ABSTRACT

This application note discusses the use of SEPIC converters in various applications.

Contents

1 Introduction ... 2
2 Basic SEPIC Converters .. 2
3 Compensator Design ... 3
4 Illustrative Example .. 4
5 Conclusion ... 6
6 Appendix A ... 7
7 Appendix B .. 8

List of Figures

1 A SEPIC Converter ... 2
2 A Compensator Implemented by a Transconductance Amplifier Circuit .. 3
3 Frequency Response of a Lag Compensator .. 3
4 Frequency Response of the Un-Compensated System ... 5
5 Frequency Response of the Compensated System with 90° Phase Margin 6

List of Tables

1 Major Parameters of the Example SEPIC Converter .. 4
2 Parameters of the LM3478 .. 5
1 Introduction

SEPIC converters have a number of advantages. They allow an input voltage higher or lower than the output voltage. The input voltage and output voltage can be dc isolated by a capacitor. The use of a low side switch makes the switch driver easy to implement. Unlike buck-boost and Cuk converters, the output voltage of SEPIC converters is non-inverting. Hence, SEPIC converters are useful in many applications.

This application note presents the design of compensators for current mode control SEPIC converters. The LM3478 current mode controller will be used. Detailed procedures on designing a lag compensator will be presented in an illustrative example.

2 Basic SEPIC Converters

A SEPIC converter is shown in Figure 1. It consists of two inductors (L_1, L_2) and two capacitors (C_S, C_{OUT}). Let v_{IN} and v_{OUT} be input and output voltages, v_{CS} and v_{COUT} be voltages across C_{OUT} and C_S, i_{L1} and i_{L2} be currents through L_1 and L_2, and R_C be the equivalent series resistance (ESR) of C_{OUT}. Assume that the load is a resistor R_{OUT}, and that the switch S_1 and the diode D_1 are ideal.

In the continuous conduction mode (CCM), when S_1 is turned on, L_1 and L_2 are charged up by v_{IN} and v_{CS} respectively, while C_S and C_{OUT} are discharged by i_{L2} and the output current respectively. When S_1 is turned off, L_1 and L_2 are discharged, and C_S and C_{OUT} are charged up. The open loop small signal model of a SEPIC converter is

$$\Delta(s) = D_0 + D_1 s + D_2 s^2 + D_3 s^3 + D_4 s^4$$

The coefficients of (4) will be listed in Appendix A. Also, $N_d(s)$ and $N_n(s)$ can be expanded to a polynomial as shown in Appendix A. The duty cycle d is the ratio between the on-time and the switching period T_{SW} of the switch S_1. Its nominal value is

$$D = \frac{\bar{v}_{OUT}}{v_{IN} + \bar{v}_{OUT}}$$

Under current mode control, the current of S_1, which is the sum of i_{L1} and i_{L2}, is fed to the controller during the on period in order to determine the on-time of S_1. The small signal model of a current mode control SEPIC converter is

$$\bar{v}_{OUT} = \frac{N_{dC}(s)\bar{i}_c + N_{dV}(s)v_{IN}}{D_d(s)}$$

where \bar{i}_c is the current control signal. It can be converted into a voltage control signal v_c by a resistor R_{SN} connecting between S_1 and the ground. Then the relationship between the output voltage and the voltage control signal can be formulated as follows:
Compensator Design

A compensator can be implemented by a transconductance amplifier, with an open loop gain of \(g_m \) and an output impedance of \(R_0 \), connecting to a resistor \(R_{C1} \) and a capacitor \(C_{C1} \) in series to the ground, as shown in Figure 2. Let the negative input of the amplifier is connected to a reference voltage \(V_{REF} \), and the positive input is connected to the output voltage \(v_{OUT} \) through a resistor divider network implemented by \(R_{F1} \) and \(R_{F2} \), the transfer function relating \(v_C \) and \(v_{OUT} \) is

\[
\overline{v}_{OUT} = \frac{N_{cc}(s)}{D_{cc}(s)} \overline{v}_C
\]

where

\[
D_{cc} = D_{c0} + D_{c1}s + D_{c2}s^2 + D_{c3}s^3 + D_{c4}s^4 + D_{c5}s^5 + D_{c6}s^6,
\]

\[
N_{cc} = N_{c0} + N_{c1}s + N_{c2}s^2 + N_{c3}s^3 + N_{c4}s^4 + N_{c5}s^5 + N_{c6}s^6,
\]

The coefficients of (7) and (8) will be shown in Appendix B.

3 Compensator Design

It can be shown from (10) that the compensator consists of a dc gain of \(A_C \), and a pole and a zero located at frequencies \(f_{PC} \) and \(f_{ZC} \). The three parameters can be formulated as

\[
\begin{align*}
A_C &= \frac{R_{F2}}{R_{F1} + R_{F2}} g_m R_0, \\
f_{PC} &= \frac{1}{2\pi R_{C1} C_{C1}}, \\
f_{ZC} &= \frac{1}{2\pi R_{C1} C_{C1}}.
\end{align*}
\]
Since \(f_{PC} \) is always lower than \(f_{ZC} \), (10) is a lag compensator. If \(R_{C1} \) is zero, (10) becomes a compensator with a dominant pole. The frequency response of the lag compensator is shown in Figure 3, the lag compensator provides an attenuation in magnitude at the high frequency. The degree of attenuation is determined by the distance between \(f_{PC} \) and \(f_{ZC} \). It is because the magnitude is decreased at a slope of 20dB/decade between \(f_{PC} \) and \(f_{ZC} \). The lag compensator also provides a phase lag. However, \(f_{PC} \) and \(f_{ZC} \) can be placed at a low frequency (much lower than the frequency of interest, e.g. the cross over frequency \(f_c \)) such that the lag compensator nearly does not affect the phase at the high frequency.

The aim of designing a lag compensator is to provide a desired phase margin for the compensated system. Starting from a bode plot of an un-compensated system, and a requirement of phase margin of \(\Phi_{m} \), a new \(f_c \) can be selected at the frequency corresponding to \(180^\circ - \Phi_{m} \) of the un-compensated system. Then the magnitude of the un-compensated system at \(f_c \) can be found. The magnitude at \(f_c \) can be attenuated to 0dB by the lag compensator through proper design of \(f_{PC} \) and \(f_{ZC} \). As a result, the compensated system will have a phase margin of \(\Phi_{m} \), and the cross over frequency will be \(f_c \).

Illustrative Example

The design of a current mode control SEPIC converter with a nominal input voltage of 5V, an output voltage of 5V, and an output current of 0.5A will be shown. It is suitable for applications requiring a 5V output from four batteries, which can be 4.8V to 6V depending on whether 1.2V or 1.5V batteries are used. In this case, the input voltage may be higher or lower than the output voltage, and a SEPIC converter is a proper choice.

The major components of the SEPIC are listed in Table 1. A current mode controller LM3478 will be used. The parameters of the LM3478, which can be derived from the data sheet, are also listed in Table 2.

Other parameters of (6) are calculated below. From (5),

\[
D = 0.5
\]

Also,

\[
T_2 = \frac{T_{SW}}{2} = \frac{1}{2f_{SW}}
\]

\[
T_2 = 1.25 \mu s \quad (12)
\]

\[
T_2 = 1.25 \mu s \quad (13)
\]

The parameter \(m_c \) is determined by an internal compensation ramp \(V_{SL} \) and an external compensation ramp determined by an internal current of 40 \(\mu A \) passing through an external resistor \(R_{SL} \). It can be calculated by the following equation:

\[
m_c = (V_{SL} + 40 \mu A \times R_{SW}/f_{SW}/R_{SN} = 3440000A^{-1}
\]

\[
T_M = \frac{T_{SW}}{2} \left(\frac{V_{IN} + V_{IN}}{L_1 + L_2} \right)
\]

\[
= 8.979A
\]

\[
\text{(14)}
\]

\[
\text{(15)}
\]

Table 1. Major Parameters of the Example SEPIC Converter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IN})</td>
<td>5V</td>
</tr>
<tr>
<td>(V_{OUT})</td>
<td>5V</td>
</tr>
<tr>
<td>(R_{OUT})</td>
<td>10(\Omega)</td>
</tr>
<tr>
<td>(L_1)</td>
<td>33 (\mu H)</td>
</tr>
<tr>
<td>(L_2)</td>
<td>33 (\mu H)</td>
</tr>
<tr>
<td>(C_s)</td>
<td>1 (\mu F)</td>
</tr>
<tr>
<td>(C_{OUT})</td>
<td>100 (\mu F)</td>
</tr>
<tr>
<td>(R_{OUT})</td>
<td>0.05(\Omega)</td>
</tr>
<tr>
<td>(f_{SW})</td>
<td>400 kHz</td>
</tr>
<tr>
<td>(R_{IN})</td>
<td>0.02(\Omega)</td>
</tr>
<tr>
<td>(R_{SL})</td>
<td>2 (k\Omega)</td>
</tr>
</tbody>
</table>

Submit Documentation Feedback

Copyright © 2010–2013, Texas Instruments Incorporated
Hence, all parameters for calculating the small signal model of (6) are obtained. A bode plot of (6) with the above parameters is shown in Figure 4.

Since V_{OUT} and V_{REF} are 5V and 1.26V respectively, we can design that

$$R_{F1} = 29.7 \, \text{k}\Omega \hspace{1cm} (16)$$
$$R_{F2} = 10 \, \text{k}\Omega \hspace{1cm} (17)$$

From (10),

$$A_C = \frac{R_{F2}}{R_{F1} + R_{F2}} g_m R_0$$
$$= 9.57$$
$$= 19.62 \, \text{dB} \hspace{1cm} (18)$$

![Figure 4. Frequency Response of the Un-Compensated System](image-url)

In this example, a phase margin of 90° is desired. From Figure 4, the corresponding frequency (the frequency at which the phase is 180° - 90° = 90°) is 2.1 kHz (which will also be f_C of the compensated system), and the magnitude of the un-compensated system at 2.1 kHz is 21dB. This implies that the attenuation provided by the lag compensator is 21dB + A_C = 40.62 dB. Consequently, the distance between f_{PC} and f_{ZC} should be 2.031 decade (since the magnitude is 20dB/decade in between f_{PC} and f_{ZC}). To avoid affecting the phase at f_C, f_{ZC} is designed to be one decade before f_C, i.e. 210 Hz. Then f_{PC} should be 1.95 Hz. Hence,

$$\frac{1}{R_C C_{C1}} = 2\pi \times 210 \, \text{Hz} \hspace{1cm} (19)$$
Finally, select $R_{C1} = 442 \Omega$ and $C_{C1} = 2.2 \mu F$. The frequency response of the compensated system is shown in Figure 5. It can be found that the 0dB point is at around 2.5 kHz, and the phase margin is around 90°.

![Figure 5. Frequency Response of the Compensated System with 90° Phase Margin](image)

5 Conclusion

This application note details the design of a lag compensator for current mode control SEPIC converters operating in the continuous conduction mode. Based on the open loop bode plot, a lag compensator with 90° phase margin has been designed as an illustrative example. The design of compensator depends on a number of practical concerns including the requirement of transient response, robustness, and the effect of noise. Application engineers are suggested to design properly based on practical situations.
The coefficients of (4) are listed as follows.

\[
\Delta(s) = D_0 + D_1s + D_2s^2 + D_3s^3 + D_4s^4,
\]

(21)

\[
D_0 = R_{\text{OUT}}(1 - D)^2,
D_1 = L_M + (1 - D)^2 R_C R_{\text{OUT}},
D_2 = L_M(R_C + R_{\text{OUT}})C_{\text{OUT}} + (1 - D)^2(L_1 + L_2)R_{\text{OUT}}C_S,
D_3 = L_1L_2C_S + (1 - D)^2(L_1 + L_2)R_C R_{\text{OUT}}C_S C_{\text{OUT}},
D_4 = L_1L_2(R_C + R_{\text{OUT}})C_S C_{\text{OUT}},
L_M = D^2L_1 + (1 - D)^2L_2.
\]

(22)

From (2), \(N_d(s)\) can be expended as follows.

\[
N_d(s) = N_0 + N_1s + N_2s^2 + N_3s^3 + N_4s^4,
\]

(23)

\[
N_0 = V_{\text{IN}}R_{\text{OUT}},
N_1 = V_{\text{IN}}R_C R_{\text{OUT}}C_{\text{OUT}} \cdot \frac{D^3}{(1 - D)^2} V_{\text{IN}}L_1,
N_2 = V_{\text{IN}}(L_1 + L_2)R_{\text{OUT}}C_S \cdot \frac{D^2}{(1 - D)^2} V_{\text{IN}}L_1R_C C_{\text{OUT}},
N_3 = V_{\text{IN}}(L_1 + L_2)R_C R_{\text{OUT}}C_S C_{\text{OUT}} \cdot \frac{D}{(1 - D)^2} V_{\text{IN}}L_1L_2C_S,
N_4 = \cdot \frac{D}{(1 - D)^2} V_{\text{IN}}L_1L_2R_C C_S C_{\text{OUT}}.
\]

(24)

From (3), \(N_n(s)\) can be expanded as follows.

\[
N_n(s) = N_{n0} + N_{n1}s + N_{n2}s^2 + N_{n3}s^3,
\]

(25)

\[
N_{n0} = \tilde{D}(1 - \tilde{D})R_{\text{OUT}},
N_{n1} = \tilde{D}(1 - \tilde{D})R_C R_{\text{OUT}},
N_{n2} = (1 - \tilde{D})L_2R_{\text{OUT}}C_S,
N_{n3} = (1 - \tilde{D})L_2R_C R_{\text{OUT}}C_S C_{\text{OUT}}.
\]
The coefficients of (7) are listed as follows.

\[D_{cc} = D_{c0}s + D_{c1}s^2 + D_{c2}s^3 + D_{c3}s^4 + D_{c4}s^5 + D_{c5}s^6, \]

\[D_{c0} = C_{d0}D_1 + C_{d1}D_0 - C_v0N_1 - C_v1N_0, \]

\[D_{c1} = C_{d0}D_2 + C_{d1}D_1 + C_{d2}D_0 - C_v0N_2 - C_v1N_1 - C_v2N_0, \]

\[D_{c2} = C_{d0}D_3 + C_{d1}D_2 + C_{d2}D_1 - C_v0N_3 - C_v1N_2 - C_v2N_1 - C_v3N_0, \]

\[D_{c3} = C_{d0}D_4 + C_{d1}D_3 + C_{d2}D_2 - C_v0N_4 - C_v1N_3 - C_v2N_2, \]

\[D_{c4} = C_{d1}D_4 + C_{d2}D_3 + C_{d3}D_2 - C_v1N_4 - C_v2N_3 - C_v3N_1, \]

\[D_{c5} = C_{d2}D_4 + C_{d3}D_3 - C_v2N_4 \]

\[D_{c6} = C_{d3}D_4 \]

\[C_{c0} = \frac{V_{IN}L_1L_2}{(1 - D)} \]

\[C_{c1} = L_1L_2L_M T_M + \frac{D}{(1 - D)}((1 - D)L_2 - DL_1)\frac{V_{IN}L_1}{(1 - D)}T_2 + \frac{L_2}{R_{OUT}(1 - D)} \]

\[C_{c2} = \frac{V_{IN}L_1L_2}{(1 - D)} \left[(L_1 + L_2)C_S - L_1T_3 - \frac{D^2}{R_{OUT}(1 - D)} \right] \]

\[C_{c3} = L_1^2L_2^2C_S T_M \]

\[C_{c4} = (1 - D)L_1L_2 \]

\[C_{c5} = DL_1(L_1 - DL_1)T_2 \]

\[C_{c6} = (1 - D)L_1L_2 (L_1 + L_2)C_S \]

\[T_2 = \frac{T_{SW}}{2}, \text{ } T_{SW} \text{ is the switching period,} \]

\[T_M = \frac{T_{SW}}{2} \left(2m + \frac{\frac{V_{IN}}{L_1} + \frac{\frac{V_{IN}}{T_2}}{L_2}}{m_0} \right), \text{ } \frac{V_{c}}{L_2} \text{ is the slope of a compensation ramp,} \]

The coefficients of (8) are listed as follows.

\[N_{cc} = N_{c0} + N_{c1}s + N_{c2}s^2 + N_{c3}s^3 + N_{c4}s^4 + N_{c5}s^5, \]

\[N_{c0} = C_{c0}N_0, \]

\[N_{c1} = C_{c0}N_1, \]

\[N_{c2} = C_{c0}N_2 + C_{c1}N_1, \]

\[N_{c3} = C_{c0}N_3 + C_{c2}N_1, \]

\[N_{c4} = C_{c1}N_4 + C_{c2}N_2, \]

\[N_{c5} = C_{c2}N_3, \]

\[N_{c6} = C_{c2}N_4 \]

where

\[C_{c0} = L_1L_2L_M \]

\[C_{c2} = L_1^2L_2^2C_S \]
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components and their applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Automotive and Transportation</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Communications and Telecom</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Computers and Peripherals</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>DSP</td>
<td>Energy and Lighting</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Industrial</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Space, Avionics and Defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>TI E2E Community e2e.ti.com</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated