088-5

FIGURE 5. Suggested Queue Initialization

BSI Device Software Design Guide

AN-730

queue position is dependent upon the form of data repre-
sentation that the host software uses (i.e., BSI device ad-
dressable pointers, queue byte offset, ...). For example,
when representing the limit variable as a queue offset one
could use simple modulo arithmetic. When the limit variable
is maintained as a pointer into BSI device addressable
memory the host software might use the following method
to increment the variable (specified with C code using
4 kbyte queues).

new = ((old+ 8)& Oxfff)+ (old & OxOffff000)

7.4 Detecting Boundary Conditions

The BSI device detects both queue empty (when reading)
and queue full conditions (when writing) by testing for point-
er/limit variable equality. As noted above, this test is done
during read operations and after write operations.

When reading, a queue empty condition cannot be deter-
mined by comparing the pointer and limit variables. Instead
the host software may recognize the presence of a “null
descriptor” on the queue. To ensure that there will always
be at least one “null descriptor” to demarcate the queue
empty condition; the host software must never set the limit
variable to indicate that all of the queue slots are available
and must mark each available queue slot as a “null descrip-
tion” (binary zeroes are recommended).

The host software can detect a queue full condition using
the same basic mechanism as the BSI device. When writing,
a queue may be considered full when the software limit
pointer references the queue slot immediately “before” the
slot referenced by the software pointer variable. Queue
“wraps” must be taken into account in the queue variable
arithmetic.

See Figure 6 for a graphical representation of the various
queue boundary conditions.

REQ/PSP REQ/PSP
Queue Queue
software software
Pointer Pointer
L.Req 0.Req
_ 0.Req O.Req
4 —>
—> null R null
null " 0.Req
null R F.Req
null " L.Req
R null O.Req
" F.Req O.Req
| Limit I | Limit I
BSI device sees Host sees
Empty Queue Full Queue
| Pointer I | Pointer I
hardware hardware

CNF/IDUD CNF /IDUD
Queue Queue
software software
Pointer Pointer

null 0.ldud

—>
null 0.ldud
EEEE—— null 0.ldud

>
null null

>
null F.ldud
null M.Idud
null L.ldud
| null 0.ldud

| Limit I | Limit I
Host sees BSI device sees
Empty Queue Full Queue
| Pointer I | Pointer I
hardware hardware

TL/F/11088-6

FIGURE 6. Queue Boundary Conditions

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and whose
failure to perform, when properly used in accordance

2. A critical component is any component of a life
support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or

2900 Semiconductor Drive Sumitomo Chemical

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.
National National National National National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.

Livry-Gargan-Str. 10

P.O. Box 58090 D-82256 Furstenfeldbruck Engineering Center

Santa Clara, CA 95052-8090 Germany Bldg. 7F
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku
TWX: (910) 339-9240 Telex: 527649 Chiba-City,

Fax: (81-41) 35-1 Ciba Prefecture 261
Tel: (043) 299-2300

Fax: (043) 299-2500

13th Floor, Straight Block, Rue Deputado Lacorda Franco
Ocean Centre, 5 Canton Rd. 120-3A

Tsimshatsui, Kowloon
Hong Kong

Tel: (852) 2737-1600
Fax: (852) 2736-9960

Building 16
Business Park Drive
Sao Paulo-SP

Brazil 05418-000

Tel: (55-11) 212-5066

Telex: 391-1131931 NSBR BR
Fax: (55-11) 212-1181

Monash Business Park
Nottinghill, Melbourne

Victoria 3168 Australia
Tel: (3) 558-9999

Fax: (3) 558-9998

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent Tl deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any Tl patent right, copyright, mask work right,
or other Tl intellectual property right relating to any combination, machine, or process in which Tl products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from Tl to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. Tl is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. Tl is not
responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of Tl products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in
such safety-critical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by Tl as military-grade or "enhanced plastic." Only products designated by Tl as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Tl products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are
designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications
Audio www.ti.com/audio Communications and Telecom www.ti.com/communications
Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers
Data Converters dataconverter.ti.com Consumer Electronics Www.ti.com/consumer-apps
DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy
DSP dsp.ti.com Industrial www.ti.com/industrial
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Security www.ti.com/security
Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Mobile Processors www.ti.com/omap
Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/communications
http://amplifier.ti.com
http://www.ti.com/computers
http://dataconverter.ti.com
http://www.ti.com/consumer-apps
http://www.dlp.com
http://www.ti.com/energy
http://dsp.ti.com
http://www.ti.com/industrial
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/security
http://logic.ti.com
http://www.ti.com/space-avionics-defense
http://power.ti.com
http://www.ti.com/automotive
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://www.ti.com/wirelessconnectivity
http://e2e.ti.com

