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ABSTRACT

This application report discusses how a super matched bipolar transistor pair sets new standards for drift
and noise.
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1 Overview

Matched bipolar transistor pairs are a very powerful design tool, yet have received less and less attention
over the last few years. This is primarily due to the proliferation of high-performance monolithic circuits
that are replacing many designs previously implemented with discrete components. State-of-the-art
circuitry, however, is still the realm of the discrete component, especially because of recent improvements
in the components themselves.

It has become clear in the past few years that ultimate performance in monolithic transistor pairs was
being limited by statistical fluctuations in the material itself and in the processing environment. This led to
a matched transistor pair fabricated from many different individual transistors physically located in a
manner which tended to average out any residual process or material gradients. At the same time, the
large number of parallel devices would reduce random fluctuations by the square root of the number of
devices.

The LM194 is the end result. It is a monolithic bipolar matched transistor pair that offers an order-of-
magnitude improvement in matching properties and parasitic base and emitter resistance over
conventional transistor pairs. This was accomplished without compromising breakdown voltage or current
gain. The LM194 is specified at 40V minimum collector-to-emitter breakdown voltage and has a minimum
hFE of 500 at 1 mA collector current. Maximum offset voltage is 50 μV over a collector current range of 1
μA to 1 mA. Maximum hFE mismatch is 2%. Common mode rejection of offset voltage (dVOS/dVCB) is 124
dB minimum. An added benefit of paralleling many transistors is the resultant drop in overall rbb and ree,
which are 40Ω and 0.4Ω respectively. This makes the logarithmic conformity of emitter-base voltage to
collector current excellent even at higher current levels where other devices become non-theoretical. In
addition, broadband noise is extremely low, especially at higher operating currents.

The key to the success of the LM194 is the nearly one-to-one correlation between measured parameters
and those predicted by a theoretical bipolar transistor model. The relationship between emitter-base
voltage and collector current, for instance, is perfectly logarithmic over an extremely wide range of
collector currents, deviating in the pA range because of leakage currents and above several milliamperes
due to the finite 0.4Ω emitter resistance. This gives the LM194 a distinct advantage in non-linear designs
where true logarithmic behavior is essential to circuit accuracy. Of equal importance is the absolute nature
of the logarithmic constant, both between the two halves of the device and from unit to unit. The
relationship can be expressed as:

(1)

This relationship holds true both within a single transistor where IC1 and IC2 represent two different
operating currents and between the two halves of the LM194 where collector currents are unbalanced. Of
particular importance is the fact that the kT/q logarithmic constant is an absolute quantity dependent only
on Boltzman's constant (k), absolute temperature (T), and the charge on the electron (q). Since these
values are independent of processing, there is virtually no variation from unit to unit at a fixed temperature.
Lab measurements indicate that the logarithmic constant measured at a 10:1 collector current ratio does
not vary more than ±0.5% from its theoretical value. Applications such as logarithmic converters,
multipliers, thermometers, voltage references, and voltage-controlled amplifiers can take advantage of this
inherent accuracy to provide adjustment-free precision circuits.
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2 Approaching Theoretical Noise

In many low-level amplifier applications, the limiting factor on performance is noise. With bipolar
transistors, the theoretical value for emitter-base voltage noise is a function only of absolute temperature
and collector current.

(2)

This formula indicates that voltage noise can be reduced to low levels by simply raising collector current.
In fact, that is exactly what happens until collector current reaches a level where parasitic transistor noise
limits any further reduction. This “noise floor” is usually created by and modeled as an equivalent resistor
(rbb′) in series with the base of the transistor. Low parasitic base resistance is therefore an important factor
in ultra-low-noise applications where collector current is pushed to the limits. The 40Ω equivalent rbb′ of the
LM194 is considerably lower than that of other small-signal transistors. In addition, this device has no
excess noise at lower current levels and coincides almost exactly with the predicted values. A low-noise
design can be done on paper with a minimum of bench testing.

Another noise component in bipolar transistors is base current noise. For any finite source impedance,
current noise must be considered as a quadrature addition to voltage noise.

(3)
where rs is the source impedance (4)

In the LM194, base current noise is a well-defined function of collector current and can be expressed as:

(5)

To find the collector current which yields the minimum overall equivalent input noise with a given source
impedance, the total noise formula can be differentiated with respect to IC and set equal to zero for finding
a minimum.

(6)

(7)

For very low source impedances, the 40Ω rbb′ of the LM194 should be added to rs in this calculation. A plot
of noise figure versus collector current (see curve) shows that the formula does indeed predict the
optimum value. The curves are very shallow, however, and actual current can be varied by 3:1 without
losing more than 1 dB noise figure in most cases. This may be a worthwhile tradeoff if low bias current (IC
< Iopt) or wide bandwidth (IC > Iopt) is also important. Figure 1 is a plot of best obtainable noise figure versus
source impedance for the LM194 and a very low noise junction FET (PF5102). Collector current for the
LM194 is optimized for each source impedance and is also plotted on the graph using the right side scale.
The PF5102 is operated at a constant 1 mA. It is obvious that the bipolar device gives significantly better
noise figures for low source impedances and/or low frequencies. FETs are particularly poor at very low
frequencies (< 10 Hz) and offer advantages only for very high source impedances.
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Figure 1. Noise Figure vs Source Impedance

3 Reactive Sources

Calculations may also be done to derive an optimum collector current when the signal source is reactive.
In this case, upper and lower frequencies (fH and fL) must be specified. Also, optimum current is different
for an amplifier with a summing junction input (ZIN = 0) as compared to a high impedance input (ZIN ≫ XC,
XL). The formulas below give optimum collector current for noise within the frequency band fL to fH. For
audio applications, lowest “perceived” noise may be somewhat different because of the variation in
sensitivity of the ear to frequencies in the audio range (Fletcher-Munson effect).

Capacitive source into high impedance:

(8)

Capacitive source into summing junction:

(9)

Inductive source into high impedance:

(10)

Keep in mind that the simple formula for total input-referred noise, though accurate in itself, does not take
into account the effects of noise created in additional stages or noise injected from supply lines. In most
cases voltage gain of the LM194 stage will be sufficient to swamp out second stage effects. For this to be
true, first stage gain must be at least 3 × vn2/vN, where vn2 is the voltage noise of the second stage and vN

is the desired total input referred voltage noise. A simple formula for voltage gain of an LM194 stage,
assuming no second stage loading, is given by:

(11)
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Noise injected from power supplies is an often overlooked problem in low noise designs. This is probably
in part due to the use of IC op amps with their high power supply rejection ratio and differential inputs.
Many low-noise designs are single-ended and do not enjoy the inherent supply rejection of differential
designs. For a single-ended amplifier with its load resistor tied directly to the power supply, noise on the
supply must be no higher than (RL × IC × vN)/(3 kT/q) or noise performance will be degraded. For a
differential stage (see Figure 2) with the common emitter resistor tied to the negative supply and the
collector resistors tied to the positive supply, supply noise is not generally a problem, at least at low
frequencies. For this to be true at higher frequencies, the capacitance at the collector nodes must be kept
low and balanced. In an unbalanced situation, noise from either supply will feed through unattenuated at
higher frequencies where the reactance of the capacitor is much lower than the collector resistance.

Figure 2. High Frequency Power Supply Rejection

4 Bandwidth Considerations

Because of its large area, the LM194 has capacitance-limited bandwidth. The hfe × f product is roughly
0.08 MHz per microampere of collector current, yielding an ft of 80 MHz at IC = 1 mA and 800 kHz at
IC = 10 μA.

Collector-base capacitance on the LM194 is somewhat higher than ordinary small-signal transistors due to
the large device geometry. Cob is 17 pF at VCE = 5V. For high gain stages with finite source impedance,
the Millering effect of Cob will usually be the limiting factor on voltage gain bandwidth. At IC = 100 μA and
RL = 50 kΩ, for instance, DC voltage gain will be (RL)(IC)/(kT/q) = 200, but bandwidth will be limited to

(12)

for a source impedance (Rs) of 1 kΩ.
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5 Low Noise Applications

Figure 3 and Figure 4 represent two different approaches to low noise designs. In Figure 3, the LM194 is
used to replace the input stage of an LM118 high speed operational amplifier to create an ultra-low-
distortion, low-noise RIAA-equalized phono preamplifier. The internal input stage of the LM118 is shut off
by tying the unused inputs to the negative supply. This allows the LM194 to be used in place of the
internal input stage, avoiding the loop stability problems created when extra stages are added. The
stability problem is especially critical in an RIAA circuit where 100% feedback is used at high frequencies.
Performance of this circuit exceeds the ability of most test equipment to measure it. As shown in the
accompanying chart, Figure 3, harmonic distortion is below the measurable 0.002% level over most of the
operating frequency and amplitude range. Noise referred to a 10 mV input signal is 90 dB down,
measuring 0.55 μVRMS and 70 pARMS in a 20 kHz bandwidth. More importantly, the noise figure is less than
2 dB when the amplifier is used with standard phono cartridges, which have an equivalent wideband
(20 kHz) noise of 0.7 μV. Further improvements in amplifier noise characteristics would be of little use
because of the noise generated by the cartridge itself.

A special test was performed to check for “Transient Intermodulation Distortion” (see reference [1]).
10 kHz and 11 kHz were mixed 1:1 at the input to give an RMS output voltage of 2V (input = 200 mV).
The resulting 1 kHz intermodulation product measured at the output was 80 μV. This calculates to 0.004%
distortion, an incredibly low level considering that the 1 kHz has 14 dB (5:1) gain with respect to the
10 kHz signal in an RIAA circuit. Of special interest also is the use of all DC coupling. This eliminates the
overload recovery problems associated with coupling and bypass capacitors. Worst case DC output offset
voltage is about 1V with a cartridge having 1 kΩ DC resistance.

The single-ended amplifier shown in Figure 4 was designed for source impedances below 250Ω. At this
level, the LM194 should be biased at 2.5 mA (or higher) collector current. Unfortunately, rbb′, even at 40Ω,
is the limiting factor on noise at these current levels. To achieve better performance, the two halves of the
LM194 are paralleled to reduce rbb′ to 20Ω. Total input voltage noise for this design is given by:

(13)

The current noise is and when this flows through a 250Ω source resistance, it causes an
additional Since the Johnson noise of a 250Ω resistor is the noise figure is:

(14)

Several unique features of this circuit should be pointed out. First, it has only one internal capacitor which
functions as an AC bypass for both stages. Second, no input stage load resistor bypassing is used, yet
the circuit achieves 56 dB supply rejection referred to input. The optional supply filter shown in dotted lines
improves this by an additional 50 dB and is necessary only if supply noise exceeds Finally, the
problem of AC coupling the 10Ω feedback impedance is eliminated by using a DC biasing scheme which
biases both stages simultaneously without relying on feedback from the output.

Harmonic distortion is very low for a “simple” two stage design. At 300 mV output, total harmonic distortion
measured 0.016%. For normal signal levels of 50 mV and below, distortion was lost in the noise floor.
Small-signal bandwidth is 3 MHz.

An ideal application for this amplifier is as a head pre-amp for moving-coil phono cartridges. These
cartridges have very low output impedance (< 50Ω at low frequencies) and have a full-output signal below
1 mV. Obviously, the preamp used for such a low signal level must have superb noise properties. The
amplifier shown has a total RMS input noise of 0.11 μV in a 20 kHz bandwidth, yielding a signal-to-noise
ratio of 70 dB when used with a 40Ω source impedance at a 0.5 mV signal level.
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NOTE: Cartridge is assumed to have less than 5 kΩ DC resistance. Do not capacitor couple the cartridge. R1, R2,
and R3 should be low noise metal film resistors.

Frequency (Hz) Total Harmonic Distortion (1)

20 <0.002 <0.002 <0.002 <0.002 <0.002

100 <0.002 <0.002 <0.002 <0.002 <0.002

1k <0.002 <0.002 <0.002 <0.002 <0.002

10k <0.002 <0.002 <0.002 0.0025 <0.003

20k <0.002 <0.002 0.004 0.004 0.007

0.03 0.1 0.3 1.0 5.0
(1) Output amplitude (V) RMS

Figure 3. Ultra Low Noise RIAA Phono Preamplifier
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Figure 4. Ultra Low Noise Preamplifier
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6 Low-Noise, Low-Drift Instrumentation Amplifier has Wide Bandwidth

The circuit in Figure 5 is a high-performance instrumentation amplifier for low-noise, low-drift, wide-
bandwidth applications. Input noise voltage is up to 20 kHz, rising to at 100 kHz.
Bandwidth at a gain of 50 is 1 MHz and gain can be varied over the range of 10−100 simply by changing
the value of R3 and R6. Input offset voltage drift is determined by the LM194 and the tracking of the
(R1–R2), (R3–R6), and (R4–R5) pairs. 20 ppm/°C mismatch on all pairs will generate 1.1 μV/°C referred to
input, dominating the drift due to the LM194. Resistor pairs which track to 5 ppm/°C or better are
recommended for very low drift applications. Input bias current is about 1 μA, rather high for general
purpose use, but necessary in this case to achieve wide bandwidth and low noise. The tight matching of
the LM194, however, reduces input offset current to 20 nA, and input offset current drift to 0.5 nA/°C. Input
bias current drift is under 10 nA/°C. In terms of source impedance, total input referred voltage drift will be
degraded 1 μV/°C for each 100Ω of unbalanced source resistance and 0.05 μV/°C for each 100Ω of
balanced source resistance. DC common mode rejection of this amplifier is extremely good, depending
mostly on the match of the ratio of R3/R4 to R5/R6. 0.1% matching gives better than 90 dB. Rejection will
improve with tighter matching and is not limited by the LM194 until CMRR approaches 120 dB. High
frequency CMRR is also very good, measuring 80 dB at 20 kHz and 60 dB at 100 kHz. Settling time for a
10V output step is 1.5 μs to 0.1%, and 5 μs to 0.01%. Distortion with 10 Vp-p output is virtually
unmeasurable (< 0.002%) at low frequencies, rising to 0.1% at 50 kHz, and 1% at 200 kHz.

Figure 5. Low Drift-Low Noise Instrumentation Amplifier
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7 Low Drift Designs

Offset voltage drive in the LM194 quite closely follows the theoretical value derived by differentiating the
logarithmic formula. In other words it is a function only of the original offset voltage. If VOS is the original
room temperature offset voltage, drift of offset as given by differentiation yields:

(15)

At room temperature (T = 297°K), 1 mV of offset voltage will generate 1 mV/297°K = 3.37 μV/°C drift. The
LM194 with a maximum offset voltage of 50 μV could be expected to have a maximum offset voltage drift
of 0.17 μV/°C. Lab measurements indicate that it does not deviate from this theoretical drift by more than
0.1 μV/°C. This means the LM194 can be specified at 0.3 μV/°C drift without an individual drift test on
each device. In addition, if initial offset voltage is zeroed out, maximum drift will be less than 0.1 μV/°C.
The zeroing, of course, must be done in a way that theoretically zeroes drift. This is best done as shown
in Figure 6 with a small trimpot used to unbalance collector load resistors.

Figure 6. Zeroing Offset and Drift

To obtain optimum performance from such a low-drift device, strict attention must be paid to sources of
drift external to the device itself. These include thermocouple effects, mismatch in load-resistor
temperature coefficients, second-stage loading, collector leakage, and finite source impedance.

Thermocouple effects in ultra-low-drift amplifiers are often the limiting factor in performance. The copper-
to-Kovar (LM194 leads) thermocouple will generate 35 μV/°C. This sounds extremely high, but is not a
problem if all input leads on the LM194 are at the same temperature. For optimum drift performance, the
differential lead temperature where copper connects to Kovar should not exceed 0.5 millidegrees per
degree change in ambient. If the LM194 is mounted on a printed circuit board, emitter and base leads
should be soldered to identical size pads and the package orientation should place emitter and base leads
on isothermal lines if any significant power is being dissipated on the board. The board should be kept in a
still-air environment to minimize the effects of circulating air currents. “Still” air is particularly important
when the LM194 leads are soldered directly to wires and when low (< 10 Hz) noise is critical. Individual
wires in air can easily generate a differential end temperature of 10 millidegrees in an ordinary room
ambient, even with the wires twisted together. This can cause up to 1 μVp-p fluctuation in offset voltage.
The 0.001 Hz to 10 Hz noise of the LM194 operating differentially at 100 μA is typically 40 nVp-p (see
Figure 7), so the thermally generated signal represents a 25:1 degradation of low frequency noise.
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Unit must be in still air environment so that differential lead temperature is held to less than 0.0003°C.

Figure 7. Low Frequency Noise of Differential Pair

If the load resistors used to bias the LM194 do not have identical temperature coefficients, they will
contribute to offset voltage drift. A 1 ppm/°C mismatch in resistor drift will generate 0.026 μV/°C drift in the
LM194. Resistors with 10 ppm/°C differential drift will seriously degrade the drift of an otherwise perfect
circuit design. Resistors specified to track better than 2 ppm/°C are available from several manufacturers
including Vishay, Julie, RCL, TRW, and Tel Labs.

Source impedance must be considered in a low-drift amplifier since voltage drift at the output can result
from drift of the base currents of the LM194. Base current changes at about −0.8%/°C. This is equal to 2
nA/°C at a collector current of 100 μA and an hFE of 400. If drift error caused by the changing base current
is to be kept to less than 0.05 μV/°C, source unbalance cannot exceed 25Ω in this example. If a balanced
condition exists, source impedance is still limited by the base current mismatch of the LM194. Worst case
offset in the base current is 2%, and this offset can have a temperature drift of up to 2%/°C, yielding a
change in offset current of up to

(2%)(100 μA)(2%/°C)/hFE = 0.1 nA/°C (16)

at a collector current of 100 μA. This limits balanced source impedances to 500Ω at collector currents of
100 μA if drift error is to be kept under 0.05 μV/°C. For higher source impedances, collector current must
be reduced, or drift trimming must be used.

Collector-leakage effects on drift are generally very low for temperatures below 50°C. At higher
temperatures, leakage can be a factor, especially at low collector currents. At 70°C, total collector leakage
(to base and substrate) is typically 2 nA, increasing at 0.2 nA/°C. Assuming a 10% mismatch between
collector leakages, input-referred drift will be 0.05 μV/°C at a collector current of 10 μA, and 0.005 μV/°C
at 100 μA. At 125°C, input referred drift will be 1.5 μV/°C and 0.15 μV/°C respectively.

The amplifier used in conjunction with the LM194 may contribute significantly to drift if its own drift
characteristics are poor. An LM194 operated with 2.5 VDC across its load resistors has a voltage gain of
approximately 100. If the second stage amplifier has a voltage drift of 20 μV/°C (normal for an amplifier
with VOS = 6 mV) the drift referred to the LM194 inputs will be 0.2 μV/°C, a significant degradation in drift.
Amplifiers with low drift such as the LM108A or LM308A (5 μV/°C max) are recommended.
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For the ultimate in low drift applications, the residual drift of the LM194 can be zeroed out. This is
particularly easy because of the known relationship between a change in room-temperature offset and the
resultant change in offset drift. The zeroing technique involves only one oven test to establish initial drift.
The drift can then be reduced to below 0.03 μV/°C with a simple room-temperature adjustment. The
procedure is as follows: (See Figure 8.)

1. Zero the offset voltage at room temperature (TA).

2. Raise oven temperature to desired level (TH) and measure offset voltage.

3. Bring circuit back to room temperature and adjust offset voltage to (VOS at TH) × (TA)/(TH − TA). (T is in
°K.)

4. Re-adjust offset voltage to zero with an external reference source by summing the two signals. (Do not
re-adjust the offset of the LM194.)

This technique can be extended to include drift correction for source-generated drift as well since the
basic correcting mechanism is independent of the source of drift.

Figure 8. Correcting for Residual or Source Generated Drift
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8 Voltage Reference

Voltage references utilizing the bandgap voltage of silicon were first used 8 years ago, and have since
gained wide acceptance in such circuits as the LM109, LM113, LM340, LM117, μA7800, AD580, and REF
01. The theory has been well publicized and is not reiterated here.

The circuit in Figure 9 is a micropower version of a bandgap technique first used by Analog Devices. It
operates off a single 2.5V to 6V supply and draws only 25 μA idling current. Two AA penlight cells will
power the reference for over a year of continuous operation. Maximum output current is 0.5 mA, with an
output resistance of 0.2Ω. Line regulation is ∼0.01%/V and output noise is 20 μVRMS over a 10 kHz
bandwidth. Temperature drift is less than ±50 ppm/°C when the output is trimmed to 1.21V. Much lower
drift can be obtained by adjusting the output of each reference to the optimum value. A 1% shift in output
voltage changes drift 33 ppm/°C. Temperature range is −25°C to +100°C.

The LM194 is the entire reference in this design, supplying both VBE and ΔVBE portions of the reference.
One half LM114 delivers a constant bias current to the LM4250. The other half, in conjunction with the
2N4250 PNP, ensures startup of the circuit under worst cast (2.4k) load current. R1–R2 and R4–R5 should
track to 50 ppm/°C. R6 should have a TC of under 250 ppm/°C. The circuit is stable for capacitive loads up
to 0.047 μF. C2 is optional, for improved ripple rejection.

Figure 9. Micropower Reference
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9 Strain Gauge Amplifier

The instrumentation amplifier shown in Figure 10 is an example of an ultra-low-drift design specifically
optimized for strain-gauge applications. A typical strain-gauge bridge has one end grounded and the other
driven by a 3-to-10 volt precision voltage reference. The differential output signal of the bridge has a 1.5 to
5 volt common-mode level and a typical full-scale differential signal level of 5–50 mV. Source impedance
is in the range of 100Ω to 500Ω, with an impedance imbalance of less than 2%. This amplifier has been
specifically optimized for these types of signals. It has a +1V to +10V common mode range, a full scale
input of 20 mV (1 mV to 100 mV is possible) and fully balanced inputs with a differential input impedance
> 10 MΩ. Common mode input impedance is 100 MΩ. Common mode rejection ratio is 120 dB at 60 Hz,
114 dB at 1 kHz, and 94 dB at 10 kHz referred to input. Power supply rejection at DC is 114 dB on the V+
supply and 108 dB on the V− supply. Small signal bandwidth is > 50 kHz and slew rate is 0.1 V/μs. Gain
error is determined by the accuracy of R9, R8, R4, and R3. For the values shown, gain is 500. R3 can be
varied to set gain as desired from 250 (800Ω) to 10,000 (20Ω). Gain non-linearity is < 0.05% for a 10V
output and < 0.012% for a 5V output). R7 is a +0.3%/°C positive-temperature-coefficient wirewound
resistor for compensation of gain with temperature. Without this resistor, gain change with temperature is
0.007%/°C. If R7 is omitted, replace R9 with 12.4 kΩ.

Input offset voltage drift is determined primarily by resistor mismatches between R1/R2 and R5/R6. If either
of these ratios drifts by 5 ppm/°C, an input offset voltage drift of 0.15 μV/°C will be created. Other resistor
drifts contribute to gain error only. R12 is used to adjust room temperature offset voltage to zero.

Figure 10. Strain Gauge Instrumentation Amplifier
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10 Thermocouple Amplifier with Cold Junction Compensation

Thermocouple amplifiers need low offset voltage drift, good gain accuracy, low noise, and most
importantly, cold-junction compensation. The amplifier in Figure 11 does all that and more. It is specifically
designed for ease of calibration so that repeated oven cycling is not required for calibration of gain and
zero. Also, no mathematical calculations are required in the calibration procedure.

The circuit is basically a non-inverting amplifier with the gain set to give 10 mV/(°F or °C) at the output.
This output sensitivity is arbitrary and can be set higher or lower. Cold-junction compensation is achieved
by deliberately unbalancing the collector currents of the LM194 so that the resulting input offset voltage
drift is just equal to the thermocouple output (α) at room temperature. By combining the formulas for offset
voltage versus current imbalance and offset voltage drift, the required ratio of collector currents is
obtained.

(17)

(18)
(α = thermocouple output in V/°C) (19)

This technique does require that the LM194 be at the same temperature as the thermocouple cold
junction. The thermocouple leads should be terminated close to the LM194.

The deliberate offset voltage created across the LM194 inputs must be subtracted out with an external
reference which is also used to zero shift the output to read directly in °C or °F. This is done in a special
way so that at some arbitrarily selected temperature (T1), the gain adjustment has no effect on zero, vastly
simplifying the calibration procedure. Design equations for the circuit are shown with the schematic in
descending order of their proper use. Also shown is the calibration procedure, which requires only one
oven trip for both gain and zero. Use of the nearest pocket calculator should yield all resistor values in a
few minutes. The values shown on the schematic are for a 10 mV/°C output with a Chromel-Alumel
thermocouple delivering 40 μV/°C, with T1 selected at room temperature (297°K). All resistors except R8

and R12 should be 1% metal film types for low thermocouple effects (resistors do generate thermocouple
voltages if their ends are at different temperatures) and should have low temperature coefficients. R9 and
R10 should track to 10 ppm/°C. R3, R6, and R11 should not have a TC higher than 250 ppm/°C. R1, R2, and
R4 should track to 20 ppm/°C. C2 can be added to reduce spikes and noise from long thermocouple lines.

Figure 11. Thermocouple Amplifier with Cold-Junction Compensation
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1. Select R9 = 300 kΩ
2. Set R10 equal to R9 × e−α(1.16 × 104)

3. R8 = 200k

4. Select R4 in the range 50 kΩ to 250 kΩ

5.

6.

7.

8.

9. R7 = (R9/R10)(R2)

10. R6 = R1/10

Where:

E = Gain error allowed for (≈2.5% )

T1 = Temperature in °K at which it is desired to have the gain control not interact with the zero control

T0 = Temperature in °K at which the desired temperature scale (°C or °F) is equal to zero

S = Required output scale factor. Use V/°C even though actual output may be in °F

VZ = Zener reference voltage

α = Thermocouple output in V/°C

Values shown on schematic are for 10 mV/°C.

See below for 10 mV/°F values using a Chromel-Alumel thermocouple with room temperature for T1.

R1 = 367k, R2 = 629Ω, R3 =Ω, R4 = 250k,

R5 = 4.08k, R6 = 50k, R7 = 1k, R10 = 191k

Calibration Procedure (Thermocouple only in oven):

1. Set oven to T1 and adjust R6 to give proper output (zero adjust).

2. Raise (or lower) oven to T2 and adjust R3 to give proper output at T2 (gain adjust).

3. Return to room temperature and short thermocouple and D1 to ground. Adjust R11 to give proper
output (room ambient) in °K or °R.

• For 10 mV/°C, this is 2.98V @ TA = 25°C

• For 10 mV/°F, this is 5.37V @ TA = 77°F

4. Remove shorts and re-adjust R6 if necessary to zero output.

Note: Steps 3 and 4 can be eliminated if exact cold junction compensation is not required. R11 is
simply shorted out. Compensation will be within ±5% without adjustment (≤0.05°C/°C).

Input impedance for this circuit is > 100 MΩ, so high thermocouple impedance will not affect scale factor.
“Zero shift” due to input bias current is approximately 1°C for each 400Ω of thermocouple lead resistance
with a 40 μV/°C thermocouple.

No provision is made for correction of thermocouple nonlinearity. This could be accomplished with a slight
nonlinearity introduced into R4 with additional resistors and diodes. Another possibility is to digitize the
output and correct the nonlinearity digitally with a ROM programmed for a specific thermocouple type.
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11 Power Meter

The power meter in Figure 12 is a good example of minimum-parts-count design. It uses only one
transistor pair to provide the complete (X) × (Y) function. The circuit is intended for 117 VAC ± 50 VAC

operation, but can be easily modified for higher or lower voltages. It measures true (non-reactive) power
being delivered to the load and requires no external power supply. Idling power drain is only 0.5W. Load
current sensing voltage is only 10 mV, keeping load voltage loss to 0.01%. Rejection of reactive load
currents is better than 100:1 for linear loads. Nonlinearity is about 1% full scale when using a 50 μA meter
movement. Temperature correction for gain is accomplished by using a copper shunt (+0.32%/°C) for
load-current sensing. This circuit measures power on negative cycles only, and so cannot be used on
rectifying loads.

Figure 12. Power Meter (1 kW f.s.)
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12 Low Cost Mathematical Functions

Many analog circuits require a mathematical function to be performed on one or more signals other than
the standard addition, subtraction, or scaling which can be accomplished with resistor networks. The
following circuits are examples of low-cost function generating circuits using the LM394 with operational
amplifiers. The logarithmic relationship of VBE to IC on the LM394 is utilized in each case to log-antilog the
input signals so that addition and subtraction can be used to multiply, divide, square, etc. When transistors
are used in this manner, matching is very critical. A 1 mV offset in VBE appears as a 4% of signal error
even in the best case where operation is restricted to one quadrant. Parasitic emitter or base resistance
(ree′, rbb′) can also seriously degrade accuracy. At IC = 100 μA and hFE = 100, each Ω of emitter resistance
and each 100Ω of base resistance will cause 0.4% signal error. Most matched transistor pairs available
today have significant parasitic resistances which severely limit their use in high-accuracy circuits. The
LM394, with offset guaranteed below 0.15 mV and a typical emitter-referred total parasitic resistance of
0.4Ω gives an order of magnitude improvement in accuracy to nonlinear designs at all current levels.

12.1 Multiplier/Divider

The circuit in Figure 13 will give an output proportional to the product of the (X) and (Y) inputs divided by
the Z input. All inputs must be positive, limiting operation to one quadrant, but this restriction removes the
large error terms found in 2- and 4-quadrant designs. In a large percentage of cases, analog signals
requiring multiplication are of one polarity only and can be inverted if negative. A nice feature of this
design is that all gain errors can be trimmed to zero at one point. R5 is paralleled with 2.4 MΩ to drop its
nominal value 2%. R8 then gives a ±2% gain trim to account for errors in R1, R2, R5, R7, and any offset in
Q1 or Q2. For very low level inputs, offset voltage in the LM308s may create large percentage errors
referred to input. A simple scheme for offsetting any of the LM308s to zero is shown in dotted lines; the +
input of the appropriate LM308 is simply tied to Rx instead of ground for zeroing. The summing mode of
operation on all inputs allows easy scaling on any or all inputs. Simply set the input resistor equal to
(VIN(max))/(200 μA). VOUT is equal to:

(20)

Input voltages above the supply voltage are allowed because of the summing mode of operation. Several
inputs may be summed at “X”, “Y,” or “Z.”

Proper scaling will improve accuracy by preventing large current imbalances in Q1 and Q2, and by creating
the largest possible output swing. Keep in mind that any multiplier scheme must have a reference and this
circuit is no different. For a simple (X) × (Y) or (X)/Z function, the unused input must be tied to a reference
voltage. Perturbations in this reference will be seen at the output as scale factor changes, so a stable
reference is necessary for precision work. For less critical applications, the unused input may be tied to
the positive supply voltage, with R = V+/200 μA.

18 AN-222 Super Matched Bipolar Transistor Pair Sets New Standards for Drift SNOA626B–July 1979–Revised May 2013
and Noise Submit Documentation Feedback

Copyright © 1979–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA626B


www.ti.com Low Cost Mathematical Functions

Figure 13. High Accuracy One Quadrant Multiplier/Divider
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12.2 Square Root

The circuit in Figure 14 will generate the square root function at low cost and good accuracy. The output is
a current which may be used to drive a meter directly or be converted to a voltage with a summing
junction current-to-voltage converter. The −15V supply is used as a reference, so it must be stable. A 1%
change in the −15V supply will give a ½% shift in output reading. No positive supply is required when an
LM301A is used because its inputs may be used at the same voltage as the positive supply (ground). The
two 1N457 diodes and the 300 kΩ resistor are used to temperature compensate the current through the
diode-connected ½ LM394.

*Trim for full scale accuracy.

Figure 14. Low Cost Accurate Squaring Circuit
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12.3 Squaring Function

The circuit in Figure 15 will square the input signal and deliver the result as an output current. Full scale
input is 10V, but this may be changed simply by changing the value of the 100 kΩ input resistor. As in the
square root circuit, the −15V supply is used as the reference. In this case, however, a 1% shift in supply
voltage gives a 1% shift in output signal. The 150 kΩ resistor across the base-emitter of ½ LM394
provides slight temperature compensation of the reference current from the −15V supply. For improved
accuracy at low input signal levels, the offset voltage of the LM301A should be zeroed out, and a 100 kΩ
resistor should be inserted in the positive input to provide optimum DC balance.

*Trim for full scale accuracy.

Figure 15. Low Cost Accurate Squaring Circuit
IOUT = 10−6 (VIN)2

13 Reference
1. The Audio Amateur, volume VIII, number 1, Feb. 1977.
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