AN-1438 A Simple Method to Reduce DC Power Consumption in CDMA RF Power Amplifiers Through the LMV225 and an Efficient Switcher

ABSTRACT
This application report presents a simple power tracking technique for efficiency enhancement in CDMA RF power amplifiers. This technique involves the use of a linear-in-dB RF power detector and a DC-DC converter switch. This enhancement scheme switches the DC supply voltage, V_{CC}, of an RF power amplifier into two different levels through a DC-DC converter. Texas Instruments RF power detector LMV225 determines the supply voltage of the RF power amplifier. An off-the-shelf CDMA2000 RF power amplifier can be used in this technique to improve the energy efficiency of the mobile phone.

Contents
1 Introduction ... 2
2 RF Power Amplifier .. 2
3 Power Added Efficiency .. 3
4 Adjacent Channel Power Rejection 4
5 Power Detector .. 4
6 Switcher or DC/DC Converter ... 4
7 Design Considerations ... 5
8 Application Circuit ... 6
9 Power Saving at 10 dBm ... 6
10 Conclusion ... 6

List of Figures
1 CDMA RF Power Amplifier ... 2
2 Linearity of CDMA RF Power Amplifier 2
3 RF Output Power Distribution ... 3
4 LMV225 Detected Voltage vs. P_{OUT} 3
5 Efficiency Enhancement Circuit Diagram 5
6 P_{OUT} and P_{DC} vs. P_{IN} .. 6

List of Tables
1 Adjacent Channel Power Rejection .. 4
1 Introduction

The need for higher wireless data rates is driving the migration of 2G to 3G mobile communication systems. The higher data rates in these systems impose additional performance constraints on the radio design of mobile phones.

In order to achieve the highest bandwidth efficiency of the allocated spectrum, these 3rd generation mobile communication systems use spectrum efficient linear modulation schemes, such as Quadrature Phase Shift Keying, 8-Phase Shift Keying and Quadrature Amplitude Modulation.

In IS-95 and CDMA2000 systems, the RF power amplifier typically operates at 6 dB to 40 dB back-off from the peak power or 1 dB compression point. (This means that it operates from 6 dB to 40 dB below the 1 dB compression point.) Consequently, the RF power amplifier operates with very low efficiency most of the time and is one of the most power consuming components in a handset. Studies show that the RF power amplifier consumes as much as 20% to 40% of the battery energy in regular phone operation.

Now, we can see that it is supremely important to reduce the power consumption of RF power amplifiers in order to achieve a long battery life or ‘talk time’ in a mobile phone.

2 RF Power Amplifier

An RF power amplifier is the centerpiece of this application. An off-the-shelf CDMA2000 RF power amplifier, such as the SKY77152, is used in the evaluation. It can have more than 40% power added efficiency near the 1 dB compression point as specified in the datasheet.

In a CDMA RF power amplifier there are usually two supply voltage pins, V\text{CC} and V\text{BIAS}, as shown in Figure 1. There is also one reference voltage pin, which is usually called V\text{REF}. The V\text{REF} has to be at 2.85V in all conditions. The power amplifier can be turned off by setting V\text{REF} equal to ground level. Since most of the CDMA RF power amplifiers have two operation modes, High Power Mode and Low Power Mode, a V\text{CONT} pin is used to set the operation mode of the power amplifier. When the RF output power is in the high level, the CDMA RF power amplifier needs to operate in High Power Mode to keep the right distortion performance. The CDMA RF power amplifier can be switched to Low Power Mode if the output signal level is relatively low. However, an undesired side effect is that the signal path phase shifts have too much difference between the two paths. This may cause problems in base-band processing and correction.

Figure 2 shows the typical P\text{OUT} vs. P\text{IN} performance of a CDMA RF power amplifier when the DC supply voltages, V\text{CC} and V\text{BIAS}, are lowered. It shows that output RF power can still be obtainable by reducing the DC supply voltage of the RF power amplifier.

![Figure 1. CDMA RF Power Amplifier](image1)

![Figure 2. Linearity of CDMA RF Power Amplifier](image2)
3 Power Added Efficiency

The DC-to-RF efficiency or Power Added Efficiency, PAE, is defined by

\[
PAE = \frac{P_{\text{OUT}} - P_{\text{IN}}}{P_{\text{DC}}} \cdot 100\%
\]

(1)

The DC power consumption is defined by

\[
P_{\text{DC}} = V_{\text{CC}} \cdot I_{\text{CC}}
\]

(2)

Although the peak DC-to-RF efficiency of the PA occurs at the peak output power level as specified by all RF power amplifier manufacturers, the RF power amplifier itself rarely operates at this peak power level. Nevertheless, the peak power added efficiency contributes significantly to minimizing power dissipation for heat constraints in the handset. On the other hand, the PAE of the RF power amplifier goes downhill when the output RF power is lower.

In battery powered cellular phones, the output RF power probability distribution, shown in Figure 3, should be considered to estimate the average efficiency of the mobile system.

As Figure 3 shows, most of the time the RF power amplifier in a handset is operating at \(P_{\text{OUT}} = +15 \text{ dBm} \) and below for an IS-95 handset. Therefore, it makes sense to improve the PAE of RF power amplifiers at small signal levels.

Equation 1 and Equation 2 reveal the idea that the DC power consumption \(P_{\text{DC}} \) can be reduced by lowering the supply voltage of the RF power amplifier.

It may sound very simple to improve the PAE of an RF power amplifier; however, there are a few major specifications that need to be considered while reducing the supply voltage of the RF power amplifier. These include the ACPR, the EVM and the switching time from one supply voltage level to another.
4 Adjacent Channel Power Rejection

The Adjacent Channel Power Rejection, known as ACPR, is defined as the ratio of the average power in a specific offset frequency to the average power in the transmitted frequency. Table 1 shows the performance requirements from the CDMA2000. Although ACPR is not officially required by the IS-95 or the IS-98 air interface standards as it is in the CDMA2000, it is still suggested that the handset RF designer verifies to see if the components meet the specifications of Table 1.

Table 1. Adjacent Channel Power Rejection

<table>
<thead>
<tr>
<th>Air Interface</th>
<th>Frequency</th>
<th>Channel Bandwidth</th>
<th>Offset Frequency @ ACPR1</th>
<th>Offset Frequency @ ACPR2</th>
<th>Measurement Resolution Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS-95</td>
<td>824–849 MHz</td>
<td>1.25 MHz</td>
<td>±885 KHz</td>
<td>±1.98 MHz</td>
<td>30 KHz</td>
</tr>
<tr>
<td>PCS</td>
<td>1850–1910 MHz</td>
<td>1.25 MHz</td>
<td>±1.25 MHz</td>
<td>±1.98 MHz</td>
<td>30 KHz</td>
</tr>
</tbody>
</table>

ACPR1 = –42 dBc and ACPR2 = –54 dBc

5 Power Detector

The RF power detector, which uses the RF output signal, generates a rectified DC voltage that determines the output voltage of a DC-DC converter or switcher.

In this application, Texas Instruments LMV225 is chosen as an example since it provides 40 dB linear-in-db detection range from 0 dBm down to –40 dBm.

RF power control in handsets is essential to ensure that the CDMA system operates smoothly. Since all users share the same radio frequency band, 1.25 MHz in IS-95, then each user appears to others as random noise. The power of an individual user must, therefore, be carefully controlled to prevent any one user from unnecessarily interfering with the others who share the same radio frequency band.

The LMV225, as used in the suggested application block diagram in Figure 5, provides two different functions. The first function is related to the output RF power control as mentioned previously. The second function is to determine the supply voltage of the RF power amplifier. The next section of this article is going to deal with the second function of the LMV225.

6 Switcher or DC/DC Converter

In general, a switcher used for this application has a Pulse Width Modulation (PWM) Mode and a Bypass Mode. The switcher normally operates in PWM mode to improve the efficiency of the handset. In PWM mode, the programmable output voltage is a function of \(V_{\text{CON}} \). Equation 3 shows the relationship between the programmable output (SW) and control voltage (\(V_{\text{CON}} \)) of LM3200.

\[
V_{\text{OUT}} = 3 \times V_{\text{CON}} \tag{3}
\]

Texas Instruments has switchers for RF Power Amplifiers that are perfect for this application. The LM3200 is capable of generating a dynamically variable output voltage between 0.8V and 3.6V with load currents up to 300 mA in PWM mode and 500 mA in Bypass Mode.
Design Considerations

After a brief discussion of each building block in this application, we are ready to move to an explanation of the design procedure.

Assume that we are requested to design simple efficiency enhancement circuitry for an IS-95 RF power amplifier. The maximum output RF power level is +28 dBm and the LMV225 is used as an RF power detector. The switcher’s Programmable Output Voltage equation would be Equation 3.

Figure 3 is the handset PA’s probability graph and will be used as the efficiency optimization guideline. This probability graph reveals that the CDMA RF power amplifier operates at +15 dBm output power and below most of the time. If we can reduce the DC power consumption of the CDMA RF power amplifier in this operating range, the handset will save significant battery energy and then talk time will be longer.

The simplest solution is to set the supply voltage, V_{CC}, of the CDMA RF power amplifier to be the lowest level possible when the output RF power is +15 dBm and below.

Figure 2 shows the CDMA RF power amplifier performance at two different supply voltages, $V_{CC} = 3.4V$ and $V_{CC} = 1.4V$. The 1 dB compression point at $V_{CC} = 3.4V$ is about +28 dBm and at $V_{CC} = 1.4V$ it is about +20 dBm. The graph includes plots of the 3rd order intermodulation distortions for both cases.

A typical CDMA RF power amplifier can pass the ACPR requirements for a small output power level all the way to a +28 dBm power level with $V_{CC} = 3.4V$ as specified in its datasheet. In the case of $V_{CC} = 3.4V$, the 3rd order intermodulation distortion level is 28 dBc below the fundamental, $C/3IM = – 28 dBc$, at $P_{OUT} = +28 dBm$. In the case of $V_{CC} = 1.4V$, the 3rd order intermodulation distortion is 30 dBc below the fundamental, $C/3IM = – 30 dBc$, at $P_{OUT} = +15 dBm$.

7 Design Considerations

After a brief discussion of each building block in this application, we are ready to move to an explanation of the design procedure.

Assume that we are requested to design simple efficiency enhancement circuitry for an IS-95 RF power amplifier. The maximum output RF power level is +28 dBm and the LMV225 is used as an RF power detector. The switcher’s Programmable Output Voltage equation would be Equation 3.

Figure 3 is the handset PA’s probability graph and will be used as the efficiency optimization guideline. This probability graph reveals that the CDMA RF power amplifier operates at +15 dBm output power and below most of the time. If we can reduce the DC power consumption of the CDMA RF power amplifier in this operating range, the handset will save significant battery energy and then talk time will be longer.

The simplest solution is to set the supply voltage, V_{CC}, of the CDMA RF power amplifier to be the lowest level possible when the output RF power is +15 dBm and below.

Figure 2 shows the CDMA RF power amplifier performance at two different supply voltages, $V_{CC} = 3.4V$ and $V_{CC} = 1.4V$. The 1 dB compression point at $V_{CC} = 3.4V$ is about +28 dBm and at $V_{CC} = 1.4V$ it is about +20 dBm. The graph includes plots of the 3rd order intermodulation distortions for both cases.

A typical CDMA RF power amplifier can pass the ACPR requirements for a small output power level all the way to a +28 dBm power level with $V_{CC} = 3.4V$ as specified in its datasheet. In the case of $V_{CC} = 3.4V$, the 3rd order intermodulation distortion level is 28 dBc below the fundamental, $C/3IM = – 28 dBc$, at $P_{OUT} = +28 dBm$. In the case of $V_{CC} = 1.4V$, the 3rd order intermodulation distortion is 30 dBc below the fundamental, $C/3IM = – 30 dBc$, at $P_{OUT} = +15 dBm$.

Figure 5. Efficiency Enhancement Circuit Diagram
Since ACPR is a function of intermodulation distortion, we can predict that the ACPR at $P_{OUT} = +15$ dBm with $V_{CC} = 1.4V$ should be as good as that at $P_{OUT} = +28$ dBm with $V_{CC} = 3.4V$. Based on this information and the statistics in Figure 3, we can reduce the use of the battery of the CDMA RF power amplifier by setting its $V_{CC} = 1.4$ for power levels from +15 dBm and below.

Figure 6 shows the DC power consumption of the supply voltage at $V_{CC} = 3.4V$ and $V_{CC} = 1.4V$ and it demonstrates the saving of battery energy. The operating point ‘A’ is $P_{OUT} = +15$ dBm when $V_{CC} = 3.4V$; its P_{DC} can be found to be +27 dBm from the secondary Y-axis. When the supply voltage is changed to $V_{CC} = 1.4V$, the operating point for $P_{OUT} = +15$ dBm is ‘AA’. Its P_{DC} is +22.5 dBm.

Therefore, the power saving from $V_{CC} = 3.4$ to $V_{CC} = 1.4V$ is $27 - 22.5 = 4.5$ dB. This 4.5 dB power saving corresponds to more than 50% saving in power.

![Figure 6. P_{OUT} and P_{DC} vs. P_{IN}](image)

8 Application Circuit

Figure 5 is the proposed application circuit for reducing the use of battery energy in a CDMA RF power amplifier. We set the control voltage of the switcher to be $V_{CON} = 0.467V$. This 0.467V can be obtained from a voltage divider in the supply voltage of $V_{DD} = 2.8V$. This 0.467V will generate a $V_{OUT} = 3 \times 0.467 = 1.4V$ according to Equation 3. This $V_{OUT} = 1.4V$ is then supplied to the V_{CC} of the RF power amplifier.

When $P_{OUT} = +15$ dBm and below, we need to set the switcher in PWM mode by setting BYPASS = Low.

The LMV225 is used to determine if the switcher needs to be in Bypass mode. We use $R1 = 1.8k\Omega$ as a tapping resistor to achieve 31 dB coupling between the output of the RF power amplifier and the input of the LMV225. Figure 4 is the LMV225 response vs. P_{OUT} of an RF power amplifier. At $P_{OUT} = +15$ dBm, the detected voltage $V_{DET} = 1.45V$.

In this application circuit, the base-band chip needs to check the value of V_{DET}. When V_{DET} is above 1.45V, the base-band chip will set the switcher in Bypass mode by sending a logic high signal to BYPASS.

9 Power Saving at 10 dBm

Here is another illustration of battery saving. The operating point at ‘B’ is $P_{OUT} = +10$ dBm with $V_{CC} = 3.4V$. At this supply voltage level, the P_{DC} for $P_{OUT} = +15$ dBm is about 26 dBm. If we lower the supply voltage to $V_{CC} = 1.4V$, the operating point becomes ‘B’ and the P_{DC} for $P_{OUT} = +15$ dBm is about 20 dBm. This shows a 6 dB saving in power or 75% less power in watts.

10 Conclusion

We have demonstrated the flexibility and benefits of using Texas Instruments LMV225 together with a switcher in reducing battery energy consumption in a CDMA RF power amplifier. By adding this simple circuitry, we can save 50% of DC power consumption of the CDMA RF power amplifier at the most common operating points of IS-95 and CDMA2000 handsets.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio	www.ti.com/audio
Amplifiers	amplifier.ti.com
Data Converters	dataconverter.ti.com
DLP® Products	www.dlp.com
DSP	dsp.ti.com
Clocks and Timers	www.ti.com/clocks
Interface	interface.ti.com
Logic	logic.ti.com
Power Mgmt	power.ti.com
Microcontrollers	microcontroller.ti.com
RFID	www.ti-rfid.com
OMAP Applications Processors	www.ti.com/omap
Wireless Connectivity	www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation	www.ti.com/automotive
Communications and Telecom	www.ti.com/communications
Computers and Peripherals	www.ti.com/computers
Consumer Electronics	www.ti.com/consumer-apps
Energy and Lighting	www.ti.com/energy
Industrial	www.ti.com/industrial
Medical	www.ti.com/medical
Security	www.ti.com/security
Space, Avionics and Defense	www.ti.com/space-avionics-defense
Video and Imaging	www.ti.com/video
TI E2E Community	e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated