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ABSTRACT
Proximity sensing applications requires the detection of small changes in capacitance (typically on the
order of a few femtofarads) around the noise floor. There are many ways to process the data to determine
whether a target was detected or not. So how do you choose? This application note describes a simple
algorithm that can be used for proximity sensing or capacitive touch button applications that does not
require significant processing overhead.

1 Basic Concept
To detect a change in capacitance for proximity sensing applications, a baseline measurement (no target
in the sensing area) and a detection threshold above/below the baseline measurement is required to
determine whether a target is within close proximity to the sensor. The minimum system sensitivity is set
by the noise floor of the sensor and any external interference. The detection threshold must be set at or
above this noise floor. Figure 1 illustrates the operation of the detection threshold concept.

Figure 1. Signal and Noise Consideration for Determining Detection Threshold

There are several issues that arise with this basic idea. For example, if the baseline is not inherently
stable or constant and a capacitance drift becomes noticeable, the algorithm will need to track a slow
moving average of the baseline and compare that to the actual signal. This can be robust but not efficient.
A more efficient and effective way to process the data is to look at the rate of change with a derivative
integration algorithm.

All trademarks are the property of their respective owners.
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X[i-1] = X[0]

I[i-1] = 0

Loop1:

D[i] = X[i] - X[i-1]

Is (ABS(D[i]) greater than DT)?

           true: 

I[i] = I[i-1] + D[i] 

           else: 

I[i] = I[i-1]

Is (I[i] H�/d)

           true: 

Object detected 

I[i-1] = I[i]

           else: 

Object not detected 

I[i-1] = I[i]*L

Parameters

IT = Integration threshold

DT = Derivative threshold

L = Leakage factor

X[i] = Current sample point

X[i-1] = Previous sample point

D[i] = Derivative

I[i] = Integral of derivative

I[i-1] = Previous integral of derivative
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2 Derivative Integration Algorithm
A derivative integration algorithm (pseudo code shown in Figure 2) is a simple and robust way to process
the data. It can be used for both proximity sensing and capacitive touch buttons; the only difference
between the two would be the derivative and integration thresholds for each sensor to obtain a robust and
highly sensitive response.

This algorithm tracks the rate of change or derivative (D[i]) between the current measurement (X[i]) and
previous measurement (X[i-1]). Proximity sensing applications require the detection of small capacitance
changes (on the order of fF). This requires the derivative threshold (DT) to be very low. As the derivative
value passes the threshold, a variable that tracks the integral or sum of the derivative differences
accumulate until it passes an integral threshold (IT). Once IT is reached, an object has been officially
detected. Changes in capacitance due to noise can be a severe problem, especially if the DT is very low.
The integral of the derivative (I[i]) can start to accumulate and falsely trigger as aa detection. Random
noise should stabilize the integral value so that the mean is zero (no capacitance drift occurs), but a high
integration threshold (IT) can allow enough noise margin for non-random noise.

The leakage factor (L) is a value between 0 (instant dissipation) and 1 (no dissipation). It is typically set at
0.99 to represent that the algorithm has some memory and information on past values to determine where
the detection boundary occurs. Various leakage factors can be used for a faster recovery time if the
integral swings too far positive. This causes temporary sensitivity reduction until the integral can stabilize
near zero.

Figure 2. Pseudo Code for the Derivative Integration Algorithm

As a visual example, once the human hand approaches the sensing area, the integration value starts to
accumulate as along as the derivative of the measurements hit the derivative threshold. If the hand has
been “detected” by the device (integral value goes above IT) and stops in the sensing area, the derivative
flattens out and the integral stops accumulating. As the hand moves away from the sensor, the integral
recedes until it goes below the threshold. This indicates the target object is outside of the intended
sensing range.

For capacitive touch button applications, a low derivative threshold is not required. The integration
threshold can be optimized based on the desired button response. Multiple derivative and integration
thresholds can be implemented to filter out any high frequency noise seen in the sampled measurements
and increase the sensitivity response.

Figure 3 shows an example of the raw code waveform with a target in proximity to the sensor using the
FDC2214. Figure 4 corresponds to the derivative of the raw code and Figure 5 corresponds to the integral
count. As the derivative becomes more negative (object approaching closer to the proximity sensor), the
integral count matches the raw code signal as expected. The thresholds can also be optimized to be
robust against any slow moving drift that occurs. Figure 6 shows how a drift in the raw code is
compensated in the integral count. The signal is preserved without any distortions due to the slow upward
drift.
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Figure 3. Proximity Raw Code Example 1

Figure 4. Proximity Derivative Code Example 1

Figure 5. Proximity Integral Example 1
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Figure 6. Raw Code and Integral Count Example 2

3 IIR Filter Implementation
To improve the signal-to-noise ratio in the measurements, an IIR filter can be implemented to process the
data and obtain a smooth measurement prior to sending it through the derivative integration algorithm.
The IIR filter implementation is similar to a moving average except that previous values do not have to be
stored and shifted out of the summing order. This process saves memory and computational time at the
expense of slight accuracy degradation.

Making N a power of 2 allows bit shifting instead of actually dividing, thus saving computational cycles.

(1)

Figure 7 shows how the IIR filter with a 16-point moving average can reduce the amount of peak to peak
noise on the signal. For applications that require high sampling rates, resolution is compromised and SNR
decreases. The IIR filter can distinguish the signal from the noise.

Figure 7. 16-Point Moving Average on Raw Code Output

4 Summary
Overall the derivative integration algorithm is a simple way for processing data for proximity sensing and
capacitive touch button applications. This solution is a foundation that other sophisticated processing
algorithms can be integrated within to be more robust for various system conditions. Depending on the
system requirements, the processing must be optimized, but the derivation integration algorithm is a great
start to get up and running for quick prototypes.
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