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ABSTRACT

Two circuits using the LM335 for thermocouple cold-junction compensation have been described. With a
single room temperature calibration, these circuits are accurate to ±¾°C over a 0°C to 70°C temperature
range using J or K type thermocouples. In addition, a thermocouple amplifier using an LM335 for cold-
junction compensation has been described for which worst case error can be as low as 1°C per 40°C
change in ambient.
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1 Introduction

Due to their low cost and ease of use, thermocouples are still a popular means for making temperature
measurements up to several thousand degrees centigrade. A thermocouple is made by joining wires of
two different metals as shown in Figure 1. The output voltage is approximately proportional to the
temperature difference between the measuring junction and the reference junction. This constant of
proportionality is known as the Seebeck coefficient and ranges from 5 μV/°C to 50 μV/°C for commonly
used thermocouples.

VOUT ≃ ∞(TM − TREF)

Figure 1. Thermocouple

Because a thermocouple is sensitive to a temperature difference, the temperature at the reference
junction must be known in order to make a temperature measurement. One way to do this is to keep the
reference junction in an ice bath. This has the advantage of zero output voltage at 0°C, making
thermocouple tables usable. A more convenient approach, known as cold-junction compensation, is to add
a compensating voltage to the thermocouple output so that the reference junction appears to be at 0°C
independent of the actual temperature. If this voltage is made proportional to temperature with the same
constant of proportionality as the thermocouple, changes in ambient temperature will have no effect on
output voltage.

An IC temperature sensor such as the LM135/LM235/LM335, which has a very linear voltage vs.
temperature characteristic, is a natural choice to use in this compensation circuit. The LM135 operates by
sensing the difference of base-emitter voltage of two transistors running at different current levels and acts
like a zener diode with a breakdown voltage proportional to absolute temperature at 10 mV/°K.
Furthermore, because the LM135 extrapolates to zero output at 0°K, the temperature coefficient of the
compensation circuit can be adjusted at room temperature without requiring any temperature cycling.

2 Sources of Error

There will be several sources of error involved when measuring temperature with thermocouples. The
most basic of these is the tolerance of the thermocouple itself, due to varying composition of the wire
material. Note that this tolerance states how much the voltage vs. temperature characteristic differs from
that of an ideal thermocouple and has nothing to do with nonlinearity. Tolerance is typically ±¾% of
reading for J, K, and T types or ±½% for S and R types, so that a measurement of 1000°C may be off by
as much as 7.5°C. Special wire is available with half this error guaranteed.

Additional error can be introduced by the compensation circuitry. For perfect compensation, the
compensation circuit must match the output of an ice-point-referenced thermocouple at ambient. It is
difficult to match the thermocouple's nonlinear voltage vs. temperature characteristic with a linear absolute
temperature sensor, so a “best fit” linear approximation must be made. In Figure 2 this nonlinearity is
plotted as a function of temperature for several thermocouple types. The K type is the most linear, while
the S type is one of the least linear. When using an absolute temperature sensor for cold-junction
compensation, compensation error is a function of both thermocouple nonlinearity and also the variation in
ambient temperature, since the straight-line approximation to the thermocouple characteristic is more valid
for small deviations.
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Figure 2. Thermocouple Nonlinearity

Of course, increased error results if, due to component inaccuracies, the compensation circuit does not
produce the ideal output. The LM335 is very linear with respect to absolute temperature and introduces
little error. However, the complete circuit must contain resistors and a voltage reference in order to obtain
the proper offset and scaling. Initial tolerances can be trimmed out, but the temperature coefficient of
these external components is usually the limiting factor (unless this drift is measured and trimmed out).

3 Circuit Description

A single-supply circuit is shown in Figure 3. R3 and R4 divide down the 10 mV/°K output of the LM335 to
match the Seebeck coefficient of the thermocouple. The LM329B and its associated voltage divider
provide a voltage to buck out the 0°C output of the LM335. To calibrate, adjust R1 so that V1 = <5°C T,
where <5°C is the Seebeck coefficient and T is the ambient temperature in degrees Kelvin. Then, adjust
R2 so that V1−V2 is equal to the thermocouple output voltage at the known ambient temperature.

To achieve maximum performance from this circuit the resistors must be carefully chosen. R3 through R6
should be precision wirewounds, Vishay bulk metal or precision metal film types with a 1% tolerance and a
temperature coefficient of ±5 ppm/°C or better. In addition to having a low TCR, these resistors exhibit low
thermal emf when the leads are at different temperatures, ranging from 3 μV/°C for the TRW MAR to only
0.3 μV/°C for the Vishay types. This is especially important when using S or R type thermocouples that
output only 6 μV/°C. R7 should have a temperature coefficient of ±25 ppm/°C or better and a 1%
tolerance. Note that the potentiometers are placed where their absolute resistance is not important so that
their TCR is not critical. However, the trim pots should be of a stable cermet type. While multi-turn pots
are usually considered to have the best resolution, many modern single-turn pots are just as easy to set to
within ±0.1% of the desired value as the multi-turn pots.

Also single-turn pots usually have superior stability of setting, versus shock or vibration. Thus, good
single-turn cermet pots (such as Allen Bradley type E, Weston series 840, or CTS series 360) should be
considered as good candidates for high-resolution trim applications, competing with the more obvious (but
slightly more expensive) multi-turn trim pots such as Allen Bradley type RT or MT, Weston type 850, or
similar.

With a room temperature adjustment, drift error will be only ±½°C at 70°C and ±¼°C at 0°C.
Thermocouple nonlinearity results in additional compensation error. The chromel/alumel (type K)
thermocouple is the most linear. With this type, a compensation accuracy of ±¾°C can be obtained over a
0°C–70°C range. Performance with an iron-constantan thermocouple is almost as good. To keep the error
small for the less linear S and T type thermocouples, the ambient temperature must be kept within a more
limited range, such as 15°C to 50°C. Of course, more accurate compensation over a narrower
temperature range can be obtained with any thermocouple type by the proper adjustment of voltage TC
and offset.
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Standard metal-film resistors cost substantially less than precision types and may be substituted with a
reduction in accuracy or temperature range. Using 50 ppm/°C resistors, the circuit can achieve ½°C error
over a 10°C range. Switching to 25 ppm resistors will halve this error. Tin oxide resistors should be
avoided since they generate a thermal emf of 20 μV for 1°C temperature difference in lead temperature as
opposed to 2 μV/°C for nichrome or 4.3 μV/°C for cermet types. Resistor networks exhibit good tracking,
with 50 ppm/°C obtainable for thick film and 5 ppm/°C for thin film. In order to obtain the large resistor
ratios needed, one can use series and parallel connections of resistors on one or more substrates.
(1)

Figure 3. Thermocouple Cold-Junction Compensation Using Single Power Supply

(1) See Appendix A for calculation of Seebeck coefficient.

Thermocouple Seebeck R4 R6

Type Coefficient (Ω) (Ω)

(μV/°C)

J 52.3 1050 385

T 42.8 856 315

K 40.8 816 300

S 6.4 128 46.3

(1) (2)

A circuit for use with grounded thermocouples is shown in Figure 4. If dual supplies are available, this
circuit is preferable to that of Figure 3 since it achieves similar performance with fewer low TC resistors.
To trim, short out the LM329B and adjust R5 so that Vo = <5°C T, where <5°C is the Seebeck coefficient
of the thermocouple and T is the absolute temperature. Remove the short and adjust R4 so that Vo equals
the thermocouple output voltage at ambient. A good grounding system is essential here, for any ground
differential will appear in series with the thermocouple output.

(1) *R3 thru R6 are 1%, 5 ppm/°C. (10 ppm/°C tracking.)
(2) †R7 is 1%, 25 ppm/°C.
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An electronic thermometer with a 10 mV/°C output from 0°C to 1300°C is seen in Figure 5. The trimming
procedure is as follows: first short out the LM329B, the LM335 and the thermocouple. Measure the output
voltage (equal to the input offset voltage times the voltage gain). Then apply a 50 mV input voltage and
adjust the GAIN ADJUST pot until the output voltage is 12.25V above the previously measured value.
Next, short out the thermocouple again and remove the short across the LM335. Adjust the TC ADJUST
pot so that the output voltage equals 10 mV/°K times the absolute temperature. Finally, remove the short
across the LM329B and adjust the ZERO ADJUST pot so that the output voltage equals 10 mV/°C times
the ambient temperature in °C.

Figure 4. Cold-Junction Compensation for Grounded Thermocouple

Thermocouple R1 Seebeck

Type (Ω) Coefficient

(μV/°C)

J 377 52.3

T 308 42.8

K 293 40.8

S 45.8 6.4
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(1) (2)

All fixed resistors ±1%, 25 ppm/°C unless otherwise indicated.
A1 should be a low drift type such as LM308A or LH0044C. See text.

Figure 5. Centigrade Thermometer with Cold-Junction Compensation

The error over a 0°C to 1300°C range due to thermocouple nonlinearity is only 2.5% maximum. Table 1
shows the error due to thermocouple nonlinearity as a function of temperature. This error is under 1°C for
0°C to 300°C but is as high as 17°C over the entire range. This may be corrected with a nonlinear shaping
network. If the output is digitized, correction factors can be stored in a ROM and added in via hardware or
software.

The major cause of temperature drift will be the input offset voltage drift of the op amp. The LM308A has a
specified maximum offset voltage drift of 5 μV/°C which will result in a 1°C error for every 8°C change in
ambient. Substitution of an LH0044C with its 1 μV/°C maximum offset voltage drift will reduce this error to
1°C per 40°C. If desired, this temperature drift can be trimmed out with only one temperature cycle by
following the procedure detailed in Appendix B.

4 Construction Hints

The LM335 must be held isothermal with the thermocouple reference junction for proper compensation.
Either of the techniques of Figure 6 or Figure 7 may be used.

Hermetic ICs use Kovar leads which output 35 μV/°C referenced to copper. In the circuit of Figure 5, the
low level thermocouple output is connected directly to the op amp input. To avoid this from causing a
problem, both input leads of the op amp must be maintained at the same temperature. This is easily
achieved by terminating both leads to identically sized copper pads and keeping them away from thermal
gradients caused by components that generate significant heat.

(1) *R2 and R3 are 1%, 10 ppm/°C. (20 ppm/°C tracking.)
(2) †R1 and R6 are 1%, 50 ppm/°C.
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Figure 6. (a) Methods for Sensing Temperature of Reference Junction

*Has no effect on measurement.

Figure 7. (b) Methods for Sensing Temperature of Reference Junction

Table 1. Nonlinearity Error of Thermometer Using Type K Thermocouple (Scale Factor 25.47°C/μV)

°C Error (°C) °C Error (°C)

10 −0.3 200 −0.1

20 −0.4 210 −0.2

30 −0.4 220 −0.4

40 −0.4 240 −0.6

50 −0.3 260 −0.5

60 −0.2 280 −0.4

70 0 300 −0.1

80 0.2 350 1.2

90 0.4 400 2.8

100 0.6 500 7.1

110 0.8 600 11.8

120 0.9 700 15.7

130 0.9 800 17.6

140 0.9 900 17.1

150 0.8 1000 14.0

160 0.7 1100 8.3

170 0.5 1200 −0.3

180 0.3 1300 −13

190 0.1
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Before trimming, all components should be stabilized. A 24-hour bake at 85°C is usually sufficient. Care
should be taken when trimming to maintain the temperature of the LM335 constant, as body heat nearby
can introduce significant errors. One should either keep the circuit in moving air or house it in a box,
leaving holes for the trimpots.

5 Appendix A Determination of Seebeck Coefficient

Because of the nonlinear relation of output voltage vs. temperature for a thermocouple, there is no unique
value of its Seebeck coefficient <5°C. Instead, one must approximate the thermocouple function with a
straight line and determine <5°C from the line's slope for the temperature range of interest. On a graph,
the error of the line approximation is easily visible as the vertical distance between the line and the
nonlinear function. Thermocouple nonlinearity is not so gross, so that a numerical error calculation is
better than the graphical approach.

Most thermocouple functions have positive curvature, so that a linear approximation with minimum mean-
square error will intersect the function at two points. As a first cut, one can pick these points at the ⅓ and
⅔ points across the ambient temperature range. Then calculate the difference between the linear
approximation and the thermocouple. This error will usually then be a maximum at the midpoint and
endpoints of the temperature range. If the error becomes too large at either temperature extreme, one can
modify the slope or the intercept of the line. Once the linear approximation is found that minimizes error
over the temperature range, use its slope as the Seebeck coefficient value when designing a cold-junction
compensator.

An example of this procedure for a type S thermocouple is shown in Table 2. Note that picking the two
intercepts (zero error points) close together results in less error over a narrower temperature range.
(1)

(1) A collection of thermocouple tables useful for this purpose is found in the Omega Temperature Measurement Handbook published by
Omega Engineering, Stamford, Connecticut.

Table 2. Linear Approximations to Type S Thermocouple

Approximation #1 Zero Error at 25°C Approximation #2 Zero Error at 30°C
and 60°C and 50°C

Type S
Linear Error (1) Linear Error (1)

Centigrade Thermocouple
Temperature Output (μV) Approx. μV °C Approx. μV °C

0° 0 −17 −17 −2.7° −16 −16 −2.8°

5° 27 15 −12 −1.9° 16 −11 −1.7°

10° 55 46 −9 −1.4° 47 −8 −1.3°

15° 84 78 −6 −0.9° 78 −6 −0.9°

20° 113 110 −3 −0.5° 110 −3 −0.5°

25° 142 142 0 0 142 −1 −0.2°

30° 173 174 1 0.2° 173 0 0

35° 203 206 3 0.5° 204 1 0.2°

40° 235 238 3 0.5° 236 1 0.2°

45° 266 270 4 0.6° 268 2 0.3°

50° 299 301 2 0.3° 299 0 0

55° 331 333 2 0.3° 330 −1 −0.2°

60° 365 365 0 0 362 −3 −0.5°

65° 398 397 −1 −0.2° 394 −4 −0.6°

70° 432 429 −3 −0.5° 425 −7 −1.1°

<5°C = 6.4 μV/°C 0.6°C error for 20°C < T <5°C = 6.3 μV/°C 0.3°C error for 25°C < T
< 70°C < 50°C

(1) Error is the difference between linear approximation and actual thermocouple output in μV. To convert error to °C, divide by
Seebeck coefficient.
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6 Appendix B Technique for Trimming Out Offset Drift

Short out the thermocouple input and measure the circuit output voltage at 25°C and at 70°C. Calculate
the output voltage temperature coefficient, β as shown.

(1)

Next, short out the LM329B and adjust the TC ADJ pot so that VOUT = (20 mV/°K − β) × 298°K at 25°C.
Now remove the short across the LM329B and adjust the ZERO ADJUST pot so that VOUT = 246 mV at
25°C (246 times the 25°C output of an ice-point-referenced thermocouple).

This procedure compensates for all sources of drift, including resistor TC, reference drift (±20 ppm/°C
maximum for the LM329B) and op amp offset drift. Performance will be limited only by TC nonlinearities
and measurement accuracy.

7 References

LB-22 Low Drift Amplifiers (SNOA728)

AN-222 Super Matched Bipolar Transistor Pair Sets New Standards for Drift and Noise (SNOA626)
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