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Implementation of FIR/IIR Filters with
the TMS32010/TMS32020

Abstract

This report discusses the implementation of Finite Impulse
Response (FIR)/Infinite Impulse Response (lIR) filters using the
TMS32010 and TMS32020. Filters designed with designed
processors, such as the TMS320, are superior over their aanalog
counterparts for better specifications, stability, performance, and
reproducability. This report describes a variety of methods for
implementing FIR/IIR filters using the TMS320. The TMS320
algorithm execution time and data memory requirements are
considered. Tradeoffs between several different filter structures
are also discussed. This application report compliments the Digital
Filter Design Package (DFDP) discussed in Section 2.
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INTRODUCTION

In many signal processing applications, it is advantageous
to use digital filters in place of analog filters. Digital filters
can meet tight specifications on magnitude and phase
characteristics and eliminate voltage drift, temperature drift,
and noise problems associated with analog filter components.

This application report describes a variety of methods
for implementing Finite Impulse Response (FIR) and Infinite
Impulse Response (IIR) digital filters with the TMS320
family of digital signal processors. Emphasis is on
minimizing both the execution time and the number of data
memory locations required. Tradeoffs between several
different structures of the two classes of digital filters are
also discussed.

In this report, TMS320 source code examples are
included for the implementation of two FIR filters and three
IIR filters based on the techniques presented. Plots of
magnitude response, log-magnitude response, unit-sample
response, and other pertinent data accompany each of the
filter implementations. Important performance considerations
in digital filter design are also included. The methods
presented for implementing the different types of filters can
be readily extended to any desired order of filters.

Readers are assumed to have some familiarity with the
basic concepts of digital signal processing theory.l The
notation used in this report is consistent with that used in
reference [1].

FILTERING WITH THE TMS320 FAMILY

Almost every field of science and engineering, such
as acoustics, physics, telecommunications, data
communications, control systems, and radar, deal with
signals. In many applications, it is desirable that the
frequency spectrum of a signal be modified, reshaped, or
manipulated according to a desired specification. The process
may include attenuating a range of frequency components
and rejecting or isolating one specific frequency component.

Any system or network that exhibits such frequency-
selective characteristics is called a filter. Several types of
filters can be identified: lowpass filter (LPF) that passes only
“‘low”’ frequencies, highpass filter (HPF) that passes ‘‘high”’
frequencies, bandpass filter (BPF) that passes a ‘‘band’’ of
frequencies, and band-reject filter that rejects certain
frequencies. Filters are used in a variety of applications, such
as removing noise from a signal, removing signal distortion
due to the transmission channel, separating two or more
distinct signals that were mixed in order to maximize
communication channel utilization, demodulating signals, and
converting discrete-time signals into continuous-time signals.

Advantages of Digital Filtering

The term *‘digital filter”” refers to the computational
process or algorithm by which a digital signal or sequence
of numbers (acting as input) is transformed into a second
sequenge of numbers termed the output digital signal. Digital
filters involve signals in the digital domain (discrete-time
signals), whereas analog filters relate signals in the analog
domain (continuous-time signals). Digital filters are used
extensively in applications, such as digital image processing,
pattern recognition, and spectrum analysis. A band-limited
continuous-time signal can be converted to a discrete-time
signal by means of sampling. After processing, the discrete-
time signal can be converted back to a continuous-time
signal.Some of the advantages of using digital filters over
their analog counterparts are:

1., High reliability

2. High accuracy

3. No effect of component drift on system
performance

4. Component tolerances not critical.

Another important advantage of digital filters when
implemented with a programmable processor such as the
TMS320 is the ease of changing filter parameters to modify
the filter characteristics. This feature allows the design
engineer to effectively and easily upgrade or update the
characteristics of the designed filter due to changes in the
application environment.

Design of Digital Filters
The design of digital filters involves execution of the
following steps:
1. Approximation
2. Realization
3. Study of arithmetic errors
4. Implementation.

Approximation is the process of generating a transfer
function that satisfies a set of desired specifications, which
may involve the time-domain response, frequency-domain
response, or some combination of both responses of the filter.

Realization consists of the conversion of the desired
transfer function into filter networks. Realization can be
accomplished by using several network structures,2.3 as
listed below. Some of these structures are covered in detail
in this report.

1. Direct
2. Direct canonic (direct-form II)
3. Cascade
4. Parallel
5. Wave4
6. Ladder.

Approximation and realization assume an infinite-

precision device for implementation. However,



implementation is concerned with the actual hardware circuit
or software coding of the filter using a programmable
processor. Since practical devices are of finite precision, it
is necessary to study the effects of arithmetic errors on the
filter response.

TMS320 Digital Signal Processors

Digital Signal Processing (DSP) is concerned with the
representation of signals (and the information they contain)
by sequences of numbers and with the transformation or
processing of such signal representations by numeric-
computational procedures. In the past, digital filters were
implemented in software using mini- or main-frame
computers for non-realtime operation or on specialized
dedicated digital hardware for realtime processing of signals.

The recent advances in VLSI technology have resulted
in the integration of these digital signal processing systems
into small integrated circuits (ICs), such as the TMS320
family of digital signal processors from Texas Instruments.
The TMS320 implementation of digital filters allows the filter
to operate on realtime signals. This method combines the
ease and flexibility of the software implemention of filters
with reliable digital hardware. To further ease the design
task, it is now possible for engineers to design and test filters
using any one of the commercially available filter design
packages, some of which create TMS320 code and decrease
the design time.

The Texas Instruments TMS320 digital signal
processing family contains two generations of digital signal
processors. The TMS32010, the first-generation digital signal
processor,5 implements in hardware many functions that
other processors typically perform in software. Some of the
key features of the TMS32010 are:

e 200-ns instruction cycle
1.5K words (3K bytes) program ROM
144 words (288 bytes) data RAM
External memory expansion to 4K words
(8K bytes) at full speed
16 x 16-bit parallel multiplier
Interrupt with context save
Two parallel shifters
On-chip clock
Single 5-volt supply, NMOS technology,
40-pin DIP.

The TMS32020 is the second-generation processorS in
the TMS320 DSP family. To maintain device compatibility,
the TMS32020 architecture is based upon that of the
TMS32010, the first member of the family, with emphasis
on overall speed, communication, and flexibility in processor
configuration. Some of the key features of the TMS32020
are:

® 544 words of on-chip data RAM, 256
words of which may be programmed as
either data or program memory

e 128K words of data/program space

¢ Single-cycle multiply/accumulate
instructions

TMS32010 software upward compatibility
200-ns instruction cycle
Sixteen input and sixteen output channels
16-bit parallel interface
Directly accessible external data memory

space

e Global data memory interface for
multiprocessing

o Instruction set support for floating-point
operations

e Block moves for data/program memory

e Serial port for multiprocessing or codec
interface

® On-chip clock

¢ Single 5-volt supply, NMOS technology,
68-pin grid array package.

Because of their computational power, high I/O
throughput, and realtime programming, the TMS320
processors have been widely adapted in telecommunication,
data communication, and computer applications. In addition
to the above features, the TMS320 has efficient DSP-oriented
instructions and complete hardware/software development
tools, thus making the TMS320 highly suitable for DSP
applications.

DIGITAL FILTER IMPLEMENTATION ON THE
TMS320

For a large variety of applications, digital filters are
usually based on the following relationship between the filter
input sequence x(n) and the filter output sequence y(n):

N M
Yo = ¥ aym-k + ¥ bex@-k) M
k=0 k=0

Equation (1) is referred to as a linear constant-
coefficient difference equation. Two classes of filters can be
represented by linear constant-coefficient difference
equations:

1. Finite Impulse Response (FIR) filters, and
2. Infinite Impulse Response (IIR) filters.

The following sections describe the implementation of

these classes of filters on the TMS32010 and TMS32020.

FIR Filters
For FIR filters, all of the a in (1) are zero. Therefore,
(1) reduces to

M
ym= ¥ bk x(n—k) )
k=0

where (M + 1) is the length of the filter.

As a result, the output of the FIR filter is simply a finite-
length weighted sum of the present and previous inputs to
the filter. If the unit-sample response of the filter is denoted



as h(n), then from (2), it is seen that h(n) = b(n). Therefore,
(2) is sometimes written as

M
ym) =y hlx(n—k) 3

k=0

From (3), it can be seen that an FIR filter has, as the
name implies, a finite-length response to a unit sample.
Denoting the z transfoims of x(n), y(n), and h(n) as X(z),
Y(z), and H(z), respectively, then

H@) = ‘_{.(Z_) =

M
X® bz—1 = )> h(k)z —k 4)

k=0

M
r
k=0

Equations (3) and (4) may also be represented by the
network structure shown in Figure 1. This structure is
referred to as a direct-form realization of an FIR filter,
because the filter coefficients can be identified directly from
the difference equation (3). The branches labeled with z = 1
in Figure 1 correspond to the delays in (3) and the
multiplications by z—1 in (4). Equation (3) may be
implemented in a straightforward and efficient manner on
a TMS320 processor.

TMS32010 Implementation of FIR Filters

Figure 2 gives an example of a length-5 direct-form
FIR filter, and Figure 3 shows a portion of the TMS32010
code for implementing this filter.

The notation developed in this section will be used
throughout this application report. XN corresponds to
x(n), XNM1 corresponds to x(n—1), etc.

z-1 2-1
x(n)
h(2)

In the above implementation, the following three basic
and important concepts for the implementation of FIR filters
on the TMS320 should be understood:

1. The relationship between the unit-sample
response of an FIR filter and the filter
structure,

2. The power of the LTD and MPY
instruction pair for this implementation, and

3. The ordering of the input samples in the
data memory of the TMS320, which is
critical for realtime signal processing.

The input sequence x(n) is stored as shown in Figure
4. In general, each of the multiplies and shifts of x(n) in (3)
is implemented with an instruction pair of the form

LTD XNMlI
MPY HI

The instruction LTD XNM1 loads the T register with
the contents of address XNM 1, adds the result of the previous
multiply to the accumulator, and shifts the data at address
XNMI to the next higher address in data memory. Using
the storage scheme in Figure 4, this corresponds to shifting
the data at address XNM1 to address XNM2. The instruction
MPY H1 multiplies the contents of the T register with the
contents of address H1. The shifting is the reason for the
storage scheme used in Figure 4. This scheme, critical for
realtime digital signal processing, makes certain that the input
sequence x(n) is in the correct location for the next pass
through the filter.

By comparing (3) with the code in Figure 3, the reason
for the ordering of the data and the importance of the shift
implemented by the LTD instruction can be seen. To better

hiM-2) hiM-1)
>—Q
yin)
Figure 1. Direct-Form FIR Filter
z-1 z-1 2-1 21
[ > L @ > > -
x(n)
h(0) h(1) ¥ h(2) Y hi3) h(4)
> > P! PY
y(n)

Figure2. Length-5 Direct-Form FIR Filter



* THIS SECTION OF CODE IMPLEMENTS THE FOLLOWING EQUATION: *

* x(n-4)h(4) + x(n-3)h(3)

*
NXTPT
*

*

IN XN,PA2

ZAC

LT XNM4

MPY

LTD
MPY

LTD
MPY

LTD
MPY

LTD
MPY

H4

XNM3
H3

XNM2
H2

XNM1
Hl

XN
HO

APAC

SACH ¥N,1

OUT YN,PA2

B NXTPT

+ x(n-2)h(2) + x(n=1)h(1l) + x(n)h(0) = y(n) *

* GET THE NEW INPUT VALUE XN FROM PORT PAQO *

* ZERO THE ACCUMULATOR *

* x(n-4)h(4) *

.

* x(n-4)h(4) + x(n-3)h(3) *

* SIMILAR TO THE PREVIOUS STEPS *

* ADD THE RESULT OF THE LAST MULTIPLY TO *
* THE ACCUMULATOR *

* STORE THE RESULT IN YN *

* OUTPUT THE RESPONSE TO PORT PAl *

* GO GET THE NEXT POINT *

Figure 3. TMS32010 Code for Implementing a Length-5 FIR Filter

LOW DATA
ADDRESS

x(n)

XNM1

x(n-1)

XNM2

x(n-2)

o

[

L]
-m -

HIGH DATA

ADDRESS

> INPUT SAMPLES

Figure 4. TMS32010 Input Sample Storage for a
Length-N FIR Filter

understand the algorithm, the relationship between the input
and output of the filter must be considered. Evaluating (3)
for a particular value of n, for example, ng, yields

N-1
yig) = yv  h() x(ng—k) ()]

k=0

If the next sample of the- filter response y(ng +1) is

needed, it is seen from (3) that

N-1
yimo+1) =y hk) x(no+1-k) ©)

k=0



Equations (5) and (6) show that the samples of x(n)
associated with particular values of h(k) in (5) have been
shifted to the left (i.e., to a higher data address) by one in
(6). This shifting of the input data, illustrated in Figure 5,
corresponds to the shifting of the flipped input sequence in
relation to the unit-sample response.

Depending on the system constraints, the designer may
choose to reduce program memory size by taking advantage
of indirect addressing capability provided by the TMS32010.
Using either of the tuxiliary registers along with the
autoincrement or autodecrement feature, the FIR filter
program can be rewritten in looped form as shown in Figure
6.

The input sequence x(n) is stored as shown in Figure
4, and the impulse response h(n) is stored as shown in Figure
7. In the looped version, the indirect addressing mode is used
with the autodecrement feature and BANZ instruction to
control the looping and address generation for data access.
While the looped code requires less program memory than
the straightline version, the straightline version runs more
quickly than the looped code because of the overhead
associated with loop control. This design tradeoff should be
carefully considered by the design engineer.

Relationship between h(n) and
x(n) for y(ng)

It is also possible to use the LTD/MPYK instruction
pair to implement each filter tap in straightline code. The
MPYK instruction is used to multiply the contents of the T
register by a signed 13-bit constant stored in the MPYK
instruction word. For many applications, a 13-bit coefficient
can adequately implement the filter without significant
changes to the filter response. An advantage of using this
approach is that the coefficients are stored in program
memory and there is no need to transfer them to data
memory. This reduces the amount of data memory locations
required per filter tap from two to one.

The length-80 FIR filter program in Appendix A
implements a linear-phase FIR filter in straightline code. The
unit-sample response of the filter is symmetric in order to
achieve linear phase. Because of the symmetry, it is necessary
to store only 40 (rather than 80) of the samples of the impulse
response. This symmetry can often be used to a designer’s
advantage since it significantly reduces the amount of storage
space required to implement the filter.

In summary, by taking advantage of the TMS32010
features, a designer can implement a direct-form FIR filter,
optimized for execution time, data memory, or program
memory.

Relationship between h(n) and
x(n) fory(ng + 1)

LOW DATA ADDRESS
h(0) x(ng) h(0) x(ng+1)
h(1) x(ng-1) h(1) x(ng)
h2) x(ng - 2) hi2) x(ng—1)

. . . .

. . . .

. . . L]
hiN-2) x[ng - (N-2)] h(N-2) x[ng—(N-3)]
h(N-1) xing-(N-1)] hiN-1) xlng - (N-2)]

HIGH DATA ADDRESS

Figure 5. Relationship Between the Contents of Data Registers



*

* x(n-(N-1))h(N-1) + x(n-(N-2))h(N-2) + ... + x(n)h(0) = y(n) *
*
LARP ARO * AUXILIARY REGISTER POINTER SET TO ARO *
*
NXTPT IN XN,PA2 * PULL IN NEW INPUT FROM PORT PAQO *
*
LARK ARO,XNMNM1 * ARO POINTS TO X(n-(N-1)) *
LARK AR1,HNM1 * ARl POINTS TO H(N-1) *
*
ZAC * ZERO THE ACCUMULATOR *
*
LT *-,AR1 * x(n-(N-1))h(N-1) *
MPY *-,AR0O
*
LOoOP LTD *,ARl * x(n=(N-1))h(N-1)+x(n-(N-2) )h(N-2)+...+x(n)h(0)=y(n)*
MPY *-,ARO
*
BANZ LOOP * IF ARO DOES NOT EQUAL ZERO, *
* * THEN DECREMENT ARO AND BRANCH TO LOOP *
*
APAC * ADD THE P REGISTER TO THE ACCUMULATOR *
*
SACH ¥YN,1 * STORE THE RESULT IN YN *
*
OUT YN,PA2 * OUTPUT THE RESPONSE TO PORT PAl *
*
B NXTPT * GO GET THE NEXT INPUT POINT *

THIS SECTION OF CODE IMPLEMENTS THE EQUTION: *

Figure 6. TMS32010 Code for Implementing a Looped FIR Filter

LOW DATA
ADDRESS

h(0) T

h(1)

L, UNIT-SAMPLE
* RESPONSE

v -
HIGH DATA
ADDRESS

Figure 7. TMS32010 Unit-Sample Response
Storage for a Looped FIR Filter

TMS32020 Implementation of FIR Filters

In many DSP applications, realtime processing of
signals is very critical. Important choices must be made in
selecting a DSP device capable of realtime filtering, For
example, in a speech application, a sampling rate of 8 kHz
is common, which corresponds to an interval of 125 us
between consecutive samples. This interval is the maximum

allowable time for realtime operation, corresponding to 625
cycles on the TMS32010. In order to perform the required
signal processing tasks in that interval, it is essential to reduce
filter execution time. This can be accomplished by a single-
cycle multiply/accumulate instruction. The TMS32020, the
second-generation DSP device, is a processor with such a
capability. A single-cycle multiply/accumulate with data-
move instruction and larger on-chip RAM make it possible
to implement each filter tap in approximately 200 ns.
The TMS32020 provides a total of 544 16-bit words
of on-chip RAM, divided into three separate blocks of B0,
B1, and B2. Of the 544 words, 288 words (blocks B1 and
B2) are always data memory, and 256 words (block B0) are
programmable as either data or program memory. The
CNFD (configure block BO as data memory) and CNFP
(configure block BO as program memory) instructions allow
dynamic configuration of the memory maps through
software, as illustrated in Figure 8. After execution of the
CNFP instruction, block B0 is mapped into program
memory, beginning with address 65280. To take advantage
of the MACD (multiply and accumulate with data move)
instruction, block BO must be configured as program memory
using the CNFP instruction. MACD only works with on-
chip RAM. The use of the MACD instruction helps to speed
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Figure 8. TMS32020 Memory Maps

the filter execution and allows the size of the FIR filter to
expand to 256 taps.6

The TMS32020 implementation of (3) is made even
more efficient with a repeat instruction, RPTK. It forms a

useful instruction pair with MACD, such as
RPTK NM1 '
MACD (PMA),(DMA)

The RPTK NMI1 instruction loads an immediate 8-bit
value N-1 into the repeat counter. This causes the next
instruction to be executed N times (N = the length of the
filter). The instruction MACD (PMA),(DMA) performs the
following functions:

1. Loads the program counter with PMA,
2. Muiltiplies the value in data memory
location DMA (on-chip, block B1) by the



value in program memory location PMA
(on-chip, block B0),

3. Adds the previous product to the
accumulator,

4. Copies the data memory value (block BO)
to the next higher on-chip RAM location.
The data move is the mechanism by which
the z— 1 delay can be implemented, and

5. Increments the program counter with each
multiply/accumulate to point to the next
sample of the unit-sample response.

In other words, the MACD instruction combines the
LTD/MPY instruction pair into one. With the proper storage
of the input samples and the filter unit-sample response, one
can take advantage of the power of the MACD instruction.
Figure 9 is a data storage scheme that provides the correct
sequence of inputs for the next pass through the filter.

In the TMS32020 code example of Figure 10, data
memory values are accessed indirectly through auxiliary
register 1 (AR1) when the MACD instruction is
implemented. For low-order filters (second-order), using the
MACSD instruction in conjunction with the RPTK instruction
is less effective due to the overhead associated with the
MACD instruction in setting up the repeat construct. To take
advantage of the MACD instruction, the filter order must
be greater than three. For lower-order filters, it is
recommended to use the LTD/MPY instruction pair in place
of RPT/MACD.

Writing looped code for the TMS32020 implementation
of an FIR filter gives no further advantage. Since the MACD
instruction already uses less program memory, looped code
in this case does not reduce program memory size.
Implementing FIR filters of length-3 or higher requires the
same amount of program memory (excluding coefficient

BLOCK BO

LOW ADDRESS

storage). For example, an FIR filter of length-256 takes the
same amount of program memory space as a FIR filter of
length4.

Since the TMS32020 instruction set is upward-
compatible with the TMS32010 instruction set, it is possible
to use the LTD/MPYK instruction pair to implement the
filter. With the TMS32020, the designer can use either
RPTK/MACD or LTD/MPY(K) where appropriate.
Depending on the application and the data memory
constraints, the use of the LTD/MPYK instruction pair
results in less data memory usage at the cost of increasing
the program memory storage.

The FIR filter program of Appendix A is an
implementation of the same length-80 FIR filter used in the
TMS32010 example. In this implementation, it can be seen
that the TMS32020 uses less program memory than the
TMS32010 with the tradeoff of using more data memory
words. The increase in data memory size is indirectly related
to the MACD instruction,; i.e., in order to take full advantage
of the instruction, it is necessary to keep the multiplier
pipeline as busy as possible. Therefore, the filter will execute
faster when all 80 coefficients are provided in block BO.

The TMS32020 provides a solution for the faster
execution of FIR filters. The combination of the
RPTK/MACD instructions provides for a minimum program
memory and high-speed execution of an FIR filter. If data
memory is a concern, the designer can use the LTD/MPYK
instruction pair at the cost of increasing program memory
and using 13-bit filter coefficients.

IIR Filters

The concepts introduced for the implementation of FIR
filters can be extended to the implementation of IIR filters.
However, for an IIR filter, at least one of the ay in (1) is

BLOCK B1

LOW ADDRESS

>FF00
5280) | PN- xin)
: ", xin-1)
&
%" .
.
h(1) .
>3FF
h(0) xn=(N=-11 | (4023)

HIGH ADDRESS

UNIT-SAMPLE RESPONSE
STORAGE FOR
LENGTH-N FIR FILTER

HIGH ADDRESS

INPUT-SAMPLE STORAGE
FOR LENGTH-N FIR FILTER

Figure 9. TMS32020 Memory Storage Scheme



* THIS SECTION OF CODE IMPLEMENTS THE EQUATION:

*
*
CNFP *
*
NXTPT IN XN, PAO *
*
LRLK AR1,>3FF *
LARP ARl
*
MPYK 0 *
ZAC *
*
RPTK NM1 *
MACD >FF00,*- *
*
APAC
SACH ¥YN,1
*
ouT YN,PAl *
*
B NXTPNT *

x(n-(N-1))h(N-1) + x(n=(N-2))h(N-2) + ... + x(n)h(0) = y(n)

USE BLOCK BO AS PROGRAM AREA
BRING IN THE NEW SAMPLE XN
POINT TO THE BOTTOM OF BLOCK Bl
SET P REGISTER TO ZERO

CLEAR THE ACCUMULATOR

REPEAT N-1 TIMES
MULTIPLY/ACCUMULATE

OUTPUT THE FILTER RESPONSE y(n)

GET THE NEXT POINT

Figure 10. TMS32020 Code for Implementing a Length-5 FIR Filter

nonzero. It has been shown! that the z transform of the unit-
sample response of an IIR filter corresponding to (1) is

M
)>) bxz—k
k=0
H@) = Yo) _ 27~ 0
X(z) N
- X agz—k
k=1

where H(z), Y(z), and X(z) are the z transforms of h(n), y(n),
and x(n), respectively. Three different network structures
often used to implement (7) are the direct form, the cascade
form, and the parallel form. Implementation of these
structures is discussed in the following sections.

Direct-Form IIR Filter

Equations (1) and (7) may also be represented by the
network structure shown in Figure 11. For convenience, it
is assumed that M = N. This network structure is referred
to as the direct-form I realization of an Nth-order difference
equation. As was the case for the direct-form FIR filter, the
structure in Figure 11 is called direct-form since the
coefficients of the network can be obtained directly from the
difference equation describing the network. Again, the
branches associated with the z—1 correspond to the delays
in (1) and the multiplications in (7).

The following difference equation:

N M
ym) = Y % y(n—k) + )> bk x(n—k) 8)
k=1 k=0

shows that the output of the filter is a weighted sum of past
values of the input to the filter and of the output of the filter.
Using techniques similar to those for an FIR filter, this
realization can be implemented in a straightforward and
efficient way on the TMS32010 and TMS32020.

A network flowgraph equivalent to that in Figure 11
is shown in Figure 12. This system is referred to as the direct-
form II structure. Since the direct-form II has the minimum
number of delays (branches labeled z—1), it requires the
minimum number of storage registers for computation. This
structure is advantageous for minimizing the amount of data
memory used in the implementation of IIR filters.

In Figures 13 through 17, a second-order direct-form
II IR filter is used as an example for the TMS320
implementation of the IIR filter. The network structure is
shown in Figure 13.

The difference equation for this network is

d(n)
y(n)

x(n) + a; d(n—1) + a3 d(n-2) ()
bg d(n) + by d(n—1) + by d(n—2)

In this case, d(n), shown in (9) and Figure 13,
corresponds to the network value at the different delay nodes.
The zero-delay register corresponds to d(n); d(n — 1) is the
register for the delay of one; and d(n —2) is the register for
the delay of two. A portion of the TMS32010 code necessary
to implement (9) is shown in Figure 14. Initially all d(n —i)
for i=0,1,2 are set to zero.

The delay-node values of the filter are stored in
data memory as shown in Figure 15. At each major step of
the algorithm, a multiply is done, and the result from the
previous multiply is added to the accumulator. Also, the past
delay-node values are shifted to the next higher location in
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Figure 13. Second-Order Direct-Form II IIR Filter

data memory, thus placing them in the correct position for
the next pass through the filter. All of these operations are
carried out with instruction pairs, such as

LTD DNM1
MPY Bl

where DNM1 corresponds to d(n— 1) and B1 corresponds
to by as in (9).

When the last multiplication is performed and the result
is added to the accumulator, the accumulator contains the
result of (9), which is y(n). From (9) and Figure 13, it is
evident that the delay-node value d(n) depends on several
of the previous delay-node values. This feedback is illustrated
by the instruction

SACH DN,1
and the use of the statements

LTD DNMI

LTD DN

The ordering of the delay-node values, shown in Figure
15, allows for a simple program structure with minimal
computations and minimal data locations. It also
accommodates the shifting of the delay-node values in a
straightforward way. The feedback of DN makes apparent
the underlying structure of the direct-form II filter and (10).
This form of the algorithm is flexible and can be extended
to higher-order direct-form filters in a straightforward way.



* THIS SECTION OF CODE IMPLEMENTS THE EQUATIONS:
* d(n) = x(n) + d(n-1)a + d(n-2)a
1 2

y(n) d(n)b + d(n-1)b + d(n-2)b
0 1 2

IN XN,PAO * NEW INPUT VALUE XN *

LAC XN,15 * LOAD ACCUMULATOR WITH XN *

LT DNM1
MPY Al

LTA DNM2
MPY A2

APAC

SACH DN,1 * d(n) = x(n) + d(n-1)a

* * 1

ZAC

MPY B2

LTD DNM1
MPY Bl

LTD DN
MPY BO

APAC

OUT ¥YN,PAl * YN IS THE OUTPUT OF THE FILTER *

+ d(n-2)a

SACH ¥YN,1 * y(n) = d(n)b + d(n-1)b + d(n-2)b *
* 0 1 2 *

Figure 14. TMS32010 Code for Implementing a Second-Order Direct-Form II IIR Filter

LOW DATA LOW DATA
ADDRESS ADDRESS
d(n) d(n)
-NODE
din-1) DE\L[‘[\AIL?EOS din—-1)
L DELAY-NODE
din-2) . VALUES
HIGH DATA :
ADDRESS din-M)
Figure 15. Delay-Node Value Storage for a HIGH DATA
Second-Order Direct-Form IIR Filter ADDRESS
Figure 16 shows the necessary ordering of the delay-node Figure 16. Delay-Node Value Storage for a
values for a general direct-form II structure for the case Direct-Form II IIR Filter

M= N. Filter order is determined by M or N, whichever
is greater.



Figure 17 shows a portion of the TMS32020 code for
implementing the same second-order direct-form II IIR filter
using the MACD instruction. As discussed in the section on
FIR filters, using the RPTK/MACD instruction pair is most
effective when the filter order is three or higher. The use
of the MACD instruction allows the designer to save one
word of program memory over the LTD/MPY
implementation. The TMS32020 code in Figure 17 is
provided only as an example. For a biquad implementation
(second-order direct-form II IIR filter), the TMS32010 code
and TMS32020 code for the filter implementation are
identical. Note that due to larger on-chip RAM of the
TMS32020, higher-order IIR filters or sections of IIR filters
can be implemented. For the rest of the IIR filter structures,
the same discussion applies to both processors.

An example of a TMS32010/TMS32020 program
implementing a fourth-order direct-form II structure can be
found in Appendix C.

Cascade-Form IIR Filter

In this section, the realization and implementation of
cascade-form IIR filters are discussed. The implementation
of a cascade-form IIR filter is an extension of the results of
the implementation of the direct-form IIR filter.

The z transform of the unit-sample response of an IIR
filter

bz —k
0

TME

H@) = (10)

1- agz—k

"tz

—

* THIS SECTION OF CODE IMPLEMENTS A SECOND-ORDER DIRECT-FORM II IIR FILTER
* d(n) = x(n) + d(n-1)a + d(n-2)a
* 1 2
* y(n) = d(n)b + d(n-1)b + d(n-2)b
* 0 1 2
*
NEXT IN XN ,PA2 * NEW INPUT VALUE XN
*
LAC XN
MPYK O * CLEAR P REGISTER
*
LARP ARl
LRLK AR1l,>03FF
CNFP * USE BLOCK B0 AS PROGRAM AREA
*
* d(n) = x(n) + d(n-1l)a + d(n-2)a
* 2
*
RPTK 1 * REPEAT 2 TIMES
MACD >FFO00,*+
*
APAC
SACH DN,1 * d(n)
*
* y(n) = d(n)b + d(n-1)b + d(n-10)b
* 0 1 2
*
ZAC
MPYK O * CLEAR P REGISTER
*
MPY >FF02
*
RPTK 1
MACD >FF03,%-
*
APAC
SACH ¥N,1 * SAVE FILTERED OUTPUT
*
ouT YN,PA2 * YN IS THE OUTPUT OF THE FILTER
B NEXT

Figure 17. TMS32020 Code for Implementing a Second-Order Direct-Form IIR Filter with MACD



may also be written in the equivalent form

N2 gy + Buz=1 + Buz—2
Ho = II (1
k=1 1-omz~l-ozz2

where the filter is realized as a series of biquads. Therefore,
this realization is referred to as the cascade form. Figure 18
shows a fourth-order IIR filter implemented in cascade
structure, where the subsections are implemented as direct-
form II sections. Each subsection corresponds to one of the
terms in the product in (11). Note that any single cascade
section is identical to the second-order direct-form II IR filter
described previously.

The difference equation for cascade section i can be
written as

di(n) = yi—1(m) + agi di(n—1) + a2i di(n-2) (12)
yi(m) = Boi di() + B di(n—1) + B2j di(n—2)
where

i = 1,2,...,N/2.

Yi-1(n) = input to section i.

dj(n) = value at a particular delay

node in section 1.

yi(n) = output of section i.

yo(n) = x(n) = sample input to the filter.

YN/2 = Yy(n) = output of the filter.

For the IIR filter consisting of the two cascaded sections
shown in Figure 18, there are two sets of equations describing
the relationship between the input and output of the filter.
The delay-node values for each section are stored as shown
in Figure 19. The same indexing scheme used previously

Bo1

y1(n)

LOW DATA
ADDRESS
ﬁ
da(n)
SECTION 2
da2in—-1) > DELAY-NODE
VALUES
da(n-2)
-—— {—
dq(n)
SECTION 1
diin-1) DELAY-NODE
VALUES
dq(n-2)
-
HIGH DATA
ADDRESS

Figure 19. Delay-Node Storage for Cascaded
IIR Filter Subsections

is used here (i.e., from the higher address in data memory
to the lower address in data memory). In this case, the
algorithm can be structured so that the 32-bit accumulator
of the TMS320 acts as a storage register and carries the
output of one of the second-order subsections to the input
of the next second-order subsection. This avoids unnecessary
truncation of the intermediate filter values into 16-bit words,
and therefore provides better accuracy in the final output.
The implementation of the cascaded fourth-order IIR
filter can be summarized as follows:
1. Load the new input value x(n).
2. Operate on the first section as outlined in

Figure 12.
Leave the output of the first section in the
accumulator (i.e., the SACH YN can be
omitted for the first-section implementation
since the accumulator links the output of
one section to the input of the following
section). '
. Operate on the second section in the same

way as the first section, remembering that

3.

y(n)

yz-1

822

@22

SECTION 1

-

SECTION 2

Figure 18. Fourth-Order Cascaded IIR Filter



the accumulator already contains the output
of the previous section.

5. The output of the second section is the
filter output y(n).

The above procedures can be applied to the IR filter
implementation of higher orders. It can be shown3 that with
proper ordering of the second-order cascades, the resulting
filter has better immunity to quantization noise than the
direct-form implementation, as will be discussed later.

An example of a TMS32010/TMS32020 program that
implements a fourth-order IIR cascaded structure is contained
in Appendix C.

Parallel-Form IIR Filter
The third form of an IIR filter is referred to as the
parallel form. In this case, H(z) is written as

13)
M-N

Yok + Yikz ~ !
Hz) = X Caz-k + & ————
@ K=o * k=1 l-apz—l-ayz-2

If M < N, then the term (Cxz —k) = 0. The network
form is shown in Figure 20, where it is assumed that M =
N = 4. The multiplication of the input by C (a constant)
is trivial. However, for one of the parallel branches of this
structure, the difference equation is

di(n) = x(n) + ajj di(n—1) + a3j di(n-2) (14)

pi(n) = 7Yoj di(n) + 7 di(n—1)

where i = 1,2,...,N/ 2, and pj(n) = the present output of
a parallel branch.

The similarity to the second-order direct-form II
network and the single parallel section is apparent. However,
in this case, the outputs of all sections are summed to give
the output y(n), i.e.,

N/2
yn) = Cx(n) + ¥ pim)
i=1

as)

if M = N. For the parallel implementation, the delay-node
values are also structured in data memory, as shown in Figure
21, thus allowing for an implementation similar to that used
previously. After the output of each section stored in the
32-bit accumulator is determined, these outputs are summed
to yield the filter output y(n). An example of a
TMS32010/TMS32020 program to implement a parallel
structure can be found in Appendix C.

PERFORMANCE CONSIDERATIONS IN
DIGITAL FILTER DESIGN

In the previous sections, different realizations of the
FIR and IIR digital filters were discussed. This section is
mainly concerned with the effects of finite wordlength on
filter performance.

Some features of FIR and IIR filters, which distinguish
them from each other and need special considerations when
they are implemented, include phase characteristics, stability,
and coefficient quantization effects.

Cc
701 p2(n)
> > >- L J
x(n) yin)
2-1
a1 Y11
1 2-1 [
a21
702 p1in)
L J
2-1
Y12
2—1

Figure 20. Parallel-Form IIR Filter



LOW DATA
ADDRESS
~
da(n)
SECTION 2
da(in-1) > DELAY-NODE
VALUES
d2(n-2)
—— J_.
dq(n)
SECTION 1
dyln-1) DELAY-NODE
VALUES
dy(n-2)
-
HIGH DATA
ADDRESS

Figure 21. Delay-Node Value Storage
for a Parallel IIR Filter

Given a set of frequency-response characteristics,
typically a higher-order FIR filter is required to match these
characteristics to a corresponding IIR filter. However, this
does not imply that IIR filters should be used in all cases.
In some applications, it is important that the filter have linear
phase, and only FIR filters can be designed to have linear
phase.

Another important consideration is the stability of the
filter. Since the unit-sample response of an FIR filter is of
finite length, FIR filters are inherently stable (i.e., a bounded
input always produces a bounded output). This can be seen
from (5) where the output of an FIR filter is a weighted finite
sum of previous inputs. On the other hand, IIR filters may
or may not be stable, depending on the locations of the poles
of the filter.

Digital filters are designed with the assumption that the
filter will be implemented on an infinite precision device.
However, since all processors are of finite precision, it is
necessary to approximate the *‘ideal’’ filter coefficients. This
approximation introduces coefficient quantization error. The
net result due to imprecise coefficient representations is a
deviation of the resultant filter frequency response from the
ideal one. For narrowband IIR filters with poles close to the
unit circle, longer wordlengths may be required. The worst
effect of coefficient quantization is instability resulting from
poles being moved outside the unit circle.

The effect of coefficient quantization is highly
dependent on the structure of the filter and the wordlength
of the implementation hardware. Since the poles and zeroes
for a filter implemented with finite wordlength arithmetic
are not necessarily the same as the poles and zeroes of a filter
implemented on an infinite precision device, the difference
may affect the performance of the filter.

In the IIR filter, the cascade and parallel forms
implement each pair of complex-conjugate poles separately.
As a result, the coefficient quantization effect for each pair
of complex-conjugate poles is independent of the other pairs

of complex-conjugate poles. This is generally not true for
direct-form filters. Therefore, the cascade and parallel forms
of IIR filters are more commonly used than the direct form.

Another problem in implementing a digital filter is the
quantization error due to the finite wordlength effect in the
hardware. Sources of error arising from the use of finite
wordlength include the following:

1. I/O signal quantization

2. Filter coefficient quantization

3. Uncorrelated roundoff (or truncation) noise
4.  Correlated roundoff (or truncation) noise
5.  Dynamic range constraints.

These problems are addressed in the following
paragraphs in more detail.

Representing instantaneous values of a continuous-time
signal in digital form introduces errors that are associated
with I/O quantization. Input signals are subjected to A/D
quantization noise while output signals are subjected to D/A
quantization noise. Although output D/A noise is less
detrimental, input A/D quantization noise is the more
dominant factor in most systems. This is due to the fact that
input noise ‘‘circulates’’ within IIR filters and can be
‘‘regenerative’’ while output noise normally just
‘‘propagates’’ off-stage.

The filter coefficients in all of the routines described
in this report are initially stored in program memory, and
then moved to data memory. These coefficients are
represented in Q15 format; i.e., the binary point (represented
in two’s-complement form) is assumed to follow the most-
significant bit. This gives a coefficient range of 0.999969
to -1.0 with increments of 0.000031. The input is also in
Q15 format so that when two Q15 numbers are multiplied,
the result is a number in Q30 format. When the Q30 number
resides in the 32-bit accumulator of the TMS320, the binary
point follows the second most-significant bit. Since the output
of the filter is assumed to be in Q15 format, the Q30 number
must be adjusted by left-shifting by one while maintaining
the most-significant 16 bits of the result. This is accomplished
with the step SACH YN, 1, which shifts the Q30 number to
the left by one and stores the upper sixteen bits of the
accumulator following the shift. The result YN is in Q15
format. Note that it is important to keep intermediate values
in the accumulator as long as possible to maintain the 32-bit
accuracy.

Uncorrelated roundoff (or truncation) noise may occur
in multiplications. Even though the input to the digital filter
is represented with finite wordlength, the result of processing
leads to values requiring additional bits for their
representation. For example, a b-bit data sample, multiplied
by a b-bit coefficient, results in a product that is 2b bits long.
In a recursive filter realization, 2b bits are required after the
first iteration, 3b bits after the second iteration, and so on.
The fact that multiplication results have to be truncated means
that every ‘‘multiplier’’ in a digital structure can be regarded
as a noise source. The combined effects of various noise
sources degrade system performance.



Truncation or rounding off the products formed within
the digital filter is referred to as correlated roundoff noise.
The result of correlated roundoff (or truncation) noise,

including overflow oscillations, is that filters suffer from .

““limit-cycle effect’” (small-amplitude oscillations). For
systems with adequate coefficient wordlength and dynamic
range, this problem is usually negligible. Overflows are
generated by additions resulting in undesirable large-
amplitude oscillations. Both limit cycles and overflow
oscillations force the digital filter into nonlinear operations.
Although limit cycles are difficult to eliminate, saturation
arithmetic can be used to reduce overflow oscillations. The
overflow mode of operation on the TMS320 family is
accomplished with the SOVM (set overflow mode)
instruction, which sets the accumulator to the largest
representable 32-bit positive (>7FFFFFFF hex) or negative
(>80000000 hex) number according to the direction of
overflow.

Dynamic range constraints, such as scaling of
parameters, can be used to prevent overflows and underflows
of the finite wordlength registers. The dynamic range is the
ratio between the largest and smallest signals that can be
represented in a filter. For an FIR filter, an overflow of the
output results in an error in the output sample. If the input
sample has a maximum magnitude of unity, then the
worstcase output is

ym) = X h@m) =s (16)

To guarantee y(n) to be a fraction, either the filter gain
or the input x(n) has to be scaled down by a factor *‘s”’.
Reducing the filter gain implies scaling down the filter
coefficients so that the 16-bit coefficient is no longer used
effectively. An implication of this scaling is a degradation
of the filter frequency response due to higher quantization
errors. As an alternative, the input signal may be scaled,
resulting in a reduction in signal-to-noise ratio (SNR). In
practice, the second approach is preferred since the scaling
factor is normally less than two and does not change the SNR
drastically. The required scaling on a TMS32020 is achieved
by using the SPM (set P register output shift mode)
instruction to invoke a right-shift by six bits to implement
up to 128 multiply/accumulates without overflow occurring.

For an IIR filter, an overflow can cause an oscillation
with full-scale amplitude, thus rendering the filter useless.
In general, if the input signal x(n) is sinusoidal, the reciprocal
of the gain ‘‘s”’ of the IIR filter is used to prevent output
overflows.

For the TMS320 implementation with its double-
precision accumulator and P register, scaling down the input
sequence by the scaling factor *‘s’” while maintaining a 16-bit
accuracy for the coefficients can accomplish the task. For
this reason, use of the MPYK instruction for IIR filter
implementation is not recommended. Scaling the input signal
by a factor ‘s’ results in a degradation in the overall system
SNR. Therefore, for IIR filters, it is important to keep the

coefficient quantization errors as small as possible since less
accurate coefficients may cause an unstable filter if the poles
are moved outside the unit circle. The LAC (load
accumulator with shift) instruction on the TMS320 processors
easily accomplishes input signal scaling.

In the previous paragraphs, finite wordlength problems
associated with digital filter implementation on
programmable devices were discussed. The 16-bit
coefficients and the 32-bit accumulator of the TMS320
processor help minimize the quantization effects. Special
instructions also help overcome problems in the accumulator.
These features, in addition to a powerful instruction set, make
the TMS32010 and TMS32020 ideal programmable
processors for filtering applications.

SOURCE CODE USING THE TMS320

Examples of TMS320 source code for the
implementation of two FIR filters and three IIR filters, based
on the techniques described in this application report, are
contained in the appendixes. Plots of the magnitude response,
log-magnitude response, unit-sample response, and other
pertinent data precede the filter programs.

Five filter types are presented in the three appendixes
as follows:

Appendix A Length-80 bandpass FIR filter
(TMS32010 and TMS32020)
Length-60 FIR differentiator
(TMS32010/TMS32020)
Fourth-order lowpass IIR filters:
direct-form, cascade, and parallel
types (TMS32010/TMS32020)

The purpose of the source code is to further illustrate
the use of the TMS320 devices for filtering applications and
to allow implemention and analysis of these filters. The code
is based on the programming techniques discussed earlier
in this report.

TMS32020 source code is listed in the appendix for
a length-80 FIR filter. The TMS32020 source code for the
rest of the filter programs is identical to the TMS32010 code,
as explained earlier. TMS32010 and TMS32020 instructions
are compatible only at the mnemonic level. TMS32010
source programs should be reassembled using a TMS32020
assembler before execution. For more detail about code
migration, refer to the TMS32020 User’s Guide appendix,
«“TMS32010/TMS32020 System Migration,”” for detailed
information.6

These filters were designed using the Digital Filter
Design Package (DFDP) developed by Atlanta Signal
Processors Incorporated (ASPI).7 This package runs on
either a Texas Instruments Professional Computer or an [BM
Personal Computer and can generate TMS320 code for the
filter designed. DFDP was used to design the FIR filters with
the Remez exchange algorithm developed by Parks and
McClellan, and to design the IIR filters by bilinear
transformation of an elliptic analog prototype. All plots
supplied with the filter programs were produced by DFDP.

Filter design packages, such as DFDP, make the design

Appendix B

Appendix C



and implementation of digital filters straightforward. They
allow the DSP engineer to quickly examine a variety of filters
and understand the tradeoffs involved in varying the
characteristics of the filters. Several digital filter design
packages and other useful software support from third parties
are described in the TMS32010 Development Support
Reference Guide.8

All of the TMS320 source code examples have several
features in common that depend on the implementation and
application. These features include the moving of filter
coefficients from storage in program memory to data
memory, their representation in Q15 format, and the
instructions that control the analog interface used for testing.

The hardware configuration that was used to test these
filters included a Texas Instruments analog interface board
(AIB) to provide an analog-to-digital and digital-to-analog
interface. The sampling rate was 10 kHz in all cases. The
filters were driven by a white-noise source, and the frequency
response was estimated by a spectrum analyzer. Each filter
routine contains several lines of code to initialize the analog
interface board. The AIB signals the TMS320 that another
input sample is available by pulling the BIO pin low. The
TMS320 polls this pin using the BIOZ instruction. The AIB
houses a TMS32010 device. In order to use the TMS32020
with the AIB (PN: RTC/EVM320C-06), a specially designed
adaptor (PN: RTC/ADP320A-06) must be inserted to convert
TMS32020 signals to TMS32010 signals. All of these
implementation- and application-dependent sections of code
are labeled.

Appendix A provides programs for the implementation
of a length-80 linear-phase bandpass FIR filter on the
TMS32010 and the TMS32020. The filter has been designed
using the Parks-McClellan algorithm. Pertinent data for this
filter is as follows:

Passband 1.375 - 3.625 kHz
Stopbands 0.0 - 1.0 kHz
40 - 50 kHz
Attenuation in stopbands -68.4 dB
Transition regions 1.0 - 1.375 kHz

3625 - 4.0 kHz

The figures preceding the program show the magnitude
response using a linear scale, the log-magnitude response,
and the unit-sample response. Both the magnitude response
and the log-magnitude response illustrate the equiripple
response expected from using the Parks-McClellan
algorithm. The unit-sample response possesses the symmetry
that is characteristic of linear-phase FIR filters.

A length-60 FIR differentiator, shown in Appendix B,
is also designed using the Parks-McClellan algorithm.
Characteristics for the FIR differentiator are listed below.

Lower band edge 0.0 . kHz
Upper band edge 5.0 kHz

0.4800
0.3172 percent

Desired slope
Maximum deviation

The log-magnitude resonse is illustrated as well as the
unit-sample response, which is antisymmetric for an FIR
differentiator. Because the code is written in looped form,
there is a dramatic reduction in the amount of program space
necessary to implement this filter.

The three filters in Appendix C are fourth-order
lowpass IIR filters, designed using the bilinear-transform
technique. The first filter is based on a direct-form II
structure, the second filter is based on a cascade structure
with two second-order direct-form II subsections, and the
third filter is based on a parallel structure. These three IIR
filters are identical in terms of their frequency response and
have the following characteristics:

Passband 00 - 25 kHz
Transition region 2.5 - 275 kHz
Stopband 275 - 50 kHz

Attenuation in stopband -25.17 dB

The figures that show the magnitude response, log-
magnitude response, phase response, group delay, and the
unit-sample response for the three IIR filters are treated as
a group and precede the three programs for filter
implementation.

Table 1 is a summary of information about the five
digital filters that are implemented in the appendixes.

An examination of the length-80 FIR filter
implementation reveals the advantages of using a TMS32020
over the TMS32010. The program memory size is reduced
by a factor of 15 (11 words vs. 163 words) while execution
speed is improved by a factor of 1.8. Since the other filter
types do not take advantage of the RPTK/MACD instruction
pair, the performance results are the same. For example, a
fourth-order cascade-form IIR filter executes at 5.4 us using
only 27 program memory words.

When implementing linear-phase FIR filters, the
designer must choose the right device for the application.
If fast execution time and less program memory are essential,
then the TMS32020 is the right choice.

The IIR filters are direct transformations of analog
filters, exhibiting the same amplitude and phase
characteristics as their analog counterparts. IIR filters tend
to be more efficient than FIR filters with respect to
transitionband sharpness and filter orders required. Although
they require less code for implementation than the FIR filters
(TMS32010 straightline code), they show great nonlinearity
in phase, which limits their use in some applications.

By far the most commonly used IIR structure is the
cascade-form realization. It has been shown that proper
ordering of the poles and zeroes results in less sensitivity
to quantization noise. The Digital Filter Design Package
designs IIR filters in cascade form only.

By using a TMS32020 for both FIR and IIR filter
implementations, it is possible to design a higher-order filter



Table 1. Summary Table of Filter Programs

LENGTH-80 LINEAR-PHASE BANDPASS FIR (STRAIGHT-LINE CODE) )
CODE CYCLES EXECUTION TIME PROGRAM MEMORY DATA MEMORY
(MICROSECONDS) (WORDS) (WORDS)
Straight Line:
TMS32010 163 32.6 163 120
TMS32020 90 18 ° 1 161
(with RPTK)
LENGTH-60 FIR DIFFERENTIATOR (LOOPED CODE)
CODE CYCLES EXECUTION TIME PROGRAM MEMORY DATA MEMORY
(MICROSECONDS) (WORDS) (WORDS)
Looped:
TMS32010/20 243 48.6 11 120
FOURTH-ORDER LOWPASS IIR FILTERS
STRUCTURE CYCLES EXECUTION TIME PROGRAM MEMORY DATA MEMORY
(MICROSECONDS) (WORDS) (WORDS)
Direct-Form II:
TMS32010/20 24 4.8 24 16
Cascade:
TMS32010/20 27 5.4 27 18
Parallel:
TMS3210/20 28 5.6 28 18

NOTE: The above performance figures are only given as a reference. They should not be taken as
benchmarks since programs can always be improved for better speed and memory efficiency.

than with the TMS32010. The TMS32020 is also ideal for
higher-order FIR filters that require single-cycle
multiply/accumulate operations.

SUMMARY

A brief review of FIR and IIR digital filters has been
given to assist in understanding the fundamentals of digital

filter structure and their implementations using a digital signal
processor. Many design examples have also been included
to show the tradeoffs between FIR and IIR structures.

This application report has also described methods for
implementing FIR and IIR filters with the TMS32010 and
TMS32020. The design engineer can now choose between
the two devices, depending on the application.
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APPENDIX A
LENGTH-80 LINEAR-PHASE PASSBAND FIR FILTER

MAGNITUDE RESPONSE

a.00a 1.0000 2.0000 3.0000 4.0000 5.0000
FREQUENCY IN KILOHERTZ

LOG MAGNITUDE RESPONSE

2.0000 3.0000 4.00080 5.0000
FREQUENCY IN KILOHERTZ

UNIT SAMPLE RESPONSE

a.000 1.5800 2.1600 4.7400 6.3200 7.9000
TIME IN MILISECONDS
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2.5

2.0

2.5

APPENDIX B

LENGTH-60 FIR DIFFERENTIATOR

MAGNITUDE RESPONSE

0.2000 8. 4000 0.6000 0.8000 1.0000
FREQUENCY IN KILOHERTZ

20.00

MAGNITUDE RESPONSE
‘ : e.00
-20.08

~49.00

DECIBELS

-60. 66

~80.00

~100.00

2.000 1.0000 2. + 0000 4.0000

L1 3, 5.0000
FREQUENCY IN KILOHERTZ

MAGNITUDE RESPONSE

4.2000 4. 4.6000 4.8000 5.0000

4000
FREQUENCY IN KILOHERTZ

LOG MAGNITUDE RESPONSE

@.000 1.0000 4.0000 5.0000

2.0000 3.0000
FREQUENCY IN KILOHERTZ

PONSE

UNIT SAMPLE RES

9.5

0.0

-8.%

3.8400

a.e00 2.3600
TINE IN HILISECONDS

1.1800

4.7200 5.9000
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APPENDIX C
FOURTH-ORDER LOWPASS IIR FILTERS

MAGNITUDE RESPONSE

(RADIANS)
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LOG MAGNITUDE
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GROUP DELAY

—

3. 0000 4.0000 e.e00 1.0000

FREQUI

IMPULSE RESPONSE

1.0000 2.0000 3.0000 4.0000 5.0000
TINE IN HILLISECONDS

2.000!

3.0000
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2000 4.0000 5.0000
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