Relaxation oscillator circuit

Design Goals

<table>
<thead>
<tr>
<th>Supply</th>
<th>Oscillator Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{cc}</td>
<td>V_{ee}</td>
</tr>
<tr>
<td>5V</td>
<td>0V</td>
</tr>
<tr>
<td></td>
<td>1 MHz</td>
</tr>
</tbody>
</table>

Design Description

The oscillator circuit generates a square wave at a selected frequency. This is done by charging and discharging the capacitor, C_1, through the resistor, R_1. The oscillation frequency is determined by the RC time constant of R_1 and C_1, and the threshold levels set by the resistor network of R_2, R_3, and R_4. The maximum frequency of the oscillator is limited by the toggle rate of the comparator and the capacitance load at the output. This oscillator circuit is commonly used as a time reference or a supervisor clock source.

Design Notes

1. Comparator toggle rate and output capacitance are critical considerations when designing a high-speed oscillator.
2. Select C_1 to be large enough to minimize the errors caused by stray capacitance.
3. If using a ceramic capacitor, select a COG or NPO type for best stability over temperature.
4. Select lower value resistors for the R_2, R_3, and R_4 resistor network to minimize the effects of stray capacitance.
5. R_2, R_3, and R_4 can be adjusted in order to create a duty cycle other than 50%.
Design Steps

1. When \(R_2 = R_3 = R_4 \), the resistor network sets the oscillator trip points of the non-inverting input at one-third and two-thirds of the supply.

\[
V_o = V_s \left(\frac{R_3}{(R_3 + R_2 + R_4)} \right) = \frac{2}{3} V_s = 3.33 V
\]

2. When the output is high, the upper trip point will be set at two-thirds of the supply to bring the output back low.

\[
V_o = V_s \left(\frac{-R_2}{(R_3 + R_2 + R_4)} \right) = \frac{1}{3} V_s = 1.67 V
\]

3. When the output is low, the lower trip point will be set at one-third of the supply in order to bring the output back high.

\[
V_c = V_s \left(1 - e^{-\frac{t}{R_1 C_1}} \right)
\]

\[
\frac{1.67}{3.33} = 1 - e^{-\frac{t}{R_1 C_1}}
\]

\[
t = 0.69 R_1 C_1
\]

4. The timing of the oscillation is controlled by the charging and discharging rate of the capacitor \(C_1 \) through the resistor \(R_1 \). This capacitor sets the voltage of the inverting input of the comparator. Calculate the time to discharge the capacitor.

\[
V_c = V_s \left(1 - e^{-\frac{t}{R_1 C_1}} \right)
\]

\[
\frac{1.67}{3.33} = 1 - e^{-\frac{t}{R_1 C_1}}
\]

\[
t = 0.69 R_1 C_1
\]

5. Calculate the time to charge the capacitor.

\[
V_i = V_c \left(1 - e^{-\frac{t}{R_1 C_1}} \right)
\]

\[
\frac{1.67}{3.33} = 1 - e^{-\frac{t}{R_1 C_1}}
\]

\[
t = 0.69 R_1 C_1
\]

6. The time for the capacitor to charge or discharge is given by \(0.69 R_1 C_1 \). With a target oscillator frequency of 1MHz, the time to charge or discharge should be 500ns.

\[
0.69 R_1 C_1 = 500 \text{ns}
\]

\[
R_1 C_1 = 724 \text{ns}
\]

7. Select \(C_1 \) as 100 pF and \(R_1 \) as 6.8kΩ (the closest real world value).
Design Simulations

Transient Simulation Results
Design References

See Analog Engineer's Circuit Cookbooks for TI's comprehensive circuit library.

See circuit spice simulation file, SBOMAO3.

For more information on many comparator topics including hysteresis, propagation delay and input common mode range please see, TI Precision Labs.

Design Featured Comparator

<table>
<thead>
<tr>
<th>TLV3201</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{ss})</td>
</tr>
<tr>
<td>(V_{inCM})</td>
</tr>
<tr>
<td>(t_{pd})</td>
</tr>
<tr>
<td>(V_{os})</td>
</tr>
<tr>
<td>(V_{HYS})</td>
</tr>
<tr>
<td>(I_q)</td>
</tr>
<tr>
<td>Output Type</td>
</tr>
<tr>
<td>#Channels</td>
</tr>
</tbody>
</table>

Design Alternate Comparator

<table>
<thead>
<tr>
<th>TLV7011</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{ss})</td>
</tr>
<tr>
<td>(V_{inCM})</td>
</tr>
<tr>
<td>(t_{pd})</td>
</tr>
<tr>
<td>(V_{os})</td>
</tr>
<tr>
<td>(V_{HYS})</td>
</tr>
<tr>
<td>(I_q)</td>
</tr>
<tr>
<td>Output Type</td>
</tr>
<tr>
<td>#Channels</td>
</tr>
</tbody>
</table>

www.ti.com/product/tlv3201

www.ti.com/product/tlv7011
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated