
1SPNA239–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

HALCoGen Ethernet Driver With lwIP Integration Demo and Active Web
Server Demo

Application Report
SPNA239–September 2019

HALCoGen Ethernet Driver With lwIP Integration Demo
and Active Web Server Demo

Eric Ding

ABSTRACT
This application report illustrates the use of the Ethernet driver with two demonstrations, both with
lightweight IP (lwIP) integrated, which is a widely used open-source TCP/IP stack designed for embedded
systems. The demos run on TI Hercules™ Arm® Cortex®-R MCUs for functional safety. The driver code
generation with the TI HALCoGen tool, the port of lwIP and the design of lwIP integration are explained.
Finally, the test setup, build process and results are provided in the document.

Contents
1 Introduction ... 2
2 Supported Features ... 2
3 Get the Software ... 2
4 Configuring EMAC and MDIO Using HALCoGen GUI for the lwIP Demo ... 3
5 Additional Changes for Active Web Server Demo... 6
6 Programming Sequence Using HALCoGen Generated Drivers ... 8
7 Design of lwIP Integration .. 9
8 Release Folder Structure.. 11
9 Run the Test .. 12

List of Figures

1 Active Web Server Demo CCS Project Structure ... 7
2 Software Layers With lwIP Integration .. 9
3 lwIP Demo Software Folder Structure ... 11
4 Active Web Server Demo Software Folder Structure.. 12
5 Demo UART Console Output .. 13
6 Web Server From lwIP Demo .. 13
7 Active Web Server I/O Control Demo 1 .. 14
8 Active Web Server I/O Control Demo 2 .. 15

List of Tables

1 IwIP Port Changes... 6

Trademarks
Hercules, Code Composer Studio are trademarks of Texas Instruments.
Arm, Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
All other trademarks are the property of their respective owners.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA239

Introduction www.ti.com

2 SPNA239–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

HALCoGen Ethernet Driver With lwIP Integration Demo and Active Web
Server Demo

1 Introduction
The Ethernet Media Access Controller (EMAC) and Management Data Input/Output (MDIO) peripherals on
the Hercules line of devices provide a full-featured Ethernet interface. The EMAC peripheral conforms to
the IEEE 802.3 standard, describing the Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) Access Method and Physical Layer specifications. The EMAC module provides an efficient
interface between the processor and a local network. The EMAC supports 10Base-T (10 Mbps) and
100BaseTX (100 Mbps), in half-duplex and full-duplex modes. The EMAC control module provides an
interface from the CPU to the EMAC and MDIO modules. The EMAC control module controls device
interrupts and incorporates an 8KB internal RAM to hold EMAC buffer descriptors, which is also known as
Communications Port Programming Interface (CPPI) RAM. The MDIO module implements the 802.3 serial
management interface to interrogate and control up to 32 Ethernet PHYs connected to the device by using
a shared two-wire bus. Applications can use the MDIO module to configure the auto negotiation
parameters of each PHY attached to the EMAC, retrieve the negotiation results, and configure required
parameters in the EMAC module for correct operation.

The EMAC driver code is part of the HALCoGen release and APIs for EMAC and MDIO are listed in
include/emac.h and include/mdio.h, respectively.

2 Supported Features
• Integration of the CPDMA based EMAC driver for RM46/RM48/RM57/TMS570LS/TMS570LC devices
• lwIP (lightweight IP) 1.4.1 TCP/IP stack ported for the above devices' EMAC driver
• By default, the DHCP support is enabled. However, the integration supports both DHCP and Static IP

addressing.
• Integration with HALCoGen v04.07.01 release
• The integrated application demonstrates web server applications on RM46/RM48/RM57/

TMS570LS/TMS570LC devices.
• By default, the software is configured for executing from flash.
• Diagnostic and debug messages are printed on the JTAG SCI Port. The following are the settings for

the console:
– Baud Rate: 9600
– Data: 8 bit
– Parity: None
– Stop bit: 2
– Flow Control: None

NOTE: Since the MAC Address is part of the binary image, all of the devices programmed with
these binaries and connected to the same DHCP server will be assigned the same IP
address. The default MAC address is 00:08:EE:03:A6:6C.

3 Get the Software
The latest lwIP Demo software version 04.00.00 can be downloaded from:
http://git.ti.com/hercules_examples/hercules_examples/trees/master/Application/LwIP. The previous
version 00.03.00 can be downloaded from: http://software-
dl.ti.com/hercules/hercules_public_sw/HALCoGen_EMAC_lwIP-00.03.00-installer.exe.

Compared to 00.03.00 version, the new version has the following updates:
• Code generated with HALCoGen release 04.07
• Added LAUNCHXL2 570LC43x and LAUNCHXL2 RM57x support

The latest active web server demo software version 1.1.0 can be downloaded from:
http://git.ti.com/hercules_examples/hercules_examples/trees/master/Application/ActiveWebserver.
Compared to the previous 1.0.0 version, the new one updated with HALCoGen release 04.07.01 supports
LAUNCHXL2 570LC43x and LAUNCHXL2 RM57x.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA239
http://git.ti.com/hercules_examples/hercules_examples/trees/master/Application/LwIP
http://software-dl.ti.com/hercules/hercules_public_sw/HALCoGen_EMAC_lwIP-00.03.00-installer.exe
http://software-dl.ti.com/hercules/hercules_public_sw/HALCoGen_EMAC_lwIP-00.03.00-installer.exe
http://git.ti.com/hercules_examples/hercules_examples/trees/master/Application/ActiveWebserver

www.ti.com Configuring EMAC and MDIO Using HALCoGen GUI for the lwIP Demo

3SPNA239–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

HALCoGen Ethernet Driver With lwIP Integration Demo and Active Web
Server Demo

HALCoGen can be downloaded from: http://www.ti.com/tool/HALCOGEN.

TI ARM compiler 18.2.2 LTS is used to build the code that can be downloaded from:
http://www.ti.com/tool/download/ARM-CGT-18/18.12.2.LTS.

TI Code Composer Studio™ (CCS) 8.3 is used to import, build and run the project, which can be
downloaded from: http://software-dl.ti.com/ccs/esd/documents/ccs_downloads.html.

4 Configuring EMAC and MDIO Using HALCoGen GUI for the lwIP Demo

NOTE: The lwIP demo software package includes all the CCS projects and source code for various
Hercules platforms. See the installation for more details. Those projects can be imported into
CCS and built to run as it is.

The following sequence explains how to get the working driver code for the EMAC and MDIO modules
using HALCoGen for the lwIP demo, which is a static web server demo. This is for informative purposes
only.

4.1 RM46x, RM48x and TMS570LSx HDK
1. Under the ‘Driver Enable’ tab, enable EMAC Driver and SCI2 Driver.
2. Under ‘VIM RAM’, add the names of the ISRs for EMAC Transmit and Receive Interrupts (Channels 77

and 79, respectively).
3. Enable these interrupts under the ‘VIM Channel 64-95’ tab.
4. Under the ‘PLL’ tab, change the multiplier for both PLLs to a value of 120, such that the output

frequency in both cases is 160.00 MHz
5. Under the ‘GCM’ tab, change the value of the VCLKA4 divider to 2, such that the output of VCLKA4(or

VCLKA4_DIVR_EMAC in case of RM46x/TMS570LS12x devices) is 40.00 MHz
6. Under the ‘PINMUX’ tab, enable RMII or MII (depending on the board that you are using - Most HDKs

support MII by default, while control CARDs are designed for RMII), MDIO(G3) and MDCLK(V5).
7. Under the ‘EMAC’ tab, change the EMAC address to 00:08:EE:03:A6:6C, which is the default MAC

address. Change the physical address to 1.
8. Generate the system initialization and HAL Code.

4.2 TMS570LC43x and RM57x HDK
1. Under the ‘Driver Enable’ tab, enable EMAC Driver and SCI1 Driver.
2. Under ‘VIM RAM’ add the names of the ISRs for EMAC Transmit and Receive Interrupts (Channels 77

and 79, respectively).
3. Enable these interrupts under the ‘VIM Channel 64-95’ tab.
4. Under the ‘PLL’ tab, change the multiplier for both PLLs to a value of 150, such that the output

frequency in both cases is 300.00 MHz.
5. Under the ‘GCM’ tab, change the value of the VCLK1, VCLK2 and VCLK3 Dividers to 1 and VCLKA4

Divider to 2, such that the output of VCLKA4_DIV is 37.50 MHz.
6. Under the ‘PINMUX’ tab, enable RMII/MII, under Pin Muxing. Under Input Muxing, enable MDIO(G3),

MII_COL(F3), MII_CRS(B4), MII_RX_DV(B11), MII_RX_ER(N19), MII_RXCLK(K19), MII_RXD[0],
MII_RXD[1], MII_RXD[2], MII_RXD[3], MII_TX_CLK.

7. Under the ‘EMAC’ tab, change the EMAC address to the correct address (the default one in the
example is mentioned above). The physical address is 1 by default.

8. Generate the system initialization and HAL Code.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA239
http://www.ti.com/tool/HALCOGEN
http://www.ti.com/tool/download/ARM-CGT-18/18.12.2.LTS
http://software-dl.ti.com/ccs/esd/documents/ccs_downloads.html

Configuring EMAC and MDIO Using HALCoGen GUI for the lwIP Demo www.ti.com

4 SPNA239–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

HALCoGen Ethernet Driver With lwIP Integration Demo and Active Web
Server Demo

4.3 RM57x Launchpad (LAUNCHXL2 RM57x)
1. Navigate to the folder '<install_dir>'. Copy the RM57x folder to a folder named

'<install_dir>/LAUNCHXL2-RM57'.
2. Start a HALCoGen session.
3. From HALCoGen, open the project '<install_dir>/LAUNCHXL2-RM57/HALCoGen-RM57x/HALCoGen-

RM57x.hcg'.
4. Make the following changes to the HALCoGen Project:

a. RM57L843ZWT/Driver Enable Tab. Enable the GIO Driver:
i. Check "Enable GIO Driver".
ii. Confirm GIO, SCI1, and EMAC drivers are enabled.

b. RM57L843ZWT/ECLK Tab. Provide a 25 MHz Clock to the PHY:
i. In the ECLK Pin Mode Group, change the ECLK pin Mode to ECLK.
ii. In the ECLK pin Group, make sure DIR is checked.
iii. In the ECLK Functional Configuration group, change Divider to 3 so that ECPCLK is 25 MHz.
iv. Also check the "Continue on suspend" button.

c. PINMUX/Pin Muxing Tab. Change the MII and MDIO interface pins to their default locations:
i. Make sure MII is checked in the Enable/Disable Peripherals Group at the top of the PINMUX.

This is necessary to put the MAC in MII mode, even though it will also move the MII pins to
their alternate location, which have to be undone manually.

ii. Uncheck the MII and MDIO signals on Balls A14, B4, B11, D19, E18, F3, G3, G19, H18, H19,
J18, J19, K19, N19, P1, R2 and V5. These rows should now be blank, although you can select
non-Ethernet functions, if desired.

iii. Change the selection on balls T4, U7 to the default functions (from MII_RX_AVCLK4 to
MII_RXCLK, and from MII_TX_AVCLK4 to MII_TX_CLK). The PHY will provide these clocks to
the MAC on the launchpad.

NOTE: List Conflicts show total conflicts 2 for Ball T4 and U7 - just ignore this.

d. PINMUX/Input Pin Muxing Tab. Change all of the input MII and MDIO signals to the Default (left
Column) states:
i. MDIO=F4, MII_COL=W4, MII_CRS=V4, MII_RX_DV=U6, MII_RX_ER=U5, MII_RXCLK=T4,

MII_RXD[0]=U4, MII_RXD[1]=T3, MII_RXD[2]=U3, MII_RXD[3]=V3, MII_TX_CLK=U7
e. GIO/Port A Tab. GIOA[3] and GIOA[4] need to be driven high, to release the PHY from reset and

power down.
i. Check the "DIR" box for Bit 3 and Bit 4.
ii. Change DOUT to '1' for Bit 3 and Bit 4.

f. Save your modified HALCoGen Project.
g. Press "F5" or Choose File → Generate Code from The HALCoGen menu.
h. Exit HALCoGen.

5. Launch Code Composer Studio.
6. Import the project you just modified:

a. From the Project Menu, choose "Import CCS Projects".
b. Select 'search-directory'.
c. Browse to the folder '<install_dir>'.
d. From the list of projects available to import - select "Build-RM57x".

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA239

www.ti.com Configuring EMAC and MDIO Using HALCoGen GUI for the lwIP Demo

5SPNA239–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

HALCoGen Ethernet Driver With lwIP Integration Demo and Active Web
Server Demo

7. Make a copy of the original project, naming it "Build-LAUNCHXL2-RM57x":
a. In CCS's Project Explorer, select the project "Build-RM57x".
b. Use CTRL-C, CTRL-V or the context menu to copy/paste the project.
c. For the new project, use the name "Build-LAUNCHXL2-RM57x". You can create a new folder

'<install_dir>/LAUNCHXL2-RM57/Build-LAUNCHXL2-RM57x' for this.
8. Change the HALCoGen Project included by your new project:

a. Select your new project, 'Build-LAUNCHXL2-RM57x', in CCS's Project Explorer.
b. If not expanded, expand the tree under this project.
c. Select the folder "HALCoGen-RM57x". The folder icon should indicate that it is a linked resource.
d. From the context-menu, select "Properties" for the folder "HALCoGen-RM57x".
e. With "Resource" selected, press "Edit" and change the location to: PROJECT_LOC\..\HALCoGen-

RM57x.
f. Make sure the Resolved Location displayed matches the HALCoGen project that you edited in

step 7.
g. You can do the same steps to resolve the locations for the "example" and "lwIP-1.4.1" folders if

your CCS project was created in a different location.
9. Change the PHY Id to match the DP83630 Precision PHYTER on the Launchpad:

a. From your "Build-LAUNCHXL2-RM57L" CCS project, navigate to and open for editing "HALCoGen-
RM57x\include\HL_phy_dp83640.h".

b. Change the last "USER CODE" block in the header file, so that it reads:
/* USER CODE BEGIN (2) */
/* @todo @fixme: This is a dirty hack, but it minimizes changes for now */
#undef DP83640_PHY_ID
#define DP83640_PHY_ID (0x20005CE1u)
/* USER CODE END */

10. Add Code to initialize GIOA[3] and GIOA[4] (To release the PHY):
a. From your "Build-LAUNCHXL2-RM57L" CCS project, navigate to and open for editing "HALCoGen-

RM57x\source\HL_sys_main.c".
b. Add an include directive for "HL_gio.h", so that the first USER CODE block reads:

/* USER CODE BEGIN (1) */
#include "HL_gio.h"
extern void EMAC_lwIP_Main (uint8_t * emacAddress);
/* USER CODE END */

c. Add a call to gioInit() from main() so that the third user block reads:
/* USER CODE BEGIN (3) */
gioInit();
EMAC_lwIP_Main(emacAddress);
/* USER CODE END */

11. Update PINMUX file:
a. From your "Build-LAUNCHXL2-RM57L" CCS project, navigate to and open for editing "HALCoGen-

RM57x\source\HL_pinmux.c".
b. Change PINMUX_BALL_R4_ to PINMUX_BALL_R4_GIOB_3

pinMuxReg->PINMUX[9] = PINMUX_BALL_R4_GIOB_3 |
PINMUX_BALL_N17_EMIF_nCS_0 | PINMUX_BALL_L17_EMIF_nCS_2;

12. Rebuild your project.
13. Load your project onto the Launchpad and test it out.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA239

Configuring EMAC and MDIO Using HALCoGen GUI for the lwIP Demo www.ti.com

6 SPNA239–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

HALCoGen Ethernet Driver With lwIP Integration Demo and Active Web
Server Demo

4.4 TMS570LC43 Launchpad (LAUNCHXL2 570LC43x)
The instructions discussed in the previous RM57x Launchpad section apply to port lwIP demo on
TMS570LC43, except copying '<install_dir>/ TMS570LC43x' as the starting point.

5 Additional Changes for Active Web Server Demo
Modifications have been done to the lwIP demo to support an active web server, which can run on
LAUNCHXL2 570LC43x and LAUNCHXL2 RM57x. This active web server demo tries to showcase
running on the LAUNCHXL2 570LC43x and LAUNCHXL2 RM57x Launchpad. The web server
implementation supports SSI and CGI calls. Using this demo, you can toggle the LED and send text to a
serial terminal connected to the com port on the LaunchPad.

NOTE: The active web server demo software package includes all the CCS projects and source
code for two Hercules platforms. For details, check the installation folder. Those projects can
be imported into CCS and built to run as it is. This demo currently supports only
LAUNCHXL2 570LC43 and LAUNCHXL2 RM57x. The port to the other platforms should be
straight forward and mainly needs changes in the HALCoGen configuration in similar lines to
the HALCoGen configurations created for LAUNCHXL2 570LC43, LAUNCHXL2 RM57x in
this active web server demo. The following sequence explains how to get working driver
code for EMAC and MDIO modules using HALCoGen configuration and the lwIP port. This is
for informative purpose only.

5.1 HALCoGen Configuration Changes
The sections below describe the additional configuration changes made to the HALCoGen in addition to
changes mentioned in the lwIP demo.
• Driver Enable tab changes: Enable GIO and Enable RTI driver
• Pinmux changes: Enable GIO
• Interrupts: Enable interrupts for the RTI compare 0 and RTI compare 2
• GIO changes: Enable output direction for GIOB pin 6 and 7.THE GIO is used for the user LED 2 and

LED 3.
• RTI changes: Set RTI compare 0 for 10 ms and RTI compare 2 for 500 ms. drive both compares by

counter 0.The RTI compare 0 is used for servicing the lwIP timers and the RTI Compare 2 is used for
the blinking animation LED LED3.

5.2 lwIP Port Changes
The port now services the lwIP timers needed (the demo should work even without this). A bug in the
transmission of the packets smaller than 60 bytes has been fixed in the port. Some additional guard code
has been added to port. The changes are done mainly in the files listed in Table 1.

Table 1. IwIP Port Changes

File Change
\third_party\Iwip-1.4.1\ports\hdk\netif\hdkif.c Added guard conditions, fixed a bug in the hdkif_output()
\utils\lIwiplib.c Added servicing of IwIP timers
\TMS570LC43x\Build-LAUNCHXL2-570LC43\Iwipopts.h Configuration changes for the IwIP stack
\RM57x\Build-LAUNCHXL2-RM57x\Iwipopts.h Configuration changes for the IwIP stack

\example\hdk\src\Iwip_main.c Initialization of application and control path for the LwIP and EMAC
driver. Added API to handle CGI and SSI calls.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA239

www.ti.com Additional Changes for Active Web Server Demo

7SPNA239–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

HALCoGen Ethernet Driver With lwIP Integration Demo and Active Web
Server Demo

5.3 CCS Project Structure
Figure 1 shows the CCS project structure and explains about the important files.

Figure 1. Active Web Server Demo CCS Project Structure

5.4 Changing the Web Pages Rendered by Web Server
As indicated in the previous section folder, /fs (file system that is rendered) contains the present html files
and java scripts that are being rendered by the active web server. The contents of the folder can be
converted to an .h file containing various data structures as in io_fsdata.h using the utility in
tools/makefsfile.exe as shown below. (There is also a perl script available at location third_party\lwip-
1.4.1\apps\httpserver_raw\makefsdata. You can read through the script to get a better understanding of
the utility).

makefsfile.exe -i fs -o io_fsdata.h -r -h -q, where:
• fs is the folder containing the file system (html files, java scripts, images, and so forth) that is being

rendered by the web server.
• io_fsdata.h is the .h file generated.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA239

Programming Sequence Using HALCoGen Generated Drivers www.ti.com

8 SPNA239–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

HALCoGen Ethernet Driver With lwIP Integration Demo and Active Web
Server Demo

6 Programming Sequence Using HALCoGen Generated Drivers
Using the HALCoGen generated driver code (through the procedure above), the following sequence can
be used to configure and operate the EMAC and MDIO modules.
1. Initialize the EMAC module by calling EMACInit(). This API resets the EMAC and EMAC Control

Module Registers.
2. Initialize the MDIO Module using MDIOInit(). Insert a short delay after this function returns to ensure

that MDIO module initialization completes successfully before using other MDIO APIs.
3. Auto-negotiate with the PHY device connected to MDIO. PHY Auto negotiation APIs are provided as

reference and must be adapted to the external PHY present on the hardware.
4. After completing auto negotiation, get the auto negotiation result using the respective PHY’s link

partner ability API and set the duplex mode of operation in the EMAC using EMACDuplexSet().
5. Set the MAC Address in the EMAC hardware using EMACMACAddrSet().
6. Enable unicast for a specific channel using the EMACRxUnicastSet() API (optional).
7. Initialize the TX and RX buffer descriptors in the CPPI RAM, which is local to the EMAC.
8. Enable the TX operation in EMAC using EMACTxEnable(). This enables the EMAC hardware transmit

operation. However, transmission will not start until a valid descriptor pointer is written using
EMACTxHdrDescPtrWrite().

9. Enable the RX operation in EMAC using EMACRXEnable().
10. Write the RX Header Descriptor Pointer using EMACRxHdrDescPtrWrite(). The EMAC hardware will

start receiving data at this point. The data is stored to the buffer pointer in this buffer descriptor. After
the buffer corresponding to this descriptor is filled, the next descriptor is used by the EMAC hardware
according to the buffer descriptor settings.

11. Enable MII using EMACMIIEnable().
12. Enable the Transmit and Receive Pulse interrupts using EMACTxIntPulseEnable() and

EMACRxIntPulseEnable(). The interrupts will be routed through the EMAC Control Core to the CPU
interrupt controller. This enables the EMAC TX and RX pulse interrupts at EMAC peripheral level only.
The core interrupts must be enabled separately in the VIM.

The following guidelines should be observed when writing an EMAC interrupt service routine (ISR):
• In an EMAC Transmit ISR, the interrupt must be acknowledged to the EMAC hardware using

EMACCoreIntAck(). However, the interrupt will be cleared only if the completion pointer is written using
the EMACTxCPWrite() API with the last processed TX buffer descriptor.

• In an EMAC Receive ISR, the interrupt must be acknowledged to the EMAC hardware using
EMACCoreIntAck(). Again, the interrupt will be cleared only if the completion pointer is written using
the EMACRxCPWrite() API with the last processed RX buffer descriptor.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA239

 LWIP CORE

 LWIP

 INTERFACE/PORT

STACK INIT DHCP INIT

IP

PROTOCOL

HANDLER

INTERFACE

INIT

HERCULES

INTERFACE INIT

RX & TX HANDLER

 LWIP APPS

LWIP APPLICATION

HARDWARE ABSTRACTION LAYER

(EMAC, MDIO & PHY)

LWIP INIT RX & TX INTERRUPT ROUTINES

HARDWARE

 SYSTEM INITIALIZATION

 · CPU Initialization

 · PLL

 · Peripheral Initialization

 · Interrupt Configuration

 · C-Startup

www.ti.com Design of lwIP Integration

9SPNA239–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

HALCoGen Ethernet Driver With lwIP Integration Demo and Active Web
Server Demo

7 Design of lwIP Integration
The integrated software deliverable consists of four main layers:
• Hardware Abstraction Layer (HAL): EMAC and MDIO HALs are part of the HALCoGen release and the

PHY HAL is part of the application.
• lwIP Network Interface Layer – Hercules NetIF port for lwIP
• lwIP Application Layer – An IP stack application based on lwIP. Examples are provided for HTTP

server, UDP based client and echo server. The packets start and end at this layer.
• System Application Layer – This includes the system initialization and is generated based on the

HALCoGen GUI. This layer configures the PLLs and PINMUX.

Figure 2. Software Layers With lwIP Integration

7.1 Hardware Abstraction Layer
This layer implements the lowers level hardware abstraction APIs that can be used for control and
configuration of the EMAC device.
• emac.c – Ethernet MAC and Control module. This file is generated using HALCoGen. In this release,

the file is located at <Device>\HALCoGen-xx\source\emac.c, where xx is the device variant.
• mdio.c – MDIO interface between the PHY and MAC. This file is generated using HALCoGen. In this

release, the file is located at <Device>\HALCoGen-xx\source\emac.c.
• phy_dp83640.c – Example PHY Device HAL for DP83640 PHY on HDK. This file should be written for

the external Ethernet PHY on the hardware.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA239

Design of lwIP Integration www.ti.com

10 SPNA239–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

HALCoGen Ethernet Driver With lwIP Integration Demo and Active Web
Server Demo

7.2 lwIP Interface Layer
To interface with the rest of the network, the device abstraction layer needs to be glued with a network
stack that can form and interpret network packets. The device abstraction hooks into the interface layer of
lwIP. This is also referred to as the device-specific "port" or the hdk-interface for lwIP. It defines standard
interface entry points and state variables. A network device is represented by struct netif, generically
referred to as netif. The netif contains all the information about the interface, including the IP/MAC
address(s), TCP/IP options, protocol handlers, link information, and (most importantly) the network device
driver entry point callbacks. Every network interface must implement the linkoutput and init callbacks, and
all state information is maintained in this structure. The interface layer also implements the core interrupt
handling and DMA handling. All the required function calls for initializing the lwIP stack and registering the
network interface are performed in lwIP-1.4.1\ports\hdk\lwIPlib.c\lwIPlib.c. For more information about the
lwIP stack implementation, see the lwIP documentation under lwip-1.4.1\doc.

7.3 Hercules Development Network Interface Layer
The main tasks of the HDK network interface layer are discussed in the following sections.

7.3.1 Network Device Initialization
The first step towards bringing up the interface is done as part of the hdkif_init(). This function is called
when the network device is registered with the lwIP stack using netif_add. As part of the initialization, the
netif output callbacks are registered and hardware initialization, including PHY and DMA initialization, is
performed. DMA buffer descriptor (BD) pools are maintained in the CPPI RAM for both TX and RX
channels. The descriptor chains are maintained by the "free_head", which points to the next unused/free
descriptor in the BD pool, and "active_tail", which points to the last BD in the active queue that has been
en-queued to the hardware. The packet buffers (pbuf) are pre-allocated for maximum length and queued
in the receive buffer descriptors before the reception begins. For details on pbuf handling by lwIP, see the
lwIP documentation under lwip-1.4.1\doc.

7.3.2 Packet Data Transmission
Packet data transmission takes place inside the linkoutput callback registered with the lwIP stack. This
callback is invoked whenever the lwIP stack receives a packet for transmission from the application layer.
The pbuf can contain a chain of packet buffers and, hence, the DMA descriptors are properly updated
(chained if necessary), with SOP, EOP and length fields. The first DMA descriptor is marked with the EOP
and OWNER flags, while only the last is set with the EOP flag. After filling the BD's with the pbuf
information, the BD, which corresponds to the SOP, is written to the HEAD descriptor pointer register to
start the transmission. Once a packet is transmitted, the EMAC Control Core generates a transmit
interrupt. This interrupt is cleared only if the completion pointer is written with the last BD processed. In
the interrupt handler, the next BD to process is taken and traversed to reach the BD that corresponds to
the end of the packet. This BD, which corresponds to the end of the packet, is written to the completion
pointer. After this, the pbuf that corresponds to this packet is freed. Thus, it is made sure that the freeing
of pbuf is done only after the packet transmission is complete.

7.3.3 Packet Data Reception
Packet reception takes place in the context of the interrupt handler for receive. As described earlier, the
receive buffer descriptors are en-queued to the DMA before the reception can actually begin. The pbuf
allocated for maximum length, may actually contain a chain of packet buffers. The descriptors are updated
for OWNER flag only. The EOP, SOP and EOQ are updated by the DMA upon completion of the
reception. One important point to note is that, the actual data received may be less/more than the max
length allocated. Hence, the pbuf chain needs to be adjusted as detailed here. First, the active_head
(which is the first BD en-queued) is checked for OWNER bit having been cleared by the DMA. Then, the
BD list is traversed, starting at the active_head, to find the EOP BD, which is the last BD of the current
packet. While doing so, if the EOP is not found on the current BD, then the pbuf of the current BD is
chained to the pbuf of the next BD, since the current packet has spilled over to the next BD. Once, the
EOP is found the last pbuf is updated as the terminator (pbuf->next = NULL). Thus, the entire packet is
collected and passed to the upper layer for processing. Since, the current BD has been done with, it is put
back at the free_head, by allocating a new pbuf.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA239

www.ti.com Design of lwIP Integration

11SPNA239–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

HALCoGen Ethernet Driver With lwIP Integration Demo and Active Web
Server Demo

7.4 lwIP Application Layer
This layer contains the Ethernet application (HTTP server, echo server, and so forth). This is located at
lwIP-1.4.1/apps/<application>. This is the layer at which all the incoming packets terminate and all
outgoing packets originate. This release contains a httpserver_raw application that runs a sample web
server on the device.

7.5 System Application Layer
This layer implements system level initialization and provides options for lwIP stack. This layer can contain
any other algorithms, decoding, and so forth. The main IP stack based application is part of the lwIP
directory as mentioned above.

8 Release Folder Structure
The lwIP demo software supports eight different variants. The folder for each variant contains the
following:
• Build folder: This contains the CCS project that can be imported into your workspace and built.
• HALCoGen folder: This folder contains the source and include folders generated using the latest

version on HALCoGen.

Figure 3. lwIP Demo Software Folder Structure

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA239

Run the Test www.ti.com

12 SPNA239–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

HALCoGen Ethernet Driver With lwIP Integration Demo and Active Web
Server Demo

NOTE:
• The 'Build-xx' folder contains the CCS project for the device.
• The 'HALCoGen-xx' folder contains the HALCoGen generated driver files for the device.
• The 'doc' folder contains manifest and user's guide.
• The 'example' folder contains a port of the lwIP example.
• 'lwIP-1.4.1' contains all the lwIP library files.

The active web server demo software supports two different variants. The folder structure is similar to the
lwIP demo. In addition,
• The 'fs' folder contains the html file and Java script to generate webpage file.
• The 'tools' folder contains makefsfile utility.
• The 'utils' folder contains lwIP related initialization code.

Figure 4. Active Web Server Demo Software Folder Structure

9 Run the Test

9.1 Hardware Setup
1. Connect Ethernet port on HDK or Launchpad to network with DHCP server.
2. For HDK, enable the Ethernet on EVM by setting switch S2 bit4 to “ON” position.
3. Connect the JTAG USB port to PC (used for console output also).
4. Set the console output with 9600, 8-N-2, no flow control.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA239

www.ti.com Run the Test

13SPNA239–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

HALCoGen Ethernet Driver With lwIP Integration Demo and Active Web
Server Demo

9.2 Building and Executing the lwIP Demo
1. Import the project into CCS from <install_folder>/<device>/Build_xx folder, based on the board.
2. Build the project. Default target configuration is supplied with this software.
3. Download and execute the binary (disconnect the device from debugger and reset). Figure 5 shows a

screen capture of the console output.

Figure 5. Demo UART Console Output

4. The web server is accessible at the IP address displayed in the console.

Figure 6. Web Server From lwIP Demo

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA239

Run the Test www.ti.com

14 SPNA239–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

HALCoGen Ethernet Driver With lwIP Integration Demo and Active Web
Server Demo

9.3 Building and Executing the Active Web Server Demo
The active web server demo serves a web page that can be navigated, it is not a static web page and it
also allows controls to control some LEDs on the Launchpad. There are two demos bundled.

9.3.1 I/O Control Demo 1
The demo provides the toggle LED button that can be used to toggle LED 2 on the Launchpad. The demo
also shows the current status of the LED. It provides a text box that can be used to control the blinking
speed of the animation on LED 3. This demo showcases the CGI handling capability of the web server
demo. Figure 7 shows the IO control demo 1 page.

Figure 7. Active Web Server I/O Control Demo 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA239

www.ti.com Run the Test

15SPNA239–September 2019
Submit Documentation Feedback

Copyright © 2019, Texas Instruments Incorporated

HALCoGen Ethernet Driver With lwIP Integration Demo and Active Web
Server Demo

9.3.2 I/O Control Demo 2
The IO control demo 2 showcases the SSI capability of the web server. It shows the current status of LED
2 and the current blinking percentage of the animation on LED 3. The percentage of the blinking can be
updated. It also provides a text box in which you can enter any text and observe it on the UART console
connected to the com port of the launchpad.

Figure 8. Active Web Server I/O Control Demo 2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA239

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	HALCoGen Ethernet Driver With lwIP Integration Demo and Active Web Server Demo
	1 Introduction
	2 Supported Features
	3 Get the Software
	4 Configuring EMAC and MDIO Using HALCoGen GUI for the lwIP Demo
	4.1 RM46x, RM48x and TMS570LSx HDK
	4.2 TMS570LC43x and RM57x HDK
	4.3 RM57x Launchpad (LAUNCHXL2 RM57x)
	4.4 TMS570LC43 Launchpad (LAUNCHXL2 570LC43x)

	5 Additional Changes for Active Web Server Demo
	5.1 HALCoGen Configuration Changes
	5.2 lwIP Port Changes
	5.3 CCS Project Structure
	5.4 Changing the Web Pages Rendered by Web Server

	6 Programming Sequence Using HALCoGen Generated Drivers
	7 Design of lwIP Integration
	7.1 Hardware Abstraction Layer
	7.2 lwIP Interface Layer
	7.3 Hercules Development Network Interface Layer
	7.3.1 Network Device Initialization
	7.3.2 Packet Data Transmission
	7.3.3 Packet Data Reception

	7.4 lwIP Application Layer
	7.5 System Application Layer

	8 Release Folder Structure
	9 Run the Test
	9.1 Hardware Setup
	9.2 Building and Executing the lwIP Demo
	9.3 Building and Executing the Active Web Server Demo
	9.3.1 I/O Control Demo 1
	9.3.2 I/O Control Demo 2

	Important Notice

