An Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

APPLICATION REPORT: SPRA116

Sen Kuo
Northwestern Illinois University
Chein Chen
Digital Signal Processor Products
Semiconductor Group
Texas Instruments

Digital Signal Processing Solutions
IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated
TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.
CONTACT INFORMATION

<table>
<thead>
<tr>
<th>Service</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>US TMS320 HOTLINE</td>
<td>(281) 274-2320</td>
</tr>
<tr>
<td>US TMS320 FAX</td>
<td>(281) 274-2324</td>
</tr>
<tr>
<td>US TMS320 BBS</td>
<td>(281) 274-2323</td>
</tr>
<tr>
<td>US TMS320 email</td>
<td>dsph@ti.com</td>
</tr>
</tbody>
</table>
An Implementation of Adaptive Filters with the TMS320C25 or the TMS320C30

Abstract

Adaptive filtering techniques are necessary considerations when a specific signal output is desired but the coefficients of that filter cannot be determined at the outset. Sometimes this is because of changing line or transmission conditions. An adaptive filter is one which contains coefficients that are updated by an adaptive algorithm to optimize filter response to the desired performance criterion.

Two devices, the TMS320C25 and TMS320C30, combine the power, high speed, flexibility and architecture optimized for adaptive signal processing.

This book discusses the topic of adaptive filter implementation as they apply to these two processors.

The book begins with a description of the two parts of an adaptive filter: the filter and the adaptive algorithm. The book goes on to discuss:

- The applications of adaptive filters (including adaptive prediction, equalization, noise cancellation and echo cancellation).

- The implementation of adaptive structures and algorithms (including transversal structure with the LMS algorithm, symmetric transversal structure, lattice structure, and modified LMS algorithms)

- Implementation considerations (including dynamic range constraint, finite precision errors, and design issues)
Software development (assembly function libraries, C function libraries, development process and environment)

The book also contains:

- Tables showing transversal structure, symmetric transversal structure and lattice structure for both the TMS320C25 and TMS320C30 processors
- Extensive references
- Multiple appendices of sample code for both TMS320C25 and TMS320C30 processors
Product Support

World Wide Web

Our World Wide Web site at www.ti.com contains the most up to date product information, revisions, and additions. New users must register with TI&ME before they can access the data sheet archive. TI&ME allows users to build custom information pages and receive new product updates automatically via email.

Email

For technical issues or clarification on switching products, please send a detailed email to dsph@ti.com. Questions receive prompt attention and are usually answered within one business day.
Introduction

A filter selects or controls the characteristics of the signal it produces by conditioning the incoming signal. The coefficients of the filter determine its characteristics and output \textit{a priori} in many cases. Often, a specific output is desired, but the coefficients of the filter cannot be determined at the outset. An example is an echo canceller; the desired output cancels the echo signal (an output result of zero when there is no other input signal). In this case, the coefficients cannot be determined initially since they depend on changing line or transmission conditions. For applications such as this, it is necessary to rely on adaptive filtering techniques.

An adaptive filter is a filter containing coefficients that are updated by an adaptive algorithm to optimize the filter’s response to a desired performance criterion. In general, adaptive filters consist of two distinct parts: a filter, whose structure is designed to perform a desired processing function; and an adaptive algorithm, for adjusting the coefficients of that filter to improve its performance, as illustrated in Figure 1. The incoming signal, \(x(n) \), is weighted in a digital filter to produce an output, \(y(n) \). The adaptive algorithm adjusts the weights in the filter to minimize the error, \(e(n) \), between the filter output, \(y(n) \), and the desired response of the filter, \(d(n) \). Because of their robust performance in the unknown and time-variant environment, adaptive filters have been widely used from telecommunications to control.

![Figure 1. General Form of an Adaptive Filter](image-url)
Adaptive filters can be used in various applications with different input and output configurations. In many applications requiring real-time operation, such as adaptive prediction, channel equalization, echo cancellation, and noise cancellation, an adaptive filter implementation based on a programmable digital signal processor (DSP) has many advantages over other approaches such as a hard-wired adaptive filter. Not only are power, space, and manufacturing requirements greatly reduced, but also programmability provides flexibility for system upgrade and software improvement.

The early research on adaptive filters was concerned with adaptive antennas [1] and adaptive equalization of digital transmission systems [2]. Much of the reported research on the adaptive filter has been based on Widrow’s well-known Least Mean Square (LMS) algorithm, because the LMS algorithm is relatively simple to design and implement, and it is well-understood and well-suited for many applications. All the filter structures and update algorithms discussed in this application report are Finite Impulse Response (FIR) filter structures and LMS-type algorithms. However, for a particular application, adaptive filters can be implemented in a variety of structures and adaptation algorithms [1, 3 through 9]. These structures and algorithms generally trade increased complexity for improved performance. An interactive software package to evaluate the performance of adaptive filters has also been developed [10].

The complexity of an adaptive filter implementation is usually measured in terms of its multiplication rate and storage requirement. However, the data flow and data manipulation capabilities of a DSP are also major factors in implementing adaptive filter systems. Parallel hardware multiplier, pipeline architecture, and fast on-chip memory size are major features of most DSPs [11, 12] and can make filter implementation more efficient.

Two such devices, the TMS320C25 and TMS320C30 from Texas Instruments [13, 14], have been chosen as the processors for fixed-point and floating-point arithmetic. They combine the power, high speed, flexibility, and an architecture optimized for adaptive signal processing. The instruction execution time is 80 ns for the TMS320C25 and only 60 ns for the TMS320C30. Most instructions execute in a single cycle, and the architectures of both processors make it possible to execute more than one operation per instruction. For example, in one instruction, the TMS320C25 processor can generate an instruction address and fetch that instruction, decode the instruction, perform one or two data moves (if the second data is from program memory), update one address pointer, and perform one or two computations (multiplication and accumulation). These processors are designed for real-time tasks in telecommunications, speech processing, image processing, and high-speed control, etc.
To direct the present research toward realistic real-time applications, three adaptive structures were implemented:

1. Transversal
2. Symmetric transversal
3. Lattice

Each structure utilizes five different update algorithms:

1. LMS
2. Normalized LMS
3. Leaky LMS
4. Sign-error LMS
5. Sign-sign LMS

Each structure with its adaptation algorithms is implemented using the TMS320C25 with fixed-point arithmetic and the TMS320C30 with floating-point arithmetic. The processor assembly code is included in the Appendix for each implementation. The assembly code for each structure and adaptation strategy can be readily modified by the reader to fit his/her applications and could be incorporated into a C function library as callable routines.

In this application report, the applications of adaptive filters, such as adaptive prediction, adaptive equalization, adaptive echo cancellation, and adaptive noise cancellation are presented first. Next, the implementation of the three filter structures and five adaptive algorithms with the TMS320C25 and TMS320C30 is described. This is followed by the practical considerations on the implementation of these adaptive filters. The remainder of the application report covers coding options, such as the routine libraries that support both assembly and C languages.

Applications of Adaptive Filters

The most important feature of an adaptive filter is the ability to operate effectively in an unknown environment and track time-varying characteristics of the input signal. The adaptive filter has been successfully applied to communications, radar, sonar, control, and image processing. Figure 1 illustrates a general form of an adaptive filter with input signals, $x(n)$ and $d(n)$, output signal, $y(n)$, and error signal, $e(n)$, which is the difference between the desired signal, $d(n)$, and output signal, $y(n)$. The adaptive filter can be used in different applications with different input/output configurations. In this section we briefly discuss several potential applications for the adaptive filters [15].

Adaptive Prediction

Adaptive prediction [16 through 18] is illustrated in Figure 2. In the general application of adaptive prediction, the signals are $x(n)$ — delayed version of original signal, $d(n)$ — original input signal, $y(n)$ — predicted signal, and $e(n)$ — prediction error or residual.
A major application of the adaptive prediction is the waveform coding of a speech signal. The adaptive filter is designed to exploit the correlation between adjacent samples of the speech signal so that the prediction error is much smaller than the input signal on average. This prediction error signal is quantized and sent to the receiver in order to reduce the number of bits required for the transmission. This type of waveform coding is called Adaptive Differential Pulse-Code Modulation (ADPCM) [17] and provides data rate compression of the speech at 32 kb/s with toll quality. More recently, in certain online applications, time recursive modeling algorithms have been proposed to facilitate speech modeling and analysis.

The coefficients of the adaptive predictor can be used as the autoregressive (AR) parameters of the nonstationary model. The equation of the AR process is

\[u(n) = a_1 u(n-1) + a_2 u(n-2) + \ldots + a_m u(n-m) + v(n) \]

where \(a_1, a_2, \ldots, a_m \) are the AR parameters. Thus, the present value of the process \(u(n) \) equals a finite linear combination of past values of the process plus an error term \(v(n) \). This adaptive AR model provides a practical means to measure the instantaneous frequency of input signal. The adaptive predictor can also be used to detect and enhance a narrow band signal embedded in broad band noise. This Adaptive Line Enhancer (ALE) provides at its output \(y(n) \) a sinusoid with an enhanced signal-to-noise ratio, while the sinusoidal components are reduced at the error output \(e(n) \).

Adaptive Equalization

Figure 3 shows another model known as adaptive equalization [2, 9, 15]. The signals in the adaptive equalization model are: \(x(n) \) — received signal (filtered version of transmitted signal) plus channel noise, \(d(n) \) — detected data signal (data mode) or pseudo random number (training mode), \(y(n) \) — equalized signal used to detect received data, and \(e(n) \) — residual intersymbol interference plus noise.
Figure 3. Block Diagram of an Adaptive Equalizer

The use of adaptive equalization to eliminate the amplitude and phase distortion introduced by the communication channel was one of the first applications of adaptive filtering in telecommunications [19]. The effect of each symbol transmitted over a time-dispersive channel extends beyond the time interval used to represent that symbol, resulting in an overlay of received symbols. Since most channels are time-varying and unknown in advance, the adaptive channel equalizer is designed to deal with this intersymbol interference and is widely used for bandwidth-efficient transmission over telephone and radio channels.

Adaptive Echo Cancellation

Another application, known as adaptive echo cancellation [20, 21] is shown in Figure 4. In this application, the signals are identified as $x(n)$ — far-end signal, $d(n)$ — echo of far-end signal plus near-end signal, $y(n)$ — estimated echo of far-end signal, and $e(n)$ — near-end signal plus residual echo.

Figure 4. Block Diagram of an Echo C cancelle
The adaptive echo cancellers are used in practical applications of cancelling echoes for long-distance telephone voice communication, full-duplex voiceband data modems, and high-performance audio-conferencing systems. To overcome the echo problem, echo cancellers are installed at both ends of the network. The cancellation is achieved by estimating the echo and subtracting it from the return signal.

Adaptive Noise Cancellation

One of the simplest and most effective adaptive signal processing techniques is adaptive noise cancelling [1, 22]. As shown in Figure 5, the primary input d(n) contains both signal and noise, where x(n) is the noise reference input. An adaptive filter is used to estimate the noise in d(n) and the noise estimate y(n) is then subtracted from the primary channel. The noise cancellation output is then the error signal e(n).

The applications of noise cancellation include the cancellation of various forms of interference in electrocardiography, noise in speech signals, noise in fighter cockpit environments, antennas sidelobe interference, and the elimination of 60-Hz hum. In the majority of these noise cancellation applications, the LMS algorithm has been utilized.

![Diagram](image)

Figure 5. General Form of a Noise Canceller

Application Summary

The above list of applications is not exhaustive and is limited primarily to applications within the field of telecommunications. Adaptive filtering has been used extensively in the context of many other fields including, but not limited to, instantaneous frequency tracking, intrusion detection, acoustic Doppler extraction, on-line system identification, geophysical signal processing, biomedical signal processing, the elimination of radar clutter, beamforming, sonar processing, active sound cancellation, and adaptive control.
Implementation of Adaptive Structures and Algorithms

Several types of filter structures can be implemented in the design of the adaptive filters such as Infinite Impulse Response (IIR) or Finite Impulse Response (FIR). An adaptive IIR filter [1, 5], with poles as well as zeros, makes it possible to offer the same filter characteristics as the FIR filter with lower filter complexity. However, the major problem with adaptive IIR filter is the possible instability of the filter if the poles move outside the unit circle during the adaptive process. In this application report, only FIR structure is implemented to guarantee filter stability.

An adaptive FIR filter can be realized using transversal, symmetric transversal, and lattice structures. In this section, the adaptive transversal filter with the LMS algorithm is introduced and implemented first to provide a working knowledge of adaptive filters.

Transversal Structure with LMS Algorithm

Transversal Structure Filter

The most common implementation of the adaptive filter is the transversal structure (tapped delay line) illustrated in Figure 6. The filter output signal y(n) is

\[y(n) = w^T(n)x(n) = \sum_{i=0}^{N-1} w_i(n) x(n-i) \]

where \(x(n) = [x(n) \ x(n-1) \ \ldots \ x(n-N+1)]^T \) is the input vector, \(w(n) = [w_0(n) \ w_1(n) \ \ldots \ w_{N-1}(n)]^T \) is the weight vector, \(T \) denotes transpose, \(n \) is the time index, and \(N \) is the order of filter. This example is in the form of a finite impulse response filter as well as the convolution (inner product) of two vectors \(x(n) \) and \(w(n) \). The implementation of Equation (1) is illustrated using the following C program:

```
    y[n] = 0.;
    for (i = 0; i < N; i++) {
        y[n] += wn[i]*xn[i];
    }
```

where \(w[n][i] \) denotes \(w_i(n) \) and \(x[n][i] \) represents \(x(n-i) \).
Figure 6. Transversal Filter Structure

TMS320C25 Implementation

The architecture of TMS320C25 [13] is optimized to implement the FIR filter. After execution of the CNFP (Configure Block B0 as Program Memory) instruction, the filter coefficients $w_i(n)$ from RAM block B0 (via program bus) and data $x(n-i)$ from RAM block B1 (via data bus) are available simultaneously for the parallel multiplier (see Figure 7).

Figure 7. TMS320C25 Arithmetic Unit (after execute CNFP instruction)
The MACD instruction enables complete multiply/accumulate, data move, and pointer update operations to be completed in a single instruction cycle (80 ns) if filter coefficients are stored in on-chip RAM or ROM or in off-chip program memory with zero wait states. Since the adaptive weights \(w_i(n) \) need to be updated in every iteration, the filter coefficients must be stored in RAM. The implementation of the inner product in Equation (1) can be made even more efficient with a repeat instruction, RPTK. An N-weight transversal filter can be implemented as follows [23]:

\[
\begin{align*}
\text{LARP} & \quad \text{ARn} \\
\text{LRLK} & \quad \text{ARn,LASTAP} \\
\text{RPTK} & \quad N - 1 \\
\text{MACD} & \quad \text{COEFFP,* } - \\
\end{align*}
\]

Where ARn is an auxiliary address register that points to \(x(n-N+1) \), and the Prefetch Counter (PFC) points to the last weight \(w_{N-1}(n) \) indicated by COEFFP. When the MACD instruction is repeated, the coefficient address is transferred to the PFC and is incremented by one during its operation. Therefore, the components of weight vector \(\mathbf{w}(n) \) are stored in B0 as

![Diagram](image)

The MACD in repeat mode will also copy data pointed to by ARn, to the next higher on-chip RAM location. The buffer memories of transversal filter are therefore stored as

![Diagram](image)
In general, roundoff noise occurs after each multiplication. However, the TMS320C25 has a 16×16-bit multiplier and a 32-bit accumulator, so there is no roundoff during the summing of a set of product terms in Program (A). All multiplication products are represented in full precision, and rounding is performed after they are summed. Thus $y(n)$ is obtained from the accumulator with only one roundoff, which minimizes the roundoff noise in the output $y(n)$. Since both the tapped delay line and the adaptive weights are stored in data RAM to achieve the fastest throughput, the highest transversal filter order for efficient implementation on the TMS320C25 is 256. However, if necessary, higher order filters can be implemented by using external data RAM.

TMS320C30 Implementation

The architecture of TMS320C30 [14] is quite different from TI’s second generation processors. Instead of using program/data memory, it provides two data address buses to do the data memory manipulations. This feature allows two data memory addresses to be generated at the same time. Hence, parallel data store, load, or one data store with one data load can be done simultaneously. Such capabilities make the programming much easier and more flexible. Since the hardware multiplier and arithmetic logic unit (ALU) of TMS320C30 are separated, with proper operand arrangement, the processor can do one multiplication and one addition or subtraction at the same time. With these two combined features, the TMS320C30 can execute several other parallel instructions. These parallel instructions can be found in Section 11 of the Third-Generation TMS320 User’s Guide [14]. Associating with single repeat instruction RPTS, an inner product in Equation (1) can be implemented as follows:

```
MPYF3  *AR0 + + (1)%,*AR1 + + (1)% , R1           ; w[0].x[0]
RPTS   N−2                                   ; Repeat N−1 times
MPYF3  *AR0 + + (1)%,*AR1 + + (1)% , R1           ; y[] = w[].x[]
| | ADDF3 R1,R2,R2
| | ADDF3 R1,R2,R2
```

where auxiliary registers AR0 and AR1 point to x and w arrays. The addition in the parallel instruction sums the previous values of R1 and R2. Therefore, R1 is initialized with the first product prior to the repeat instruction RPTS.

Note that the implementation above does not move the data in the x array like MACD does in TMS320C25. For filter delay taps, the TMS320C30 uses a circular buffer method to implement the delay line. This method reserves a certain size of memory for the buffer and uses a pointer to indicate the beginning of the buffer. Instead of moving data to next memory location, the pointer is updated to point to the previous memory location. Therefore, from the new beginning of the buffer, it has the effect of the tapped delay line. When the value of the pointer exceeds the end of the buffer, it will be circled around to the other end of the buffer. It works just like joining two ends of the buffer together as a necklace. Thus, new data is within the circular queue, pointed to by AR0, replacing
the oldest value. However, from an adaptive filter point of view, data doesn’t have to be moved at this point yet.

TMS320C30 has a 32-bit floating point multiplier and the result from the multiplier is put and accumulated into a 40-bit extended precision register. If the input from A/D converter is equal to or less than 16 bits, there is no roundoff noise after multiplication. Theoretically, the TMS320C30 can implement a very high order of adaptive filter. However, for the most efficient implementation, the limitation of filter order is 2K because the TMS320C30 external data write requires at least two cycles. If the filter coefficients are put in somewhere other than internal data RAM, the instruction cycles will be increased.

LMS Adaptation Algorithm

The adaptation algorithm uses the error signal

\[e(n) = d(n) - y(n), \]

(2)

where \(d(n) \) is the desired signal and \(y(n) \) is the filter output. The input vector \(x(n) \) and \(e(n) \) are used to update the adaptive filter coefficients according to a criterion that is to be minimized. The criterion employed in this section is the mean-square error (MSE)\(\epsilon \):

\[\epsilon = E[e^2(n)] \]

(3)

where \(E[.] \) denotes the expectation operator. If \(y(n) \) from Equation (1) is substituted into Equation (2), then Equation (3) can be expressed as

\[\epsilon = E[d^2(n)] + w^T(n)Rw(n) - 2w^T(n)p \]

(4)

where \(R = E[x(n)x^T(n)] \) is the \(N \times N \) autocorrelation matrix, which indicates the sample-to-sample correlation within a signal, and \(p = E[d(n)x(n)] \) is the \(N \times 1 \) cross-correlation vector, which indicates the correlation between the desired signal \(d(n) \) and the input signal vector \(x(n) \).

The optimum solution \(w^* = [w_0^* \; w_1^* \; \ldots \; w_{N-1}^*]^T \), which minimizes MSE, is derived by solving the equation

\[\frac{\delta \epsilon}{\delta w(n)} = 0 \]

(5)

This leads to the normal equation

\[R \; w^* = p \]

(6)
If the \(R \) matrix has full rank (i.e., \(R^{-1} \) exists), the optimum weights are obtained by
\[
\underline{w}^* = R^{-1} \underline{p}
\] (7)

In Linear Predictive Coding (LPC) of a speech signal, the input speech is divided into short segments, the quantities of \(R \) and \(\underline{p} \) are estimated, and the optimal weights corresponding to each segment are computed. This procedure is called a block-by-block data-adaptive algorithm [24].

A widely used LMS algorithm is an alternative algorithm that adapts the weights on a sample-by-sample basis. Since this method can avoid the complicated computation of \(R^{-1} \) and \(\underline{p} \), this algorithm is a practical method for finding close approximate solutions to Equation (7) in real time. The LMS algorithm is the steepest descent method in which the next weight vector \(\underline{w}(n+1) \) is increased by a change proportional to the negative gradient of mean-square-error performance surface in Equation (7)
\[
\underline{w}(n+1) = \underline{w}(n) - u \underline{\nabla} (n)
\] (8)

where \(u \) is the adaptation step size that controls the stability and the convergence rate. For the LMS algorithm, the gradient at the \(n \)th iteration, \(\underline{\nabla} (n) \), is estimated by assuming squared error \(e^2(n) \) as an estimate of the MSE in Equation (3). Thus, the expression for the gradient estimate can be simplified to
\[
\underline{\nabla}(n) = \frac{\delta[e^2(n)]}{\delta \underline{w}(n)} = - 2 \ e(n) \ \underline{x}(n)
\] (9)

Substitution of this instantaneous gradient estimate into Equation (8) yields the Widrow-Hoff LMS algorithm
\[
\underline{w}(n+1) = \underline{w}(n) + 2 \ u \ e(n) \ \underline{x}(n)
\] (10)

where \(2 \ u \) in Equation (10) is usually replaced by \(u \) in practical implementation.

Starting with an arbitrary initial weight vector \(\underline{w}(0) \), the weight vector \(\underline{w}(n) \) will converge to its optimal solution \(\underline{w}^* \), provided \(u \) is selected such that [1]
\[
0 < u < \frac{1}{\lambda_{\text{max}}}
\] (11)
where λ_{max} is the largest eigenvalue of the matrix R. λ_{max} can be bounded by

$$\lambda_{\text{max}} < \text{Tr} [R] = \sum_{i=0}^{N-1} r(0) = N r(0)$$ \hspace{1cm} (12)$$

where $\text{Tr} [.]$ denotes the trace of a matrix and $r(0) = E [x^2(n)]$ is average input power.

For adaptive signal processing applications, the most important practical consideration is the speed of convergence, which determines the ability of the filter to track nonstationary signals. Generally speaking, weight vector convergence is attained only when the slowest weight has converged. The time constant of the slowest mode is [1]

$$t = \frac{1}{u\lambda_{\text{min}}}$$ \hspace{1cm} (13)$$

This indicates that the time constant for weight convergence is inversely proportional to u and also depends on the eigenvalues of the autocorrelation matrix of the input. With the disparate eigenvalues, i.e., $\lambda_{\text{max}} >> \lambda_{\text{min}}$, the setting time is limited by the slowest mode, λ_{min}. Figure 8 shows the relaxation of the mean square error from its initial value ϵ_0 toward the optimal value ϵ_{min}.

Adaptation based on a gradient estimate results in noise in the weight vector, therefore a loss in performance. This noise in the adaptive process causes the steady state weight vector to vary randomly about the optimum weight vector. The accuracy of weight vector in steady state is measured by excess mean square error (excess MSE = $E [\epsilon - \epsilon_{\text{min}}]$). The excess MSE in the LMS algorithm [1] is

$$\text{excess MSE} = u \text{Tr}[R] \epsilon_{\text{min}}$$ \hspace{1cm} (14)$$

where ϵ_{min} is minimum MSE in the steady state.

Equations (13) and (14) yield the basic trade-off of the LMS algorithm: to obtain high accuracy (low excess MSE) in the steady state, a small value of u is required, but this will slow down the convergence rate. Further discussions of the characteristics and properties of the LMS algorithm are presented in [1, 3 through 9]. The implementations of LMS algorithm with the TMS320C25 and TMS320C30 are presented next.
Figure 8. Learning Curve of an Adaptive Transversal Filter and an LMS Algorithm with Different Step Sizes
Figure 8. Learning Curve of an Adaptive Transversal Filter and an LMS Algorithm with Different Step Sizes
Since \(u^*e(n) \) is constant for \(N \) weights update, the error signal \(e(n) \) is first multiplied by \(u \) to get \(ue(n) \). This constant can be computed first and then multiplied by \(x(n) \) to update \(w(n) \). An implementation method of the LMS algorithm in Equation (10) is illustrated as

\[
ue(n) = u^*e[n];
\]

for \((i=0; i<N; i++) \) {
\[
wn[i] += uen^*xn[i];
\]
}

TMS320C25 Implementation

The TMS320C25 provides two powerful instructions (ZALR and MPYA) to perform the update example in Equation (10).

- ZALR loads a data memory value into the high-order half of the accumulator while rounding the value by setting bit 15 of the accumulator to one and setting bits 0-14 of the accumulator to zero. The rounding is necessary because it can reduce the roundoff noise from multiplication.
- MPYA accumulates the previous product in the \(P \) register and multiplies the operand with the data in \(T \) register.

Assuming that \(ue(n) \) is stored in \(T \) and the address pointer is pointing to \(AR3 \), the adaptation of each weight is shown in the following instruction sequence:

```
LRLK AR1,N-1          ; Initialize loop counter
LRLK AR2,COEFFD       ; Point to \( w_{N-1}(n) \)
LRLK AR3,LASTAP+1     ; Point to \( x(n-N+1) \), since MACD in (A)
                      ; Already moved elements of current
                      ; \( x(n) \) to the next higher location
MPY *-,AR2            ; \( P=ue(n) \ast x(n-N+1) \)
ADAP ZALR *-,AR3      ; Load \( w_i(n) \) and round
MPYA *-,AR2           ; \( \text{ACC}=P+w_i(n) \) and \( P=ue(n) \ast x(n-i) \)
SACH **+,0,AR1        ; Store \( w_i(n+1) \)
BANZ ADAP,*,-,AR2     ; Test loop counter, if counter not
                      ; Equal to 0, decrement counter,
                      ; Branch to ADAP and select AR2 as
                      ; Next pointer.
```

For each iteration, \(N \) instruction cycles are needed to perform Equation (1), 6\(N \) instruction cycles are needed to perform weight updates in Equation (10), and the total number of instruction cycles needed is \(7N+28 \). An example of a TMS320C25 program implementing a LMS transversal filter is presented in Appendix A1. Note that BANZ needs three instruction cycles to execute. This can be avoided by using straight line code, which requires \(4N+33 \) instruction cycles \[25\].
TMS320C30 Implementation

Although the TMS320C30 doesn’t provide any specific instruction for adaptive filter coefficients update, it still can achieve the weight updating in two instructions because of its powerful architecture. The TMS320C30 has a repeat block instruction RPTB, which allows a block of instructions to be repeated a number of times without any penalty for looping. A single repeat mode, RM, in the status register, ST, and three registers – repeat start address (RS), repeat end address (RE), and repeat counter (RC) – control the block repeat. When RM is set, the PC repeats the instructions between RS and RE a number of times, which is determined by the value of RC. The repeat modes repeat a block of code at least once in a typical operation. The repeat counter should be loaded with one less than the desired number of repetitions. Assuming the error signal e(n) in Equation (10) is stored in R7, the adaptation of filter coefficients is shown as follows:

```
MPYF3  *AR0+ +(1)%,R7,R1 ; R1 = u*e(n)*x(n)
LDI     order−3,RC ; Initialize repeat counter
RPTB    LMS ; Do i = 0, N−3
MPYF3  *AR0+ +(1)%,R7,R1 ; Compute u*e(n)*x(n−i−1)
|    |ADDF3  *AR1,R1,R2 ; Compute w_i(n) + u*e(n)*x(n−i)
LMS    STF  R2,*AR1+ +(1)%; Store w_i(n+1)
MPYF3  *AR0,R7,R1 ; For i = N−2
|    |ADDF3  *AR1,R1,R2
STF     R2,*AR1+ +(1)% ; Store w_{N−2(n+1)}
ADDF3  *AR1,R1,R2 ; Include last w
STF     R2,*AR1+ +(1)% ; Store w_{N−1(n+1)}
```

where auxiliary register AR0 and AR1 point to x and w arrays. R1 is updated before loop since the accumulation in the parallel instruction uses the previous value in R1. In order to update x array pointer to the new beginning of the data buffer for next iteration (i.e., perform the data move), one of the loop instruction set has been taken out of loop and modified by eliminating the incrementation of AR0.

To perform an N−weight adaptive LMS transversal filter on TMS320C30 requires 3N+15 instruction cycles. There are N and 2N instruction cycles to perform Equations (1) and (10), respectively. The TMS320C30 example program is given in Appendix A2.

The LMS algorithm considerably reduces the computational requirements by using a simplified mean square error estimator (an estimate of the gradient). This algorithm has proved useful and effective in many applications. However, it has several limitations in performance such as the slow initial convergence, the undesirable dependence of its convergence rate on input signal statistics, and an excess mean square error still in existence after convergence.
Symmetric Transversal Structure [5]

A transversal filter with symmetric impulse response (weight values) about the center weight has a linear phase response. In applications such as speech processing, linear phase filters are preferred since they avoid phase distortion by causing all the components in the filter input to be delayed by the same amount. The adaptive symmetric transversal structure is shown in Figure 9.

\[
\begin{align*}
\sum & \quad x(n) \\
& \quad z^{-1} \rightarrow z^{-1} \rightarrow z^{-1} \\
& \quad + \quad + \quad + \\
& \quad \sum \quad \sum \quad \sum \\
& \quad z^{-1} \quad z^{-1} \quad z^{-1} \\
& \quad + \quad + \quad + \\
& \quad w_0(n) \quad w_1(n) \quad w_{N/2-1}(n) \\
& \quad + \quad + \quad + \\
& \quad \sum \\
& \quad + \\
& \quad y(n)
\end{align*}
\]

Figure 9. Symmetric Transversal Structure (even order)

This filter is actually an FIR filter with an impulse response that is symmetric about the center tap. The output of the filter is obtained as

\[
y(n) = \sum_{i=0}^{N/2-1} w_i(n) [x(n-i) + x(n-N+i+1)]
\]

where \(N \) is an even number. Note that, for fixed-point processors, the addition in the brackets may introduce overflow because the input signals \(x(n-i) \) and \(x(n-N+i+1) \) are in the range of \(-1\) and \(1-2^{-15}\). This problem can be solved by shifting \(x(n) \) to the right one bit. The update of the weight vector is

\[
w_i(n+1) = w_i(n) + u e(n) [x(n-1) + x(n-N+i+1)]
\]
for \(i=0,1,\ldots,(N/2-1) \), which requires \(N/2 \) multiplications and \(N \) additions. Theoretically, this symmetric structure can also reduce computational complexity since such filters require only half the multiplications of the general transversal filter. However, it is true only for the TMS320C30 processor. When a filter is implemented on the TMS320C25, the transversal structure is more efficient than the symmetric transversal structure due to the pipeline multiplication and accumulation instruction MACD, which is optimized to implement convolution in Equation (1).

TMS320C25 Implementation

For TMS320C25, in order to implement the instructions MAC, ZALR, and MPYA, we can trade memory requirements for computation saving by defining

\[
z(n-i) = x(n-i) + x(n-N+i+1), \quad i=0,1,\ldots,N/2-1
eq(16a)
\]

Now, Equation (15) can be expressed as

\[
y(n) = \sum_{i=0}^{N/2-1} w_i(n) z(n-i) \quad (16b)
\]

\[
w_i(n+1) = w_i(n) + u e(n) z(n-i), \quad i=0,1,\ldots,N/2-1
\]

Equation (16a) can be implemented using the TMS320C25 as

- **LARK** AR1, N/2−1 ; Counter = N/2−1
- **LRLK** AR2,LAST__X ; Point to x(n−N+1)
- **LRLK** AR3,FIRST__X ; Point to x(n)
- **LRLK** AR4,FIRST__Z ; Point to z(n)
- **LARP** AR3
- **SYM** LAC *+,0,AR2
- **ADD** *−,0,AR4
- **SACL** *+,0,AR1
- **BANZ** SYM,*−,AR3

The instruction sequence to implement the LMS algorithm in Equations (1) and (10) can be used to implement Equations (16b) and (16c), except using MAC instead of MACD in Program (A). Therefore, \(N \) instruction cycles are needed to shift data in \(x(n) \), \(3N \) instruction cycles are needed to implement Equation (16a), \(N/2 \) for Equation (16b), and \(3N \) for Equation (16c). The total number of instruction cycles required to implement the symmetric transversal filter with the LMS algorithm is \(7.5N+38 \). Where \(7.5N \) is an integer because \(N \) is chosen as an even number. The 0.5N instruction cycles come from Equation (15a) since symmetric transversal structure folds the filter taps into half of the order \(N \) (see Figure 9). The maximum filter length for most efficient code, 256, is the
same as for the FIR filter. The use of the additional data memory can be obtained from the reduced data memory requirement for weights of the symmetric transversal filter. The complete TMS320C25 program is given in Appendix B1.

Note that instead of storing buffer locations \(x(n) \) contiguously, then using DMOV to shift data in the buffer memory (requiring \(N \) cycles) at the end of each iteration, we can use a circular buffer with pointers pointing to \(x(n) \) and \(x(n-N+1) \). Since pointer updating requires several instruction cycles, compared with \(N \) cycles using DMOV to update the buffer memory contents, the circular buffer technique is more efficient if \(N \) is large.

TMS320C30 Implementation

As mentioned above, the TMS320C30 uses a circular buffer instead of data move technique. Therefore, it does not have to implement tapped delay line separately as TMS320C25. Equations (1) and (16a) can be combined and implemented in the same loop. The advantage of this is that a parallel instruction reduces the number of the instruction cycles. The implementation is shown as follows:

\[
\begin{align*}
\text{LDF} & \quad 0.0, R2 \quad ; \text{Clear R2} \\
\text{LDI} & \quad \text{order}/2 - 2, RC \quad ; \text{Set up loop counter} \\
\text{RPTB} & \quad \text{INNER} \quad ; \text{Do } i = 0, \text{N/2} - 2 \\
\text{ADDF3} & \quad \star \text{AR4} + (1)\% , \star \text{AR5} - (1)\% , R1; \quad z(i) = x(n-i) + x(n+N-i) \\
\text{MPYF3} & \quad R1, \star \text{AR1} + + (1), R3 \quad ; \quad R3 = w[] \times z[] \\
| \text{STF} & \quad R1, \star \text{AR2} + + (1) \quad ; \text{Store } z(i) \\
\text{INNER} & \quad \text{ADDF3} \quad R3, R2, R2 \quad ; \text{Accumulate the result for } y \\
\end{align*}
\]

\[
\begin{align*}
\text{ADDF3} & \quad \star \text{AR4} + + (1)\% , \star \text{AR5} - (1)\% , R1; \quad \text{For } i = \text{N/2} - 1 \\
\text{MPYF3} & \quad R1, \star \text{AR1} - (\text{IR0}), R3 \\
| \text{STF} & \quad R1, \star \text{AR2} - - (\text{IR0}) \\
\text{ADDF3} & \quad R3, R2, R2 \quad ; \text{Include last product}
\end{align*}
\]

where \(\text{AR4} \) and \(\text{AR5} \) point to \(x[0] \) and \(x[N-1] \). \(\text{AR1} \) and \(\text{AR2} \) point to \(w \) and \(z \) array, respectively. \(\text{IR0} \) contains value of \(\text{N/2} - 1 \). The same instruction codes of weight update of transversal filter can be used in symmetric transversal structure by changing the \(x \) array pointer to the \(z \) array pointer. Appendix B2 presents an example program. The total number of instructions needed is \(2.5N + 15 \), which is less than that of the transversal structure.

Lattice Structure [6]

An alternative FIR filter realization is the lattice structure [26]. A discussion of the transversal filter with the LMS algorithm shows that the convergence rate of the transversal structure is restricted by the correlation of signal components; i.e., the eigenvalue spread, \(\lambda_{\text{max}}/\lambda_{\text{min}} \). The lattice structure is a decorrelating transform based on a family of prediction error filters as illustrated in Figure 10. The recursive equations that describe the lattice predictor are
\[f_0(n) = b_0(n) = x(n) \]
\[f_m(n) = f_{m-1}(n) - k_m(n)b_{m-1}(n-1), \quad 0 < m \leq M \]
\[b_m(n) = b_{m-1}(n-1) - k_m(n)f_{m-1}(n), \quad 0 < m \leq M \]

where \(f_m(n) \) represents the forward prediction error, \(b_m(n) \) represents the backward prediction error, \(k_m(n) \) is the reflection coefficients, \(m \) is the stage index, and \(M \) is the number of cascaded stages. The lattice structure has the advantage of being order-recursive. This property allows adding or deleting of stages from the lattice without affecting the existing stages.

Figure 10. Lattice Structure

To implement the lattice filter for processing actual data, the reflection coefficients \(k_m(n) \) are required. These coefficients can be computed according to estimates of the autocorrelation coefficients using Durbin’s algorithm. However, it would be more efficient if these reflection coefficients could be estimated directly from the data and updated on a sample-by-sample basis, such as LMS algorithm [6]. The reflection coefficient \(k_m(n+1) \) can be recursively computed [7]:
\[k_m(n+1) = k_m(n) + u[f_m(n)b_{m-1}(n-1) + b_m(n)f_{m-1}(n)], \quad 0 < m \leq M \tag{18} \]

For applications such as noise cancellation, channel equalization, line enhancement, etc., the joint-process estimation [3] illustrated in Figure 11 is required. This device performs two optimum estimations: the lattice predictor and the multiple regression filter. The following equations define the implementation of the regression filter

\[
e_0(n) = d(n) - b_0(n)g_0(n) \tag{19a}
\]

\[
e_m(n) = e_{m-1}(n) - b_{m-1}(n)g_{m-1}(n), \quad 0 < m \leq M \tag{19b}
\]

\[
g_m(n+1) = g_m(n) + u_{em}(n)b_m(n), \quad 0 \leq m \leq M \tag{20}
\]

where the LMS algorithm is used to update the coefficients of the regression filter. For noise cancellation application, \(e_m(n)\) corresponds to the output \(e(n)\) in Figure 5. For applications such as adaptive line enhancer and channel equalizer, filter output \(y(n)\) is obtained as

\[
y(n) = \sum_{m=0}^{M} g_m(n) b_m(n) \tag{21}
\]

Figure 11. Lattice Structure with Joint Process Estimation
TMS320C25/TMS320C30 Implementation

There are five memory locations—\(f_m(n), b_m(n), b_m(n-1), k_m(n), \) and \(g_m(n)\)—required for each stage. The limitation of on-chip data RAM is 544 words for the TMS320C25 and 2K words for the TMS320C30. A maximum of 102 stages can therefore be implemented on a single TMS320C25 for the highest throughput. Here, another advantage of TMS320C30 architecture design is shown. Since the operands of the mathematic operations can be either memory or register on the TMS320C30, and there is no need to preserve the values of \(f_m\) array for the next iteration (refer to Equations (17) and (18)), the \(f_m\) array can be replaced by an extended precision register. Thus, for the most efficient codes, the stage limitation of lattice structure for TMS320C30 is 512, or one-fourth of the 2K on-chip RAM.

Lattice structures have superior convergence properties relative to transversal structures and good stability properties; e.g., low sensitivity to coefficient quantization, low roundoff noise, and the ability to check stability by inspection. The disadvantages of lattice filter algorithms are that they are numerically complex and require mathematical sophistication to thoroughly understand their derivations. Furthermore, as shown in Appendixes C1 and C2, lattice structures cannot take advantage of the TMS320C25 and TMS320C30’s pipeline architecture to achieve high throughput. The total number of instruction cycles needed is \(33M + 32\) for TMS320C25 and \(14M + 4\) for TMS320C30.

Modified LMS Algorithms [5]

The LMS algorithm described in previous sections is the most widely used algorithm in practical applications today. In this section, a set of LMS-type algorithms (all direct variants of the LMS algorithm) are presented and implemented. The motivation for each is some practical consideration, such as faster convergence, simplicity in implementation, or robustness in operation. The description of these algorithms is based on the transversal structure. However, these algorithms can be applied to the symmetric transversal structure and the lattice structure as well.

Normalized LMS Algorithm

The stability, convergence time, and fluctuation of the adaptation process is governed by the step size \(u\) and the input power to the adaptive filter. In some practical applications, you may need an automatic gain control (AGC) on the input to the adaptive filter. The normalized LMS algorithm is one important technique used to improve the speed of convergence. This is accomplished while maintaining the steady-state performance independent of the input signal power. This algorithm uses a variable convergence factor \(u(n)\), which represents a \(u\) that is a function of the time index,

\[u(n) = a / \text{var}(n) \]
(22)
and

$$\mathbf{w}(n+1) = \mathbf{w}(n) + u(n)e(n)x(n)$$ \hspace{1cm} (23)$$

where a is a convergence parameter, and $\text{var}(n)$ is an estimate of the input average power at time n using the recursive equation

$$\text{var}(n) = (1 - b) \text{var}(n-1) + b x^2(n)$$ \hspace{1cm} (24)$$

where $0 < b << 1$ is a smoothing parameter. In practice, a is chosen equal to b.

For fixed-point processors, there is a way to reduce the computation of power estimation. Since b in Equation (24) doesn't have to be an exact number, it is computationally convenient to make b a power of 2. If $b = 2^{-m}$, the multiplication of b can be implemented by shifting right m bits. Therefore, the $\text{var}(n)$ in Equation (24) is computed by

$$\text{var}(n) = \text{var}(n-1) - b \text{var}(n-1) + b x^2(n)$$

$$= \text{var}(n-1) - \text{var}(n-1) * 2^{-m} + x^2(n) * 2^{-m}$$

Then, assuming the variance $\text{var}(n)$ of input signal is stored in the data memory VAR and its initial value is 0.99997 ($= 1 - 2^{-15}$), The implementation of this equation using TMS320C25 assembly code is

```
LARP AR3
LRLK AR3,FRSTAP ; Point to input signal x
SQRA * ; Square input signal
SPH ERRF
ZALH VAR ; ACC = var(n-1)
SUB VAR,SHIFT ; ACC = (1-b) var(n-1)
ADD ERRF,SHIFT ; ACC = (1-b) var(n-1) + b x^2(n)
SACH VAR ; Store var(n)
```

The normalized LMS algorithm can be implemented as

$$\text{var} = b_1 * \text{var} + b * x[n] * x[n];$$

$$\text{unen} = e[n] * a / \text{var};$$

for (i = 0; i < N; i++)

$$\text{wn}[i] += \text{unen} * x[n][i];$$

where $b_1 = (1-b)$, $x[n] = x(n)$, and $\text{unen} = u(n) * e(n)$. This normalized technique reduces the dependency of convergence speed on input signal power at the cost of increased computational complexity, especially the division in Equation (22). The algorithms of implementing the fixed-point and floating-point division on the TMS320C25 and
TMS320C30 can be found in the user's guide for each device [13, 14]. Since the power of input signal is always positive, those codes can be simplified to save computation time.

Since the power estimation in Equation (24) and step size normalization in Equation (22) are performed once for each sample x(n), the computation increase can be ignored when N is large. As shown in Appendixes D1 and D2, the total number of instruction cycles needed for the normalized LMS algorithm (7N+57 for the TMS320C25 and 3N+47 for the TMS320C30) is slightly higher than for the LMS algorithm (7N+34 and 3N+15) when N is large.

Sign LMS Algorithms

The LMS algorithm requires 2N multiplications and additions for each iteration; this amount is much lower than the requirements for many other complicated adaptive algorithms, such as Kalman and Recursive Least Square (RLS) [3]. However, there are three simplified versions of the LMS algorithm (sign-error LMS, sign-data LMS, and sign-sign LMS) that save the number of multiplications required and extend the real-time bandwidth for some applications [5, 27].

First, the sign-error LMS algorithm can be expressed as

\[
\mathbf{w}(n+1) = \mathbf{w}(n) + u \text{ sign}[e(n)] x(n)
\]

(25)

where

\[
\text{sign}[e(n)] = \begin{cases}
1, & \text{if } e(n) \geq 0 \\
-1, & \text{if } e(n) < 0
\end{cases}
\]

The C program implementation of sign-error LMS algorithm is

```c
    tu = u;
    if (e[n] < 0.) {
        tu = -u;
    }
    for (i=0; i<N; i++) {
        wn[i] += tu * xn[i];
    }
```

As shown in Appendixes E1 and E2, the instruction sequence to implement weight update with the sign-error LMS algorithm is identical to that with the LMS algorithm. The difference is that the sign-error LMS algorithm uses the sign [e(n)]u instead of e(n)u before the update loop. Note that, for fixed-point processors, if u is chosen to be a power of two, the u x(n) can be accomplished by shifting right the elements in x(n). This algorithm keeps the same convergence direction as the LMS algorithm. Thus, the sign-error LMS algorithm should remain efficient, provided the variable gain u(n) is matched to this change. However, the use of constant step size u to reduce computation comes at the expense of a slow convergence rate since smaller u is normally used for stability reasons.
The programs in Appendixes E1 and E2 implement a transversal filter with sign-error LMS algorithm in looped code. The total number of instruction cycles needed for this algorithm using the TMS320C25 is 7N + 26, which is slightly less than for the LMS algorithm's 7N + 28. Computing $u^*e(n)$ takes 5 instruction cycles. The sign-error LMS algorithm determines the sign of the u by checking the sign of $e(n)$, which takes only 3 instruction cycles. The total number of instruction cycles needed for the sign-error LMS algorithm using the TMS320C30 is 3N + 16, which is slightly higher than for the LMS algorithm. This occurs because the TMS320C30 takes only one instruction cycle to compute $u^*e(n)$ and two instruction cycles to determine the sign of the u.

Secondly, the sign-data LMS algorithm is

$$w(n+1) = w(n) + u \ e(n) \ \text{sign}[x(n)]$$ (26)

This equation can be implemented as

$$w_i(n+1) = w_i(n) + u e(n), \ \text{if } x(n-i) \geq 0$$
$$= w_i(n) - u e(n), \ \text{if } x(n-i) < 0$$

for $i = 0, 1, \ldots, N-1$. Since the sign determination is required inside the adaptation loop to determine the sign of $x(n-i)$, slower throughput is expected. The total number of instruction cycles needed is $11N + 26$ for the TMS320C25 and $5N + 16$ for the TMS320C30.

Finally, the sign-sign LMS algorithm is

$$w(n+1) = w(n) + u \ \text{sign}[e(n)] \ \text{sign}[x(n)]$$ (27)

which requires no multiplications at all and is used in the CCITT standard for ADPCM transmission. As we can see from the above equations, the number of multiplications is reduced. This simplified LMS algorithm looks promising and is designed for VLSI or discrete IC implementation to save multiplications.

The sign-sign LMS algorithm can be implemented as

```c
for (i=0; i<N; i++) {
    if (e[n] >= 0.) {
        if (xn[i] >= 0.)
            wn[i] += u;
        else
            wn[i] -= u;
    } else {
        if (xn[i] >= 0.)
            wn[i] -= u;
    }
```
else
 \(w_n[i] += u; \)

When this algorithm is implemented on TMS320C25 and TMS320C30 with pipeline architecture and a parallel multiplier, the performance of sign-sign LMS algorithm is poor compared to standard LMS algorithm due to the determination of sign of data, which can break the instruction pipeline and can severely reduce the execution speed of the processors.

In order to avoid double branches inside the loop, the XOR instruction is utilized to check the sign bit of \(e(n) \) and \(x(n-i) \). The sign-sign LMS algorithm can be implemented as

\[
\begin{align*}
w_i(n+1) &= w_i(n) + u, \text{ if } \text{sign}[e(n)] = \text{sign}[x(n-i)] \\
&= w_i(n) - u, \text{ otherwise}
\end{align*}
\]

The following TMS320C25 instruction sequence implements this algorithm without branching (assuming that the current address register used is AR3):

- **LRLK AR1,N-1**: Set up counter
- **LRLK AR2,COEFFD**: Point to \(w_i(n) \)
- **LRLK AR3,LASTAP+1**: Point to \(x(n-i) \)
- **ADAP LAC *-,0,AR2**: Load \(x(n-i) \)
- **XOR ERR**: XOR with \(e(n) \)
- **SACL ERRF**: Save sign bit, sign = 0 if same signs
 Sign = 1 if different signs
- **LAC ERRF**: Sign extension to ACCH,
 ACCH = 0 if ERRF > = 0
 ACCH = 0FFFFh if ERRF < 0
- **XORK MU,15**: Take one’s complement of \(m \)
 if sign = 1
- **ADD *,15**: Weight update
- **SACH *,+,1,AR1**: Save new weight
- **BANZ ADAP,*-,AR3**

The one’s complement of \(u \) is used instead of \(-u\), because they are only slightly different and the step size does not require the exact number. The weight update with this technique requires 10N instruction cycles and FIR filtering requires N instruction cycles so that the total number of instruction cycles needed is 11N+21. The complete TMS320C25 assembly program is given in Appendix F1.

To determine whether a positive or negative \(u \) should be used without branching is trickier in the TMS320C30. Fortunately, the extended precision registers of TMS320C30 interpret the 32 most-significant bits of the 40-bit data as the floating-point number and the 32 least-significant bits of the 40-bit data as an integer. When a floating-point number
changes its sign, its exponent remains the same. Therefore, the sign of step size u can be determined by using XOR logic on its mantissa. The following code shows how the sign-sign LMS algorithm is implemented on the TMS320C30.

\[
\begin{align*}
\text{ASH} & \quad -31, R7 \quad ; \quad R7 = \text{Sign}[e(n)] \\
\text{XOR3} & \quad R0, R7, R5 \quad ; \quad R5 = \text{Sign}[e(n)] \times u \\
\text{LDF} & \quad *AR0 + + (1)\%, R6 \quad ; \quad R6 = x(n) \\
\text{ASH} & \quad -31, R6 \quad ; \quad R6 = \text{Sign}[x(n-i)] \\
\text{XOR3} & \quad R5, R6, R4 \quad ; \quad R4 = \text{Sign}[x(n-i)] \times \text{Sign}[e(n)] \times u \\
\text{ADDF3} & \quad *AR1, R4, R3 \quad ; \quad R3 = w_i(n) + R4 \\
\text{LDI} & \quad \text{order} - 3, RC \quad ; \quad \text{Initialize repeat counter} \\
\text{RPTB} & \quad \text{SSLMS} \quad ; \quad \text{Do } i = 0, N - 3 \\
\text{LDF} & \quad *AR0 + + (1)\%, R6 \quad ; \quad \text{Get next data} \\
\text{STF} & \quad R3, *AR1 + + (1)\% \quad ; \quad \text{Update } w_i(n+1) \\
\text{ASH} & \quad -31, R6 \quad ; \quad \text{Get the sign of data} \\
\text{XOR3} & \quad R5, R6, R4 \quad ; \quad \text{Decide the sign of } u \\
\text{SSLMS} & \quad \text{ADDF3} \quad *AR1, R4, R3 \quad ; \quad R3 = w_i(n) + R4 \\
\text{LDF} & \quad *AR0, R6 \quad ; \quad \text{Get last data} \\
\text{STF} & \quad R3, *AR1 + + (1)\% \quad ; \quad \text{Update } w_{N-2}(n+1) \\
\text{ASH} & \quad -31, R6 \quad ; \quad \text{Get the sign of data} \\
\text{XOR3} & \quad R5, R6, R4 \quad ; \quad \text{Decide the sign of } u \\
\text{ADDF3} & \quad *AR1, R4, R3 \quad ; \quad \text{Compute } w_{N-1}(n+1) \\
\text{STF} & \quad R3, *AR1 + + (1)\% \quad ; \quad \text{Store last } w(n+1)
\end{align*}
\]

Here, R0, R4, and R5 contain the value of u before updating. AR0 and AR1 point to x array and w array, respectively. R7 contains the value of error signal e(n). The complete program is given in Appendix F2. The total number of instruction cycles is 5N + 16, which is much higher than LMS algorithm.

The sign-sign LMS algorithm is developed to reduce the multiplication requirement of the LMS algorithm. Since DSPs provide the hardware multiplier as a standard feature, this modification does not provide any advantage when implementing this algorithm on the DSPs. On the contrary, it causes some disadvantages since decision instructions will destroy the instruction pipeline. If you use the XOR logic operation in order to avoid using the decision instructions, the complexity of the program will be increased and the total number of instruction cycles will be greater than the regular LMS algorithm.

Leaky LMS Algorithm

When adaptive filters are implemented on signal processors with fixed word lengths, roundoff noise is fed back to adaptive weights and accumulates in time without bound. This leads to an overflow that is unacceptable for real-time applications. One solution is
based upon adding a small forcing function, which tends to bias each filter weight toward zero. The leaky LMS algorithm has the form

$$w(n+1) = r \ w(n) + u \ e(n) \ x(n)$$ \hspace{1cm} (28a)

where r is slightly less than 1.

Since r can be expressed as $1 - c$ and $c << 1$, the TMS320C25 can take advantage of the built-in shifters to implement this algorithm. Therefore, Equation (28a) can be changed to

$$w(n+1) = w(n) - c \ w(n) + u \ e(n) \ x(n)$$ \hspace{1cm} (28b)

In order to achieve the highest throughput by using ZALR and MPYA, $cw(n)$ can be implemented by shifting $w_i(n)$ right by m bits where 2^{-m} is close to c. Since the length of the accumulator is 32 bits and the high word (bits 16 to 31) is used for updating $w(n)$, shifting right m bits of $w_i(n)$ can be implemented by loading $w_i(n)$ and shifting left $16 - m$ bits. The sequence of TMS320C25 instructions to implement Equation (28b) is shown as

- LRLK AR1,N-1 ; Set up counter
- LRLK AR2,COEFFF ; Point to $w_i(n)$
- LRLK AR3,LASTAP+1 ; Point to $x(n-i)$
- LT EREF ; $T = EREF = u*e(n)$
- MPY *- ,AR2
- ADAPT ZALR *,AR3
- MPYA *- ,AR2
- SUB *,LEAKY ; LEAKY = $16 - m$
- SACH *+,0,AR1
- BANZ ADAPT, *- ,AR2

For each iteration, $7N$ instruction cycles are needed to perform the adaptation process ($6N$ for the LMS algorithm). The total number of instruction cycles needed is $8N + 28$ (see Appendix G1 for the complete program). The leaky factor r has the same effect as adding a white noise to the input. This technique not only can solve adaptive weights overflow problem, but also can be beneficial in an insufficient spectral excitation and stalling situation [5].

The method used above is especially for the TMS320C25, which has a free shift feature. Since TMS320C30 is a floating-point processor, r can simply multiply to filter coefficient. However, in order to reduce the instruction cycles, this multiplication can combine with another instruction to be a parallel instruction inside the loop. The following code shows how to rearrange the instructions from the LMS algorithm to include this multiplication without an extra instruction cycle.
MPYF @u_r,R7 ; R7 = e(n)*u/r
MPYF3 *AR0+ +,(1),R7,R1 ; R1 = e(n)*u*x(n)/r
MPYF3 *AR0+ +,(1),R7,R1 ; R1 = e(n)*u*x(n-1)/r
| | ADDF3 *AR1,R1,R2 ; R2 = w0(n) + e(n)*u*x(n)/r
LDI order-4,RC ; Initialize repeat counter
RPTB LLMS ; do i = 0, N-4
MPYF3 *AR2,R2,R0 ; R0 = r*w_i(n) + e(n)*u*x(n-i)
| | ADDF3 *AR1(1),R1,R2 ; R2 = w_i+1(n) + e(n)*u*x(nz-i-1)/r
LLMS MPYF3 *AR0+ +,(1),R7,R1 ; R1 = e(n)*u*x(n-i-2)/r
| | STF R0,*AR1+ +,(1)\% ; Store w_i(n+1)
MPYF3 *AR2,R2,R0 ; R0 = r*w_{N-3}(n) + e(n)*u*x(n-N+3)
| | ADDF3 *AR1(1),R1,R2 ; R2 = w_{N-2}(n) + e(n)*u*x(n-N+2)/r
MPYF3 *AR0,R7,R1 ; R1 = e(n)*u*x(n-N+1)/r
| | STF R0,*AR1+ +,(1)\% ; Store w_{N-3}(n+1)
MPYF3 *AR2,R2,R0 ; R0 = r*w_i(n) + e(n)*u*x(n-N+2)
| | ADDF3 *AR1(1),R1,R2 ; R2 = w_{N-1}(n) +
* ; e(n)*u*x(n-N+1)/r
MPYF3 *AR2,R2,R0 ; R0 = r*w_i(n) + e(n)*u*x(n-N+1)
| | STF R0,*AR1+ +,(1)\% ; Store w_{N-2}(n+1)
STF R0,*AR1+ +,(1)\% ; Update last w

Auxiliary registers AR0 and AR1 point to x and w arrays. AR2 points to the memory location that contains value r. R7 contains the value of error signal e(n). R1 and R2 are updated before the loop because the parallel instructions inside the loop use the previous values in R1 and R2. Note that R1 is updated twice before the loop because the updating of R2 requires the previous value of R1. In order to update x array pointer to the new beginning of the data buffer for next iteration, two of the loop instruction sets have been taken out of loop and modified by eliminating the incrementation of AR0. The TMS320C30 assembly program of an adaptive transversal filter with the leakage LMS algorithm is listed in Appendix G2 as an example. The total number of instruction cycles for this algorithm is 3N+15, which is the same as the LMS algorithm. This example shows the power and flexibility of the TMS320C30.
Implementation Considerations

The adaptive filter structures and algorithms discussed previously were derived on the basis of infinite precision arithmetic. When implementing these structures and algorithms on a fixed integer machine, there is a limitation on the accuracy of these filters due to the fact that the DSP operates with a finite number of bits. Thus, designers must pay attention to the effects of finite word length. In general, these effects are input quantization, roundoff in the arithmetic operation, dynamic range constraints, and quantization of filter coefficients. These effects can either cause deviations from the original design criteria or create an effective noise at the filter output. These problems have been investigated extensively, and techniques to solve these problems have been developed [28, 29].

The effects of finite precision in adaptive filters is an active research area, and some significant results have been reported [30 through 32]. There are three categories of finite word length effects in adaptive filters:

- **Dynamic Range Constraint** (scaling to avoid overflow). Since this is not applicable for a floating-point processor, the TMS320C30 is not mentioned in this portion.
- **Finite Precision Errors** (errors introduced by roundoff in the arithmetic).
- **Design Issues** (design of the optimum step size \(u\) that minimizes system noise).

Dynamic Range Constraint

As shown in Figure 1, the most widely used LMS transversal filter is specified by the difference equations

\[
y(n) = \sum_{i=0}^{N-1} w_i(n) x(n-i)
\]

(29)

and

\[
w_i(n+1) = w_i(n) + u e(n) x(n-i), \text{ for } i = 0, 1, \ldots, N-1
\]

(30)

where \(x(n-i)\) is the input sequence and \(w_i(n)\) are the filter coefficients.

If the input sequence and filter coefficients are properly normalized so that their values lie between \(-1\) and \(1\) using Q15 format, no error is introduced into the addition. However, the sum of two numbers may become larger than one. This is known as overflow. The TMS320C25 provides four features that can be applied to handle overflow management [13]:
A. Branch on overflow conditions.
B. Overflow mode (saturation arithmetic).
C. Product register right shift.
D. Accumulator right shift.

One technique to inhibit the probability of overflow is scaling, i.e., constraining each node within an adaptive filter to maintain a magnitude less than unity. In Equation (29), the condition for \(|y(n)| < 1\) is

\[
x_{\text{max}} < 1 / \sum_{i=0}^{N-1} |w_i(n)|
\]

(31)

where \(x_{\text{max}}\) denotes the maximum of the absolute value of the input. The right shifter of the TMS320C25, which operates with no cycle overhead, can be applied to implement scaling to prevent overflow of multiply-accumulate operations in Equation (29). By setting the PM bits of status register ST1 to 11 using the SPM or LST1 instructions, the P register output is right-shifted 6 places. This allows up to 128 accumulations without the possibility of an overflow. SFR instruction can also be used to right shift one bit of the accumulator when it is near overflow.

Another effective technique to prevent overflow in the computation of Equation (29) is using saturation arithmetic. As illustrated in Figure 12, if the result of an addition overflows, the output is clamped at the maximum value. If saturation arithmetic is used, it is common practice [28] to permit the amplitude of \(x(n-i)\) to be larger than the upper bound given in Equation (31). Saturation of the filter represents a distortion, and the choice of scaling on the input depends on how often such distortion is permissible. The saturation arithmetic on the TMS320C25 is controlled by the OVM bit of status register ST0 and can be changed by the SOVM (set overflow mode), ROVM (reset overflow mode), or LST (load status register).

![Figure 12. Saturation Arithmetic](image-url)
Filter coefficients are updated using Equation (30). As illustrated in Figure 13, a new technique presented in reference 31 uses the scaling factor a to prevent filter's coefficients overflow during the weight updating operation. Suppose you use $a = 2^{-m}$. A right shift by m bits implements multiplication by a, while a left shift by m bits implements the scaling factor $1/a$. Usually, the required value of a is not expected to be very small and depends on the application. Since a scales the desired signal, it does not affect the rate of convergence.

![Figure 13. Fixed-Point Arithmetic Model of the Adaptive Filter](image)

Finite Precision Errors

The TMS320C25 is a 16/32-bit fixed point processor. Each data sample is represented by a fractional number that uses 15 magnitude bits and one sign bit. The quantization interval

$$
\delta = 2^{-b},
$$

(b = 15), is called the width of quantization since the numbers are quantized in steps of δ.

The products of the multiplications of data by coefficients within the filter must be rounded or truncated to store in memory or a CPU register. As shown in Figure 14, the roundoff error can be modeled as the white noise injected into the filter by each rounding operation. This white noise has a uniform distribution over a quantization interval and for rounding

$$
-\frac{1}{2} \delta < e \leq \frac{1}{2} \delta
$$

(33a)
\[\delta_e^2 = (1/12) \delta^2 \] \hspace{1cm} (33b)

where \(\delta_e^2 \) is the variance of the white noise.

In general, roundoff noise occurs after each multiplication. However, the TMS320C25 has a full precision accumulator, i.e., a 16×16-bit multiplier with a 32-bit accumulator, so there is no roundoff when you implement a set of summations and multiplications as in Equation (29). Rounding is performed when the result is stored back to memory location \(y(n) \), so that only one noise source is presented in a given summation node.

\[y = \text{Rounding} [x \cdot a] = x \cdot a + e \]

Figure 14. Fixed-Point Roundoff Noise Model

For floating-point arithmetic, the variance of the roundoff noise [31] is slightly different from Equation (33b),

\[\sigma_e^2 = 0.18 \delta^2 \] \hspace{1cm} (33c)

Since TMS320C30 has a 40/32-bit floating-point multiplier and ALU, the result from arithmetic operation has the mantissa of [31] bits plus one sign bit. Therefore, the \(\delta \) in Equation (33c) is equal to \(2^{-31} \). Another roundoff noise is introduced when you restore the result back to memory. This noise has the power of \(2^{-23} \) because the mantissa of TMS320C30 floating-point data is 23 bits plus one sign bit. Therefore, unless the filter order is high, the roundoff noise from arithmetic operation is relatively small.

The steady-state output error of the LMS algorithm due to the finite precision arithmetic of a digital processor was analyzed in reference [31]. It was found that the power of arithmetic errors is inversely proportional to the adaptation step size \(u \). The significance of this result in the adaptive filter design is discussed next. Furthermore, roundoff noise is found to accumulate in time without bound, leading to an eventual overflow [32]. The leaky LMS algorithm presented in the previous section can be used to prevent the algorithm overflow.
Design Issues

The performance of digital adaptive algorithms differs from infinite precision adaptive algorithms. The finite precision LMS algorithm is given as

\[\overline{w(n+1)} = \overline{w(n)} + Q[u*e(n)*x(n)] \]

(34)

where \(Q[.]\) denotes the operation of fixed point quantization. Whenever any correction term \(u*e(n)*x(n-i)\) in the update of the weight vector in Equation (34) is too small, the quantized value of that term is zero, and the corresponding weight \(w_i(n)\) remains unchanged. The condition for the \(i\)th component of the vector \(w(n)\) not to be updated when the algorithm is implemented with the TMS320C25 is

\[|u e(n) x(n-i)| < \delta/2 \]

(35a)

where \(\delta = 2^{-15}\). The condition for TMS320C30 is

\[|u e(n) x(n-i)| < 2^{\text{exp}} * \delta/2 \]

(35b)

where \(\text{exp}\) is the exponent of \(w_i(n)\) and \(\delta = 2^{-23}\).

Since the adaptive algorithms are designed to minimize the mean squared value of the error signal, \(e(n)\) decreases with time. If \(u\) is small enough, most of the time the weights are not updated. This early termination of the adaptation may not allow the weight values to converge to the optimum set, resulting in a mean square error larger than its minimum value. The conditions for the adaptation to converge completely [30] is \(u > u_{\text{min}}\) where

\[u_{\text{min}}^2 = \frac{\delta^2}{4\sigma_x^2 \epsilon_{\text{min}}} \]

(36a)

for the TMS320C25 and the TMS320C30

\[u_{\text{min}}^2 = \frac{\delta^2*2^{\text{exp}}}{4\sigma_x^2 \epsilon_{\text{min}}} \]

(36b)

where \(\sigma_x^2\) is the power of input signal \(x(n)\) and \(\epsilon_{\text{min}}\) is the minimum mean squared error at steady state.

In the Leaky LMS Algorithm section, it was mentioned that the excess MSE given in Equation (14) is minimized by using small \(u\). However, this may result in a large quantization error since the most significant term in the total output quantization error is [31]
\[
\frac{N\sigma_e^2}{2a^2u}
\]

(37)

The optimum step size \(u_0 \) reflects a compromise between these conflicting goals. The value of \(u_0 \) is shown to be too small to allow the adaptive algorithm to converge completely and also to give a slow convergence. In practice, \(u > u_0 \) is used for faster convergence. Hence, the excess MSE becomes larger, and the roundoff noise can typically be neglected when compared with the excess mean square error.

Finally, recall Equations (11) and (12). The step size \(u \) has an upper limit to guarantee the stability and convergence. Therefore, the adaptive algorithm requires

\[
0 < u < \frac{1}{N\sigma_x^2}
\]

(38)

On the other hand, the step size \(u \) also has a lower limit. The optimum \(u_0 \), which minimizes the sum of the excess MSE and roundoff noise, is smaller than \(u_{\text{min}} \), i.e., too small to allow the adaptive weight to converge. For an algorithm implemented on the TMS320C25, the word-length of 16 bits is fixed, and the minimum step-size that can be used is given in Equation (36). The most important design issue is to find the best \(u \) to satisfy

\[
u_{\text{min}} < u < \frac{1}{N\sigma_x^2}
\]

(39)

Therefore, in order to make the condition in Equation (39) valid, the initial values of filter coefficients are better close to zero for the floating-point processor if the situation in unknown.

Software Development

The TMS320C25 and TMS320C30 combine the high performance and the special features needed in adaptive signal processing applications. The processors are supported by a full set of software and hardware development tools. The software development tools include an assembler, a linker, a simulator, and a C compiler. The most universal software development tool available is a macro assembler. However, the assembly language programming for DSP can be tedious and costly. For adaptive filter applications, an assembly language programmer must have knowledge of adaptive signal processing. The challenge lies in compressing a great deal of complex code into the fairly small space and most efficient code dictated by the real-time applications typical of adaptive signal processing.
Recently, C compilers for the processors were developed to make DSP programming easier, quicker, and less costly compared with the work associated with programming in assembly language. Due to the general characteristics of a compiler, the code it generates is not the most efficient. Since the program efficiency consideration is important for adaptive filter implementation, the code generated from the C compiler has to be modified before implementing. Thus, two alternative ways, besides writing an assembly program, to implement adaptive signal processing on DSP are presented. First is the automatic adaptive filter code generator [12], which can be found on Texas Instruments TMS320 Bulletin Board Service (BBS), and second are the adaptive filter function libraries that support assembly and C programming languages.

In this report, two adaptive filter libraries have been developed: one can be called from an assembly main program; the other can be called from the C main program. Note that, for the TMS320C25 only, certain data memory locations have been reserved for storing the necessary filter coefficients, previous delayed signal, etc. In other words, these data memories are used as global variables.

Assembly Function Libraries

The basic concept of creating an assembly subroutine for an adaptive filter is to modify in module the assembly programs discussed above. Then, the user can implement the adaptive filter by writing his own assembly main program that calls the subroutine.

TMS320C25 Assembly Subroutine

The TMS320C25 has an eight-level deep hardware stack. The CALL and CALA subroutine calls store the current contents of the program counter (PC) on the top of the stack. The RET (return from subroutine) instruction pops the top of the stack back to the PC. For computational convenience, the processor needs to be set as follows before calling the assembly callable subroutine.

1. PM status bits equal to 01.
2. SXM status bit set to 1.
3. The current DP (data memory page pointer) is 0.

The following example is the TMS320C25 assembly main routine, which performs an adaptive line enhancement by calling the LMS algorithm subroutine. The filter order is 64, delay is equal to one, and the convergence factor \(u \) is 0.01.

* DEFINE AND REFER SYMBOLS
*
 .global ORDER,U,ONE,D,Y,ERR,XN,WN,LMS
*
DEFINE SAMPLING RATE, ORDER, AND MU

ORDER: .equ 20
MU: .equ 327 ; mu = 0.01 in Q15 format
PAGE0: .equ 0

DEFINE ADDRESSES OF BUFFER AND COEFFICIENTS

*
X0: .usect "buffer",ORDER - 1
XN: .usect "buffer",1
WN: .usect "coeffs",ORDER

RESERVE ADDRESSES FOR PARAMETERS

*
ONE: .usect "parameters",1
U: .usect "parameters",1
ERR: .usect "parameters",1
Y: .usect "parameters",1
D: .usect "parameters",1
ERRF: .usect "parameters",1

INITIALIZATION

*
START LDPK PAGE0 ; Set DP = 0
SPM 1 ; Set PM equal to 1
SSXM ; Set sign extension mode
LRLK AR7,X0 ; AR7 point to >300
LACK 1 ; Initialize ONE = 1
SACL ONE
LALK MU ; Initialize U = MU = 0.01
SACL U

PERFORM THE PREDICTOR

INPUT: IN D,PA2 ; Get the input

CALL LMS ; Call subroutine

OUTPUT: OUT Y,PA2 ; Output the signal

LAC D ; Insert the newest sample
LARP AR7
SACL *
B INPUT

.end
The symbols, such as ORDER, U, ONE, D, LMS, Y, and ERR, are defined and referred to for the purpose of modular programming. The uninitialized sections specified by the directive .usect can be placed in any location of memory according to the linker command file. Note that MACD instruction requires the sources of the operands on program memory and data memory separately, and CNFP instruction configures RAM block 0 as program memory. Therefore, the coeffs section has to be in data RAM block 0, and the buffer has to be in RAM block 1. Appendix H1 contains the adaptive transversal filter with LMS algorithm subroutine using the TMS320C25, and Appendix H2 contains an example of a linker command file.

TMS320C30 Assembly Subroutine

Instead of a hardware stack, TMS320C30 uses a software stack, which is more flexible and convenient for a high-level language compiler. The stack memory location is pointed to by the stack pointer SP. In order to maintain the proper program sequence, the programmer must make certain that no data is lost and that the stack pointer always points to proper location. The PUSH, PUSHF, POP, POPF, CALL, CALLcond, RETcond, and RETScond instructions will change the value of the stack pointer; in addition, writing data into it and using the interrupt will also change that value. It is the programmer's responsibility to initialize the stack pointer in the beginning of the program. The same adaptive line enhancer example above using TMS320C30 is listed below. The adapfltr.int program that initializes the stack pointer and the data RAM is given in Appendix H3.

```
* *
* DEFINE GLOBAL VARIABLES AND CONSTANTS *
* .copy "adapfltr.int"
 .global LMS30,order,u,d,y,e
N .set 20
mu .set 0.01
*
* INITIALIZE POINTERS AND ARRAYS *
*
.text
.begin .set $
LDI N,BK ; Set up circular buffer
LDP @xn_addr ; Set data page
LDI @xn_addr,AR0 ; Set pointer for x[]
LDI @wn_addr,AR1 ; Set pointer for w[]
LDF 0.0,R0 ; R0 = 0.0
RPTS N-1
STF R0,*AR0+ +(1)% ; x[] = 0.
```
STF R0,*AR1 + +(1)\% ; w[] = 0.
LDI @in_addr,AR6 ; Set pointer for input ports
LDI @out_addr,AR7 ; Set pointer for output ports

PERFORM ADAPTIVE LINE ENHANCER

input:

LDF *AR6,R7 ; Input d(n)
LDF *+AR6(1),R6 ; Input x(n)
STF R7,@d ; Insert d(n)
STF R6,*AR0 ; Insert x(n) to buffer

CALL ASSEMBLY SUBROUTINE

CALL LMS30
OUTPUT y(n) AND e(n) SIGNALS

LDF @y,R6 ; Get y(n)
BD input ; Delay branch
LDF @e,R7 ; Get e(n)
STF R6,*AR7 ; Send out y(n)
STF R7,*+AR7(1) ; Send out e(n)

DEFINE CONSTANTS

n .usect "buffer",N
wn .usect "coeffs",N
in_addr .usect "vars",1
out_addr .usect "vars",1
xn_addr .usect "vars",1
wn_addr .usect "vars",1
u .usect "vars",1
order .usect "vars",1
d .usect "vars",1
y .usect "vars",1
e .usect "vars",1
cinit .sect "cinit"
.word 6,in_addr
.word 0804000h
.word 0804002h
.word xn
.word wn
.float mu
.word N-2
.end

In the above example, data memory order is initialized to N-2 for computation convenience. The linker command files and the subroutine that implements the LMS transversal filter can be found in Appendixes H4 and H5.

C Function Libraries

The TMS320C25 and TMS320C30 C language compilers provide high-level language support for these processors. The compilers allow application developers without an extensive knowledge of the device’s architecture and instruction set to generate assembly code for the device. Also, since C programs are not device-specific, it is a relatively straightforward task to port existing C programs from other systems.

To allow fast development of efficient programs for adaptive signal processing applications, C function libraries have been developed. These libraries include functions for adaptive transversal, symmetric transversal, and lattice structures.

TMS320C25 C-Callable Subroutines

In a C program, the memory assignments are chosen by the compiler. There are two ways to use the most efficient instruction MACD:

A. Use inline assembly code to assign memory locations for filter coefficients and buffers.
B. Reserve the desired memory locations for them and do the assignment in the linker command file.

The latter method is used in this report.

For a C main program, the parameters passed to and returned from the subroutines are all within the parentheses following the subroutine name, as shown below:

\[
lms(n, mu, d, x, &y, &e) \quad n - \text{Filter order} \\
\quad mu - \text{Convergence factor} \\
\quad d - \text{Desired signal} \\
\quad x - \text{Input signal} \\
\quad y - \text{Address of output signal} \\
\quad e - \text{Address of error signal}
\]

Since the TMS320C25 C compiler pushes the parameters from right to left into software stack pointed by AR1, the subroutine gets the parameters in reverse order, as shown below:

\[
\begin{align*}
\text{MAR} & \quad *- \quad ; \text{Set pointer for getting parameters} \\
\text{LAC} & \quad *- \quad ; \text{ACC = N}
\end{align*}
\]
SUBK 1
SAACL ORDER ; ORDER = N - 1
LAC *- ; Getting and storing the mu
SAACL U
LAC *- ; Getting and storing the D
SAACL D
LAC *-,0,A-R3 ; Insert the newest sample
LRLK AR3,FRSTAP
SAACL *

The assembly subroutine returns the parameters y and e as follows:

LARP AR1
LAR AR2,*,-,AR2 ; Get the address of y in main
LAC Y
SAACL *,0,AR1 ; Store y
LAR AR2,*,AR2 ; Get the address of e in main
LAC ERR
SAACL *,0,AR1 ; Store e

Therefore, the parameters should be entered in the order given above. If there are
other parameters, they should be inserted right after the convergence factor mu. The leaky
LMS algorithm subroutine is given as an example.

lms(n,mu,r,d,x,&y,&e)

the r is defined in Equation (28a). Note that the values of the AR registers, which will
be used in subroutine, and the status registers must be saved at the beginning of the
subroutine and restored right before returning to calling routine. An example of a C-callable
program is given in Appendix II. Memory locations 0200h to 0200h+N−1 and 0300h
to 0300h+N−1 are reserved for filter coefficients and buffers, respectively. N denotes
the filter order.

TMS320C30 C Subroutine

As previously mentioned, the TMS320C30 architecture has features designed for
a high-level language compiler. Note that the callable word is dropped in this section
title because the TMS320C30 is so flexible that the restrictions for the TMS320C25 no longer
exist. Since the memory locations of filter buffers and coefficients are determined by the
parameters that pass from the calling routine, the same subroutine can be used in different
places. However, the only restriction is that the memory locations of filter buffers must
align to the circular addressing boundary [14]. The features of TMS320C30 architecture
that make a major contribution toward these improvements are dual data address buses,
software stack, and flexible addressing mode. The parameters passed to subroutine are
pushed into the stack. Therefore, after returning from the subroutine, the stack pointer,
SP, must be updated to point to the location where SP pointed before pushing the parameters
into the stack. However, this will be done by the C compiler. The usage example of the C function subroutine is given as follows:

```plaintext
tlms(n,u,d,&w,&x,&y,&e) where n - Filter order
   u - Step size
   d - Desired signal
   &w - Filter coefficients
   &x - Input signal buffers
   &y - Addr of output signal
   &e - Addr of error signal
```

The example below shows how the C subroutine receives and manipulates the parameters passed from the caller program and how the result is returned to the caller routine.

```
* 
* SET FRAME POINTER FP
* 
FP .set AR3
PUSH FP
LDI SP,FP
*
* GET FILTER PARAMETERS
*
LDI *-FP(2),R4 ; Get filter order
LDI *-FP(6),AR0 ; Get pointer for x[]
LDI *-FP(5),AR1 ; Get pointer for w[]
*
* COMPUTE ERROR SIGNAL e(n) AND STORE y(n) AND e(n)
*
LDI *-FP(2),AR2 ; Get y(n) address
SUBF3 R2,*+FP(1),R7 ; e(n) = d(n) - y(n)
| STF R2,*AR2 ; Send out y(n)
LDI *-FP(3),AR2 ; Get e(n) address
STF R7,*AR2 ; Send out e(n)
MPYF *+FP(2),R7 ; R7 = e(n) * u
POP FP
```

Note that AR3 is used as the frame pointer in TMS320C30 C compiler. Appendix I2 contains the complete LMS transversal filter example subroutine program.

Development Process and Environment

Following a four stage procedure [33] to minimize the amount of finite word length effect analysis and real-time debugging, adaptive structures and algorithms are implemented
on the TMS320C25. Figure 15 illustrates the flowchart of this procedure. Since the implementation on TMS320C30 is done only by the simulator, the last stage, real-time testing, is not implemented.

Figure 15. Adaptive Filter Implementation Procedure

In the first stage, algorithm design and study is performed on a personal computer. Once the algorithm is understood, the filter is implemented using a high-level C program with double precision coefficients and arithmetic. This filter is considered an ideal filter.

In the second stage, the C program is rewritten in a way that emulates the same sequence of operations with the same parameters and state variables that will be implemented in the processors. This program then serves as a detailed outline for the DSP assembly language program or can be compiled using TMS320C25 or TMS320C30 C compiler. The effects of numerical errors can be measured directly by means of the technique shown in Figure 16, where \(H(z) \) is the ideal filter implemented in the first stage and \(H'(z) \) is a real filter. Optimization is performed to minimize the quantization error and produce stable implementation.
Figure 16. A Commutational Technique for Evaluating Quantization Effects

In the third stage, the TMS320C25 and TMS320C30 assembly programs are developed; then they are tested using the simulators with test data from a disk file. Note that the simulation of TMS320C25 can also be implemented on the SWDS with the data logging option. This test data is a short version of the data used in stage 2 that can be internally generated from a program or data digitized from a real application environment. Output from the simulation is compared against the equivalent output of the C program in the second stage. Since the simulation requires data files to be in Q15 format, certain precision is lost during data conversion. When a one-to-one agreement within tolerable range is obtained between these two outputs, the processor software is assured to be essentially correct.

The final stage is applied only to the TMS320C25. First, you download this assembled program into the target TMS320C25 system (SWDS) to initiate real-time operation. Thus, the real-time debugging process is constrained primarily to debugging the I/O timing structure of the algorithm and testing the long-term stability of the algorithm. Figure 17 shows an experimental setup for verification, in which the adaptive filter is configured for a one-step adaptive predictor illustrated in Figure 18. The data used for real-time testing is a sinusoid generated by a Tektronix FG504 Function Generator embedded in white noise generated by an HP Precision Noise Generator. The DSP gets a quantized signal from the Analog Interface Board (AIB), performs adaptive prediction routines, and outputs an enhanced sinusoid to the analog interface board. The corrupted input and predicted (enhanced) output waveforms are compared on the oscilloscope or on the HP 4361 Dynamic Signal Analyzer. The corresponding spectra of input and output can be compared on the signal analyzer. The signal-to-noise ratio (SNR) improvement can be measured from the analyzer, which is connected to an HP plotter.
Figure 17. Real-Time Experiment Setup

Figure 18. Block Diagram of a One-Step Adaptive Predictor

To illustrate the operation in a nonstationary environment, the adaptive predictor is implemented using a TMS320C25, and the following experiment is performed. The input signal is swept from 1287 Hz to 4025 Hz, then jumps back to 1287 Hz. The time for each sweep is one second. The input spectra at every second are shown in Figure 19a; the corresponding output spectra are shown in Figure 19b. From the observations on the
oscilloscope and signal analyzer, the significant SNR improvement, convergence speed, ability to track nonstationary signals, and long-term stability of the adaptive predictor are observed.

Figure 19(a). Spectrum of Input Signal
Figure 19(b). Spectrum of Enhanced Output Signal

Summary

Three adaptive structures and six update algorithms are implemented with the TMS320C25 and TMS320C30. Applications of adaptive filters and implementation considerations have been discussed. Two subroutine libraries that support both C language and assembly language for two processors were developed. These routines can be readily incorporated into TMS320C25 or TMS320C30 users’ application programs.

The advancements in the TMS320C25 and TMS320C30 devices have made the implementation of sophisticated adaptive algorithms oriented toward performing real-time processing tasks feasible. Many adaptive signal processing algorithms are readily available and capable of solving real-time problems when implemented on the DSP. These programs provide an efficient way to implement the widely used structures and algorithms on the TMS320C25 and TMS320C30, based on assembly-language programming. They are also extremely useful for choosing an algorithm for a given application. The performances of adaptive structures and algorithms that have been implemented using the TMS320C25 and TMS320C30 have been summarized in Tables 1 and 2.
<table>
<thead>
<tr>
<th>Structure</th>
<th>LMS</th>
<th>Instruction Cycles</th>
<th>7N + 28</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Leaky</td>
<td>Instruction Cycles</td>
<td>8N + 28</td>
</tr>
<tr>
<td></td>
<td>LMS</td>
<td>Program Memory (Word)</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Sign-Error-LMS</td>
<td>Instruction Cycles</td>
<td>7N + 26</td>
</tr>
<tr>
<td></td>
<td>LMS</td>
<td>Program Memory (Word)</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Sign-Sign-LMS</td>
<td>Instruction Cycles</td>
<td>11N + 21</td>
</tr>
<tr>
<td></td>
<td>LMS</td>
<td>Program Memory (Word)</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Normalized-LMS</td>
<td>Instruction Cycles</td>
<td>7N + 57</td>
</tr>
<tr>
<td></td>
<td>LMS</td>
<td>Program Memory (Word)</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>LMS</td>
<td>Instruction Cycles</td>
<td>7.5N + 38</td>
</tr>
<tr>
<td></td>
<td>Leaky</td>
<td>Program Memory (Word)</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>LMS</td>
<td>Instruction Cycles</td>
<td>8N + 38</td>
</tr>
<tr>
<td></td>
<td>Sign-Error-LMS</td>
<td>Instruction Cycles</td>
<td>7.5N + 36</td>
</tr>
<tr>
<td></td>
<td>LMS</td>
<td>Program Memory (Word)</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Sign-Sign-LMS</td>
<td>Instruction Cycles</td>
<td>7.5N + 36</td>
</tr>
<tr>
<td></td>
<td>LMS</td>
<td>Program Memory (Word)</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Normalized-LMS</td>
<td>Instruction Cycles</td>
<td>9.5N + 36</td>
</tr>
<tr>
<td></td>
<td>LMS</td>
<td>Program Memory (Word)</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>LMS</td>
<td>Instruction Cycles</td>
<td>33N + 32</td>
</tr>
<tr>
<td></td>
<td>Leaky</td>
<td>Program Memory (Word)</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>LMS</td>
<td>Instruction Cycles</td>
<td>35N + 32</td>
</tr>
<tr>
<td></td>
<td>Sign-Error-LMS</td>
<td>Instruction Cycles</td>
<td>36N + 32</td>
</tr>
<tr>
<td></td>
<td>LMS</td>
<td>Program Memory (Word)</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Normalized-LMS</td>
<td>Instruction Cycles</td>
<td>90N + 34</td>
</tr>
<tr>
<td></td>
<td>LMS</td>
<td>Program Memory (Word)</td>
<td>92</td>
</tr>
</tbody>
</table>

Note: N represents filter order.
<table>
<thead>
<tr>
<th></th>
<th>TMS320C30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Instruction Cycles</td>
</tr>
<tr>
<td></td>
<td>Program Memory (Word)</td>
</tr>
<tr>
<td>LMS</td>
<td>Instruction Cycles</td>
</tr>
<tr>
<td></td>
<td>Program Memory (Word)</td>
</tr>
<tr>
<td>Leaky LMS</td>
<td>Instruction Cycles</td>
</tr>
<tr>
<td></td>
<td>Program Memory (Word)</td>
</tr>
<tr>
<td>Sign-Data LMS</td>
<td>Instruction Cycles</td>
</tr>
<tr>
<td></td>
<td>Program Memory (Word)</td>
</tr>
<tr>
<td>Sign-Error LMS</td>
<td>Instruction Cycles</td>
</tr>
<tr>
<td></td>
<td>Program Memory (Word)</td>
</tr>
<tr>
<td>Sign-Sign LMS</td>
<td>Instruction Cycles</td>
</tr>
<tr>
<td></td>
<td>Program Memory (Word)</td>
</tr>
<tr>
<td>Normalized LMS</td>
<td>Instruction Cycles</td>
</tr>
<tr>
<td></td>
<td>Program Memory (Word)</td>
</tr>
<tr>
<td></td>
<td>Instruction Cycles</td>
</tr>
<tr>
<td></td>
<td>Program Memory (Word)</td>
</tr>
<tr>
<td>LMS</td>
<td>Instruction Cycles</td>
</tr>
<tr>
<td></td>
<td>Program Memory (Word)</td>
</tr>
<tr>
<td>Leaky LMS</td>
<td>Instruction Cycles</td>
</tr>
<tr>
<td></td>
<td>Program Memory (Word)</td>
</tr>
<tr>
<td>Sign-Data LMS</td>
<td>Instruction Cycles</td>
</tr>
<tr>
<td></td>
<td>Program Memory (Word)</td>
</tr>
<tr>
<td>Sign-Error LMS</td>
<td>Instruction Cycles</td>
</tr>
<tr>
<td></td>
<td>Program Memory (Word)</td>
</tr>
<tr>
<td>Sign-Sign LMS</td>
<td>Instruction Cycles</td>
</tr>
<tr>
<td></td>
<td>Program Memory (Word)</td>
</tr>
<tr>
<td>Normalized LMS</td>
<td>Instruction Cycles</td>
</tr>
<tr>
<td></td>
<td>Program Memory (Word)</td>
</tr>
<tr>
<td>LMS</td>
<td>Instruction Cycles</td>
</tr>
<tr>
<td></td>
<td>Program Memory (Word)</td>
</tr>
<tr>
<td>Leaky LMS</td>
<td>Instruction Cycles</td>
</tr>
<tr>
<td></td>
<td>Program Memory (Word)</td>
</tr>
<tr>
<td>Sign-Error LMS</td>
<td>Instruction Cycles</td>
</tr>
<tr>
<td></td>
<td>Program Memory (Word)</td>
</tr>
</tbody>
</table>

Note: N represents filter order.
References

List of Appendices for Implementation of Adaptive Filters with the TMS320C25 and TMS320C30

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Transversal Structure with LMS Algorithm Using the TMS320C25</td>
</tr>
<tr>
<td>A2</td>
<td>Transversal Structure with LMS Algorithm Using the TMS320C30</td>
</tr>
<tr>
<td>B1</td>
<td>Symmetric Transversal Structure with LMS Algorithm Using the TMS320C25</td>
</tr>
<tr>
<td>B2</td>
<td>Symmetric Transversal Structure with LMS Algorithm Using the TMS320C30</td>
</tr>
<tr>
<td>C1</td>
<td>Lattice Structure with LMS Algorithm Using the TMS320C25</td>
</tr>
<tr>
<td>C2</td>
<td>Lattice Structure with LMS Algorithm Using the TMS320C30</td>
</tr>
<tr>
<td>D1</td>
<td>Transversal Structure with Normalized LMS Algorithm Using the TMS320C25</td>
</tr>
<tr>
<td>D2</td>
<td>Transversal Structure with Normalized LMS Algorithm Using the TMS320C30</td>
</tr>
<tr>
<td>E1</td>
<td>Transversal Structure with Sign-Error LMS Algorithm Using the TMS320C25</td>
</tr>
<tr>
<td>E2</td>
<td>Transversal Structure with Sign-Error LMS Algorithm Using the TMS320C30</td>
</tr>
<tr>
<td>F1</td>
<td>Transversal Structure with Sign-Sign LMS Algorithm Using the TMS320C25</td>
</tr>
<tr>
<td>F2</td>
<td>Transversal Structure with Sign-Sign LMS Algorithm Using the TMS320C30</td>
</tr>
<tr>
<td>G1</td>
<td>Transversal Structure with Leaky LMS Algorithm Using the TMS320C25</td>
</tr>
<tr>
<td>G2</td>
<td>Transversal Structure with Leaky LMS Algorithm Using the TMS320C30</td>
</tr>
<tr>
<td>H1</td>
<td>Assembly Subroutine of Transversal Structure with LMS Algorithm Using the TMS320C25</td>
</tr>
<tr>
<td>H2</td>
<td>Linker Command File for Assembly Main Program Calling a TMS320C25 Adaptive LMS Transversal Filter Subroutine</td>
</tr>
<tr>
<td>H3</td>
<td>TMS320C30 Adaptive Filter Initialization Program</td>
</tr>
<tr>
<td>H4</td>
<td>Assembly Subroutine of Transversal Structure with LMS Algorithm Using the TMS320C30</td>
</tr>
<tr>
<td>H5</td>
<td>Linker Command/file for Assembly Main Program Calling the TMS320C30 Adaptive LMS Transversal Filter Subroutine</td>
</tr>
<tr>
<td>I1</td>
<td>C Subroutine of Transversal Structure with LMS Algorithm Using the TMS320C25</td>
</tr>
<tr>
<td>I2</td>
<td>C Subroutine of Transversal Structure with LMS Algorithm Using the TMS320C30</td>
</tr>
</tbody>
</table>
RESERVE ADDRESSES FOR PARAMETERS

D:
Y:
ERR:
ONE:
U:
ERRF:

PERFORM THE ADAPTIVE FILTER

text

ESTIMATE THE SIGNAL Y

LARP AR3
CNFP
MPYK 0
LAC ONE, 15
LRALK AR3, IN
RPTK ORDER-1
MACD WH+0:600h,e-
CNFD
APAC
SACH Y

; Configure D0 as program memory
; Clear the P register
; Using rounding
; Repeat N times
; Estimate Y(n)
; Configure BO as data memory
; Store the filter output

COMPUTE THE ERROR

NEG
ADDH D
SACH ERR

; ACC = - Y(n)
; ERR(n) = D(n) - Y(n)

UPDATE THE WEIGHTS

LT ERR
MPY U
PAC
ADD ONE, 15
SACH ERRF

; I = ERR(n)
; P = U * ERR(n)
; Round the result
; ERRF = U * ERR(n)

DEFINE PARAMETERS

ORDER: .equ 64
PAGE0: .equ 0

DEFINE ADDRESSES OF BUFFER AND COEFFICIENTS

IO: .usect "buffer", ORDER-1
IN: .usect "buffer", 1
INH: .usect "coefs", ORDER

ALGORITHM:

y(n) = SUM w(k)*x(n-k) k=0,1,2,...,63
k=0

e(n) = d(n) - y(n)

w(k) = w(k) + u*e(n)*x(n-k) k=0,1,2,63

Where we use filter order = 64 and mu = 0.01.

Note: This source program is the generic version; I/O configuration has not been set up. User has to modify the main routine for specific application.

Initial condition:
1) PM status bit should be equal to 01.
2) SIM status bit should be set to 1.
3) The current DP (data memory page pointer) should be page 0.
4) Data memory ONE should be 1.
5) Data memory U should be 327.

Chen, Chein-Chung February, 1989

DEFINITE PARAMETERS

ORDER: .equ 64
PAGE0: .equ 0

DEFIND ADDRESSES OF BUFFER AND COEFFICIENTS

IO: .usect "buffer", ORDER-1
IN: .usect "buffer", 1
INH: .usect "coefs", ORDER

FINISH .end
T30 - Adaptive transversal filter with LMS algorithm using the TMS320C30

I/O configuration:

\[d(n) \] ----------------------------
 \[e(n) \]
 \[y(n) \]

Algorithm:

\[y(n) = \text{SUM} \ w(k) x(n-k) k=0,1,2,\ldots,63 \]
\[k=0 \]
\[e(n) = d(n) - y(n) \]
\[w(k) = w(k) + \mu e(n) x(n-k) k=0,1,2,\ldots,63 \]

Where we use filter order = 64 and \(\mu = 0.01 \).

Chen, Chien-Chung March, 1989

COPY "adaptfilt.int"

PERFORM ADAPTIVE FILTER

ORDER .SET 64
MU .SET 01

INitalize Pointers and Arrays

.Text
BEGIN
LDI order, 64 ; Set up circular buffer
LDP @memadr, 00 ; Set data page
LDI @memadr, AR0 ; Set pointer for x[n]
LDI @memadr, AR1 ; Set pointer for w[n]
LDF 0.0, R0 ; R0 = 0.0
RPTB order-1
STF R0, @memadr+11X ; x[n] = 0
; STF R0, @memadr+11X ; w[n] = 0
LDI @in_adr, AR6 ; Set pointer for input ports
LDI @out_adr, AR7 ; Set pointer for output ports

Input:
LDF @AR6, R7 ; Input d(n)
LDF @AR6+11, R6 ; Input x(n)
STF R6, AR0 ; Insert x(n) to buffer

Compute Filter Output y(n)
LDF 0.0, R2 ; R2 = 0.0
MPYF3 @AR0+11X, @AR1+11X, R1
RPTB order-2
MPYF3 @AR0+11X, @AR1+11X, R1
; ADF3 R1, R2, R2 ; y(n) = w1.x[n]
; ADF3 R1, R2 ; Include last result

Compute Error Signal e(n) and Output y(n) and e(n) Signals
SUBF R2, R7 ; e(n) = d(n) - y(n)
STF R2, @AR7+11 ; Send out y(n)
; STF R7, @AR7+11 ; Send out e(n)

Update Weights w(n)
MPYF @AR0, R7 ; R7 = e(n) * u
MPYF3 @AR0+11X, R7, R1 ; R1 = e(n) * u * x(n)
LDI order-3, RC ; Initialize repeat counter
RPTB LMS ; Do i = 0, N-3
MPYF3 @AR0+11X, R7, R1 ; R1 = e(n) * u * x(n-i-1)
; ADF3 @AR1, R1, R2 ; R2 = w(n) + e(n) * u * x(n-i)
; STF R2, @AR1+11X ; w(n+1) = w(n) + e(n) * u * x(n-i)
; STF @AR0, R7, R1 ; For i = N-2
; ADF3 @AR1, R1, R2
; BD input ; Delay branch
; STF R2, @AR1+11X ; w(n+1) = w(n) + e(n) * u * x(n-i)
ADDF3 @AR1, R1, R2
STF R2, @AR1+11X ; Update last w

Define Constants
xN .USECT "buffer", ORDER
mu .USECT "coeffs", ORDER
in_adr .USECT "vars", 1
out_adr .USECT "vars", 1
xn_adr .USECT "vars", 1
wm_adr .USECT "vars", 1
u .USECT "vars", 1
coin .USECT "coin"
;WORD 5, in_adr
;WORD 08000000h
;WORD 08000020h
;WORD xn
;WORD xm
;FLOAT mu
END
Algorithm:

\[z_1(n-k) = x(n-k) + x(n-63k) \quad k=0,1,...,31 \]

\[z_1(n) = \text{SUM} w(n) \times x(n-k) \quad k=0,1,2,...,31 \]

\[e(n) = d(n) - y(n) \]

\[w(n) = w(n) + w(n) \times e(n) \times z_1(n-k) \quad k=0,1,2,...,31 \]

Where we use filter order = 64 and \(\mu = 0.01 \).

Note: This source program is the generic version; I/O configuration has not been set up. User has to modify the main routine for specific application.

Initial condition:
1. \(PM \) status bit should be equal to 01.
2. \(SM \) status bit should be set to logic 1.
3. The current DP (data memory page pointer) should be page 0.
4. Data memory \(OME \) should be 1.
5. Data memory \(U \) should be 327.

Chen, Cheia-Chuang February, 1989
NEG
ADD D,15
SACH ERR

* UPDATE THE WEIGHTS *

LT ERR
MPY U
PAC
ADD ONE,15
SACH ERRF

LARK AR1,ORDER2-1
LRLX AR2,WM
LRLY AR3,LASBUF
LT ERRF
T register = U * ERR(n)
MPY *-,AR2
P = U * ERR(n) * X(n-k)
ADAPT IALR *-,AR3
MPYA *-,AR2
W(k,n+1) = Wk,n) + P
SACH **,0,AR1
BANZ ADAPT,**-,AR2

* UPDATE DATA POSITION FOR NEXT ITERATION *

FINISH LRLX AR2,LASDAT-1
DATMOV RPTK ORDER-2
DMOV *-
.end
Y30 - Adaptive symmetric transversal filter with LMS algorithm using the TMS320C30

Algorithm:
1. Initialize pointers and arrays
2. Compute filter output y(n)
3. Update weights win

PERFORM ADAPTIVE FILTER

.order .set 64 ; Filter order
.mn .set 0.01 ; Step size

BEGIN

LDI order, BK ; Set up circular buffer
LDP @mn, addr ; Set data page
LDI @mn, addr, AR0 ; Set pointer for x(i)
LDI @mn, addr, AR1 ; Set pointer for u(i)
LDI @mn, addr, AR2 ; Set pointer for z(i)
LDI order-2, IR0 ; Set index pointer
LDF 0.0, R0 ; SO = 0.0
RPTB order-1
STF R0, @mn++(1) ; x(i) = 0
RPTS order-2
STF R0, @mn++(1) ; u(i) = 0
STF R0, @mn-=(1) ; z(i) = 0
STF R0, @mn-=(1) ; y(i) = 0
LDI @in-addr, AR6 ; Set pointer for input ports
LDI @out-addr, AR7 ; Set pointer for output ports

INPUT:
LDIF #AR6, R7 ; Input din
LDF #AR6+1, R6 ; Input din(i)
LDI AR0, AR4 ; Set forward pointer for x(i)
STF R0, AR4-=(1) ; Insert x(i) to buffer

LDF 0.0, R2 ; R2 = 0.0
LDI AR0, AR5 ; Initialize repeat counter
LDF order-2, RC ; Initialize repeat counter
RPTB LNS ; Do i = 0, N=3

ADD3 xAR4++(1), xAR5--;(1), R1 ; z(n) = x(n-1) + x(n+N-1)
MPYF3 R1, xAR1++(1), R3 ; y(i) = w(i)x(i)
:: STF R1, xAR2++(1) ; Store z(n)
INNER ADD3 R3, R2, R2 ; Accumulate the result
ADD3 xAR4++(1), xAR5--;(1), R1 ; z(n) = x(n-1) + x(n+N-1)
MPYF3 R1, xAR1--;(IR0), R3 ; y(i) = w(i)x(i)
:: STF R1, xAR2--;(IR0) ; Store z(n)
ADD3 R3, R2 ; Include last result

COMPUTE ERROR SIGNAL e(n) AND OUTPUT y(n) AND e(n) SIGNALS
SUBF R2, R7 ; e(n) = d(n) - y(n)
STF R2, @mn ; Send out y(n)
:: STF R7, #AR7+1(1) ; Send out e(n)

UPDATE WEIGHTS win
MPYF #R7, R7 ; R7 = e(n) * u
MPYF3 #AR2++(1), R7, R1 ; R1 = e(n) * u + z(n)
LDF order-2, RC ; Initialize repeat counter
RPTB LNS ; Do i = 0, N=3
ADD3 #AR1, R1, R2 ; R2 = w(i)n + e(n) * u + z(i)
LNS STF R2, #AR1++(1) ; w(i+1) = w(i)n + e(n) * u + z(i)
:: ADD3 #AR1, R1, R2 ; For i = N-2
BD input
STF R2, #AR1+1(1) ; w(i+1) = w(i)n + e(n) * u + z(i)
ADD3 #AR1, R1, R2 ; Include last w
STF R2, #AR1--;(IR0) ; Update last w

DEFINE CONSTANTS
.xm .usec "buffer", order
.mn .usec "coeffs", order/2
.xn .usec "coeffs", order/2
.in. addr .usec "vars", R
.out_addr .usec "vars", R
.input_addr .usec "vars", R
.out_addr .usec "vars", R
.mn_addr .usec "vars", R
.w .usec "w", R
.cinit .sect "cinit"
. word 6, in_addr
 Appendix B2. Symmetric Transversal Structure with LMS
L25 : Adaptive Filter Using Lattice Structure
and LMS Algorithm, Looped Code

\[f(n) + f(n) f(i-1) + \cdots + f(SUM-1) + f(SUM) + f(n) \]
\[f(k) + f(k-1) \]
\[x(n) : \]
\[y(n) : \]
\[z(n) : \]
\[b0(n) + b(n) b(i-1) = i : + \]

Algorithm:
\[f(n) = \sum_{i=1}^{2} b(n-i) \cdot x(n-i) \]
\[b(n) = \sum_{i=1}^{2} b(n-i) - \sum_{i=1}^{2} f(i) \cdot b(n-i) \]
\[e(n) = d(n) - \sum_{i=1}^{2} f(i) \cdot b(n-i) \cdot x(n-i) \]
\[y(n) = \sum_{i=0}^{64} y(n-i) + \sum_{i=0}^{64} b(n) \cdot G(n+i) \]

Note: This source program is the generic version; I/O configuration has not been set up. User has to modify the main routine for specific application.

Initial condition:
1) P1 status bit should be equal to 01.
2) SIM status bit should be set to logic 1.
3) The current DP (data memory page pointer) should be page 0.
4) Data memory U should be 327.
5) The BI & BD1 pointer (AR3 & AR4) should be exchanged every iteration. For example,
 For odd iteration: AR3 \rightarrow BI
 AR4 \rightarrow BD1
 For even iteration: AR3 \rightarrow BD1
 AR4 \rightarrow BI

Chen, Chein-Chung February, 1989

DEFINITE PARAMETERS
ORDER: .equ 64

DEFINE ADDRESSES OF BUFFERS AND COEFFICIENTS
GI: .usec "coeffs",ORDER
KI: .usec "coeffs",ORDER+1
BI: .usec "buffer",ORDER+1
BD1: .usec "buffer",ORDER+1

RESERVE ADDRESSES FOR PARAMETERS
DI: .usec "parameters",1
Xi: .usec "parameters",1
Yi: .usec "parameters",1
EI: .usec "parameters",1
UI: .usec "parameters",1
TEM: .usec "parameters",1

PERFORM THE ADAPTIVE FILTER

...text...

INITIALIZE THE POINTERS
LARP AR3
LARK AR1,ORDER+1
LARL AR2,FI
LARK AR3,BI
LARK AR4,BD1
LARK AR5,GI
LARK AR6,KI

INITIALIZE THE BI AND FI
LAC X
SACL *0,AR2
SACL *0,AR3

INITIALIZATION
LT *0,AR5
P*0,AR2
PAC
SACH Y
NEG
ADDH D
SACH E

; T = BI
; P = BI * GI
; ACC = BI + GI
; Initialize Y(0) = BI * GI
; ACC = - (BI + GI)
; ACC = D(n) - BI + GI
; Initialize E(0) = D(n) - BI * GI
* COMPUTE THE F(i) AND B(i) *

```
L131 LT  X, AR1
MPY  X, AR2
MPYS  X, AR2
SACH  X, AR4
ZALR  X, AR3
MPYS  X, AR3
SACH  X

* COMPUTE GAIN G(n) *

LT  U
MPY  U
SMH  TEMP
LT  TEMP
MPY  U, AR5
ZALR  X, AR3
LTU  X, AR5
SACH  X, AR5

* COMPUTE E AND UPDATE X(i) *

MPY  X, AR2
ZALR  E
MPYS  X, AR2
MPYS  X, AR2
SACH  X
LAT  X, AR4
MPY  U, AR6
APAC  X
SACH  TEMP
LTU  TEMP
MPY  U
ZALR  X
APAC  X
SACH  X, AR1
BLNZ  L131, +, AR2
```

* COMPUTE Y *

```
CNMP  
MPX  0
ZAC  
LALX  AR2, R1
FIR  MPX  ORDER+1
NAC  G1=G1+0.06*
CNBD  
APAC  
SACH  Y
```

* END *
.title 'TMS320C52'

**

TMS2: Adaptive Filter Using Transversal Structure
and Normalized LMS Algorithm. Leaped Code

Algorithm:

\[y(n) = \sum w(k)x(n-k) \quad k=0,1,2,\ldots,63 \]

\[e(n) = d(n) - y(n) \]

\[w(k) = w(k) + \mu e(n)x(n-k)/\var(k) \quad k=0,1,2,\ldots,63 \]

Where \(\mu \) use filter order = 64 and \(\mu = 0.01 \).

Note: This source program is the generic version; I/O configuration has
not been set up. User has to modify the main routine for specific
application.

Initial condition:
1) PM status bit should be equal to 01.
2) SDM status bit should be set to 1.
3) The current EP (data memory page pointer) should be 0.
4) Data memory ONE should be 1.
5) Data memory U should be 327.
6) Data memory VAR should be initialized to OFFFFh.

Chen, Chia-Chung February, 1999

**

* DEFINE PARAMETERS

ORDER: .equ 64
SHIFT: .equ 7
PAGE: .equ 0

* DEFINE ADDRESSES OF BUFFER AND COEFFICIENTS

X: .usec "buffer", ORDER-1
Y: .usec "buffer", 1
W: .usec "coeffs", ORDER

* RESERVE ADDRESSES FOR PARAMETERS

D: .usec "parameters", 1

**

Y: .usec "parameters", 1
ERR: .usec "parameters", 1
ONE: .usec "parameters", 1
U: .usec "parameters", 1
VAR: .usec "parameters", 1

**

* PERFORM THE ADAPTIVE FILTER

**

* ESTIMATE THE POWER OF SIGNAL

LARP: AR3
LRLK: AR3,XO
SQRA: 0
SPP: ERR
ZALH: VAR
SUB: VAR,SHIFT
ADD: ERR,SHIFT
SACH: VAR

* ESTIMATE THE SIGNAL Y

CMFP: 0
MPV: ONE,15
LAC: ONE,15
LRLK: AR3,XN
FFT: ORDER-1
MACD: MM=01000h, E-
CMFD
APAC: Y

* COMPUTE THE ERROR

NEG
ADDH: D
SACH: ERR

* UPDATE THE WEIGHTS

LT: ERR
PY: U
PAC: ADD: ONE,15

* NORMALIZE CONVERGE FACTOR

ABS
RPTX: 14
SUBC: VAR
BIT: ERR, 0

**

* Point to input signal X
* Square input signal
* ACC = VAR(n-1)
* ACC = (1-r) * VAR(n-1) + r * X(n)
* Store VAR
* Configure BO as program memory
* Clear the P register
* Using rounding
* Point to the oldest sample
* Repeat M times
* Estimate Y(n)
* Configure BO as data memory
* Store the filter output
* ACC = Y(n)
* ERR(n) = D(n) - Y(n)
* Round the result
* Make dividend positive
* Repeat 15 times
* Perform U = ERR(n) / VAR
* Check sign of ERR(n)
BBZ NEXT ; ERRF = - U * ERR(n) / VAR
NEXT SACL ERRF ; Store ERRF
 *
 LARK AR1,ORDER-1 ; Set up counter
 LRLX AR2,WN ; Point to the coefficients
 LRLX AR3,IN+1 ; Point to the data samples
 LT ERRF ; T register = U * ERR(n)
 MPY *-,AR2 ; P = U * ERR(n) * X(n-k)
 ADAPT IALR *,AR3 ; Load ACCH with Atk,n & round
 MPY *-,AR2 ; W(k,ent) = W(k,n) + P
 SACH *+,0,AR1 ; Store W(k,n+1)
 BANZ ADAPT,*,-,AR2 ;
TKDO - Adaptive transversal filter with Normalized LMS algorithm
using the TMS320C30

Algorithm:

\[y(n) = \text{SUM} w(k) x(n-k) \quad k=0,1,2,\ldots,63 \]
\[w(n) = w(n) + (1-r) \cdot \text{var}(n) \cdot (y(n) - d(n)) \]

\[w(k) = w(k) + w(n) \cdot x(n-k) / \text{var}(n) \quad k=0,1,2,\ldots,63 \]

Where we use filter order = 64 and \(m = 0.01 \).

Chen, Cheia-Chung March, 1989

PERFORM ADAPTIVE FILTER

ORDER .SET 64 ; Filter order
MU .SET 0.01 ; Step size
POWER .SET 1.0 ; Input signal power
ALPHA .SET 0.996 ; 1.0 - \alpha
ALPH .SET 0.004

INITIALIZE POINTERS AND ARRAYS

.text
BEGIN
LDI R0, order
LDI R1, 0
LDI R2, 0
LDI R3, 0
LDI R4, 0
LDI R5, 0
LDI R6, 0
LDI R7, 0

ESTIMATE THE POWER OF THE INPUT SIGNAL

MPYF R6, R6 ; R6 \cdot x2
MPYF R6, R6, R6 ; (R6 \cdot x2) \cdot \text{R6}
LDF R0, R3 ; R3 = \text{R3}
MPYF R0, R3, R3 ; R3 = \text{R3} \cdot \text{var}(n-1)

COMPUTE FILTER OUTPUT y(n)

LDF R0, R2
ADD R0, R3, R1
ADD R0, R2, R2
ADD R0, R1, R2

COMPUTE ERROR SIGNAL e(n)

SUBF R2, R2
SUBF R2, R2
SUBF R2, R2

OUTPUT y(n) AND e(n) SIGNALS

ADD R2, R0, R1
ADD R2, R0, R1
ADD R2, R0, R1

UPDATE WEIGHTS w(n)

PUSH R3
POP R3
ASH R2, 1
EQU R2, 2
SUBF R2, R2
SUBF R2, R2
SUBF R2, R2

Appendix D2. Transversal Structure with Normalized LMS

Algorithm Using the TMS320C30
```
SUBWF 2,0,R0 ; RO = 2.0 - v * x[3]
MPYF R0,R0,2 ; R2 = x[4] * x[2] * 12.0 - v * x[3]
MPY R2 ; This minimizes error in the LSBs.

MPYF R2,R3,R0 ; R0 = v * x[4] + 1.0 - 0.01, 0.0... 0.0
SUBWF 1.0,R0 ; R0 = 1.0 - v * x[4] =

MPYF R2,R0 ; R0 = x[4] * (1.0 - v * x[4])
ADDF R0,R2 ; x[3] = (x[4] + (1.0 - v * x[4]))/n=4)
END R2,R0 ; Round since this is followed
;
by a MPYF.

MPY R0,R7 ; R7 = e(n) * u
MPYF R0,R7 ; R7 = e(n) * u / var(n)
MPYF3 w(w=1) R7,R0,R1 ; R1 = e(n) * u / var(n)
LDI order=3,5 ; Initialize repeat counter
BFT3 LMS ; Do i = 0, n-3
MPYF3 w(w=1) R1,R7,R0,R1 ; R1 = e(n) * u / var(n)
:: ADDF3 W,0,R1,R2 ; R2 = u(n) + R1
LMS STF R2,MR1(11)
MPYF3 w(w=1) R7,R0,R1 ; For i = N - 2
:: ADDF3 W,0,R1,R2
SD input ; Delay branch
STF R2,MR1(11)
ADDF3 MR1,R1,R2 ; Store win(i)
STF R2,MR1(11)
:: Update last w

DEFINE CONSTANTS AND VARIABLES

.x
 .sect "buffer",order
.wm .sect "coeffs",order
.st.addr .sect "vars",1
.et.addr .sect "vars",1
.x.addr .sect "vars",1
.wn.addr .sect "vars",1
.x .sect "vars",1
.w .sect "vars",1
.t .sect "vars",1
.r .sect "vars",1
const .sect "const"
.words 8,1
.words 00004000h
.words 0004002fh
.words 0h
.words 0h
.float w
.float power
.float alpha
.float alphal
.end
```

Algorithm:

\[y(n) = \sum_{k=0,1,2,...,63} w(k) x(n-k) \]
\[e(n) = d(n) - y(n) \]

For \(k = 0,1,2,...,63 \)
\[w(k) = w(k) + u(k) e(n) \text{ if } e(n) > 0 \]
\[w(k) = w(k) - u(k) e(n) \text{ if } e(n) < 0 \]

Where we use filter order = 64 and \(u = 0.01 \).

Note: This source program is the generic version; I/O configuration has not been set up. User has to modify the main routine for specific application.

Initial conditions:
1) PM status bit should be equal to 01.
2) SM status bit should be set to 1.
3) The current DP (data memory page pointer) should be page 0.
4) Data memory OME should be 1.
5) Data memory U should be 327.
6) Data memory NEMU should be -327.

Chen, Chin-Chung February, 1989

--

DEFINE PARAMETERS

ORDER: .equ 64
PAGEO: .equ 0

DEFINE ADDRESSES OF BUFFER AND COEFFICIENTS

X: .usec "buffer", ORDER-1
XM: .usec "buffer", 1
WN: .usec "coeff", ORDER

RESERVE ADDRESSES FOR PARAMETERS

I: .usec "parameters", 1
Y: .usec "parameters", 1

--

ERR: .usec "parameters", 1
ONE: .usec "parameters", 1
U: .usec "parameters", 1
NEMU: .usec "parameters", 1

--

PERFORM THE ADAPTIVE FILTER

--

ESTIMATE THE SIGNAL Y

LARP AR3
CMFP
MPFX 0
LAC ONE, 15
LRLK AR3, IN
FIR
RPTX ORDER-1
MACD WM+U*0001, 4
CHFD
APAC
SACH Y
; Store the filter output

CHECK THE SIGN OF ERROR

LT U
T register = U
MEG
ADDH D
ACC = Y(n)
BGEZ NEXT
LT NEMU
T register = -U

UPDATE THE WEIGHTS

NEXT LARK AR1, ORDER-1
LRLK AR2, WM
LRLK AR3, WM+1
MPY = AR2
ADAPT ZALR = AR2
MPYA = AR2
SACH ++, 0, AR1
BANI ADAPT, += AR2

FINISH .end

 Appendix E1. Transversal Structure with Sign-Error LMS

Algorithm Using the TMS320C25
TSE30 - Adaptive transversal filter with Sign-Error LMS
algorithm using the TMS320C30

Algorithm:

63

\(y(n) = \sum w(k)x(n-k) \quad k=0,1,2,\ldots,63 \)

\(k=0 \)

\(e(n) = d(n) - y(n) \)

for \(k=0,1,2,\ldots,63 \)

\(w(k) = w(k) + \Delta w(n-k) \) if \(e(n) > 0.0 \)

\(w(k) = w(k) - \Delta w(n-k) \) if \(e(n) < 0.0 \)

Where we use filter order = 64 and \(\Delta w = 0.01 \).

Chen, Chein-Chung March, 1989

.copy "adaptfilt.int"

PERFORM ADAPTIVE FILTER

order .set 64
au .set 0.01

. INITIALIZE POINTERS AND ARRAYS

.text

begin .set 8
LDI order,BK ; Set up circular buffer
LDP Rcn.addr ; Set data page
LDI Rcn.addr,AR0 ; Set pointer for x(i)
LDI Rmn.addr,AR1 ; Set pointer for x(k)
LDF 0.0,R0 ; R0 = 0.0
RPTS order-1
STF R0,RAR0++(1) ; x(i) = 0

LDI Rn.addr,AR0 ; Set pointer for input ports
LDI Rout.addr,AR7 ; Set pointer for output ports
LDF 0x,R4 ; R4 = 0
LDF 0x,RS ; RS = au

input:

LDF AR6,R7 ; Input d(n)

LDF ++AR6(1),R6 ; Input x(n)

STF R6,AR0 ; Insert x(n) to buffer

COMPUTE FILTER OUTPUT y(n)

LDF 0.0,R211 ; R2 = 0.0

MPYF3 dAR0++(1),NAR1++(1),R1
RPT5 order-2
MPYF3 dAR0++(1),NAR1++(1),R1

ADD3 R1,R2,R1111 ; y(n) = w(k).x(i)
ADD3 R1,R2 ; Include last result

COMPUTE ERROR SIGNAL e(n)

SUBF R2,R7 ; e(n) = d(n) - y(n)

OUTPUT y(n) AND e(n) SIGNALS

STF R2,AR7 ; Send out y(n)
STF R7,AR7(1) ; Send out e(n)

UPDATE WEIGHTS w(n)

ASH -31,R7 ; Get Sign(e(n))
LOR3 R4,R7,R5 ; R5 = Sign(e(n)) + u
MPYF3 dAR0++(1),R5,R1 ; R1 = Sign(e(n)) + u * x(n)
RPT5 SELMS ; Do i = 0, N-3
LDI order-3,RC ; Initialize repeat counter
RPT5 SELMS ; Do i = 0, N-3
MPYF3 dAR0++(1),R5,R1 ; R1 = Sign(e(n)) + u * x(n-i)

ADD3 R1,R1111 ; R2 = w(n) + Sign(e(n)) + u * x(n)

SELMS STF R2,AR7(1) ; u(n-i) = u(i) + Sign(e(n)) + u * x(n-i)

MPYF3 dAR0,AR5,R1 ; For j = N - 2
ADD3 R1111,R1,R2 ; u(n-i) = u(n) + Sign(e(n)) + u * x(n-i)
STF R2,AR7(1) ; Update last u

. DEFINE CONSTANTS

xn .usect "buffer",order
um .usect "coeffs",order
in.addr .usect "vars",1
out.addr .usect "vars",1
xn.addr .usect "vars",1
um.addr .usect "vars",1
u .usect "vars",1
cinit .sect "cinit"
.word 5,in.addr
.word 0804000h
.word 0804002h
.word xn
.word um
.float au
.end
Algorithm:

\[y(n) = \sum_{k=0}^{63} w(k) x(n-k) \]

\[e(n) = d(n) - y(n) \]

For \(k = 0, 1, 2, ..., 63 \)
\[w(k) = w(k) \pm u \text{ if } e(n) x(n-k) > 0 \]
\[w(k) = w(k) - u \text{ if } e(n) x(n-k) < 0 \]

Where we use filter order = 64 and \(u = 0.01 \).

Note: This source program is the generic version; I/O configuration has not been set up. User has to modify the main routine for specific application.

Initial condition:
1) FN status bit should be equal to 01.
2) SM status bit should be set to 1.
3) The current DP (data memory page pointer) should be page 0.
4) Data memory ONE should be 1.
5) Data memory U should be 327.

Chen, Chein-Chung February, 1989

DEFINE PARAMETERS

```
ORDER: .equ 64
PAGE: .equ 0
```

DEFINE ADDRESSES OF BUFFER AND COEFFICIENTS

```
BB: .usec "buffer", ORDER-1
B0: .usec "buffer", 1
WA: .usec "coeffs", ORDER
```

RESERVE ADDRESSES FOR PARAMETERS

```
DP: .usec "parameters", 1
YP: .usec "parameters", 1
ERR: .usec "parameters", 1
```

UPDATE THE WEIGHTS

```
ADAPT LAC +/-, AR2
XOR ERR
SACL ERRF
LAC ERRF
XORK MU, 15
ADD +, 15
SACH +/-, AR1
BMAZ ADAPT, +/-, AR3
```

FINISH

```
.end
```

ESTIMATE THE SIGNAL Y

```
LARL AR3
CNFP RPTX 0
LAC ONE, 15
LRLX AR2, IN
```

FIR

```
RPTX ORDER-1
MAOD W +0,00H, E-
DMFD
APAC
SACH Y
```

Store the filter output

SET UP THE POINTERS

```
LARL AR1, ORDER-1
LRLX AR2, W4
LRLX AR2, IN+1
```

Point to the coefficients

Point to the data sample

CHECK THE SIGN OF ERROR

```
NEG
ADDBH D
SACH ERR
```

ACC = D(n) - Y(n)

UPDATE THE WEIGHTS

```
ADAPT LAC +/-, AR2
XOR ERR
SACL ERRF
LAC ERRF
XORK MU, 15
ADD +, 15
SACH +/-, AR1
BMAZ ADAPT, +/-, AR3
```

FINISH

```
.end
```
Algorithm:

1. \(y(n) = \text{SUM} \{ w(k)x(n-k) \} \text{ for } k = 0, 1, 2, \ldots, 63 \)
2. \(e(n) = d(n) - y(n) \)
3. \(w(k) = w(k) + u, \text{ if } x(n-k)e(n) > 0.0 \)
4. \(w(k) = w(k) - u, \text{ if } x(n-k)e(n) < 0.0 \)

Where we use filter order = 64 and \(u = 0.01 \).

Chen, Chien-Chung, March, 1989

```
; copy "adeqftrl.int"

order .set 64
mu .set 0.01

; INITIALIZE POINTERS AND ARRAYS

.begin
.text

LDI order,BK ; Set up circular buffer
LDI @cm.addr          ; Set data page
LDI @cm.addr,MR0     ; Set pointer for x[n]
LDI @cm.addr,MR1     ; Set pointer for y[n]
LDL  0.0,RO          ; RO = 0.0
RPTS order-1

STF RO,#MR0+1(1X) ; x[1n] = 0
|| STF RO,#MR1+1(1X) ; w[n] = 0
LDI #Vv,R0          ; RO = mu
LDI #Vv,R4          ; R4 = mu
LDI #Vv,R5          ; R5 = mu
LDI @in.addr,MR6        ; Set pointer for input ports
LDI @out.addr,MR7 ; Set pointer for output ports

LDF #MR6,R7 ; Input (d[n])
|| LDF #MR6(1),R6 ; Input (x[n])
STF R6,#MR0 ; Insert x[n] to buffer

; COMPUTE FILTER OUTPUT y(n)

LDF 0.0,R2          ; R2 = 0.0

MPYF3 #MR0+1(1X),#MR1+1(1X),R1
```

RPTS order-2

MPYF3 #MR0+1(1X),#MR1+1(1X),R1

```
|| ADDF R1,R2,R2 ; \( y(n) = w[1]x[n] \)

ADDF R1,R2 ; Include last result
```

COMPUTE ERROR SIGNAL e(n) AND OUTPUT y(n) AND e(n) SIGNALS

```
SUBF R2,R7 ; e(n) = d(n) - y(n)
STF R2,MR7 ; Send out e(n)
|| STF R7,#MR7+1 ; Send out e(n)
```

UPDATE WEIGHTS w[n]

```
ASH -31,R7 ; R7 = Sign(e[n])
IORD3 RO,R7,MR5 ; R5 = Sign(e[n]) * u
LDF #MR0+1(1),R6 ; R6 = x[n]
ASH -31,R6 ; R6 = Sign(e[n])
IORD3 RS,R6,MR4 ; R4 = Sign(x[n-1])Sign(e[n]) * u
ADDIF3 #MR1+1(R4,R3) ; R3 = w[n] + R4

LDI order-3,RC ; Initialize repeat counter
RPTB SSLMS ; Do i = 0, N-3
|| STF R3,MR1+1(1) ; Update w[i-1]
ASH -31,R6 ; R6 = Sign of data
IORD3 RS,R6,MR4 ; Decide the sign of u
SSLMS ADDIF3 #MR1+1,R4,R3 ; R3 = w[i] + R4
```

LDI #MR0,R6 ; Get last data
|| STF R3,MR1+1(1) ; Update w[i-2](i-1)
ASH -31,R6 ; Get the sign of data
BD input ; Delay branch
IORD3 RS,R6,MR4 ; Decide the sign of u
ADDIF3 #MR1+1,R4,R3 ; Compute wi-1
STF R2,MR0+1(1) ; Store last w[i-1]

DEFINE CONSTANTS

```
xn .usect "buffer",order
mu .usect "coeffs",order
in.addr .usect "vars",1
out.addr .usect "vars",1
xn.addr .usect "vars",1
ym.addr .usect "vars",1
u .usect "vars",1
climit .sect "climit"
.word 5,in.addr
.word 08040001h
.word 08040012h
.word xn
.word y
.float mu
```

.end
TL25 : Adaptive Filter Using Transversal Structure
and Leaky-LMS Algorithm, Leaped Code

Algorithm:

% \[y(n) = \sum_{k=0}^{63} w(k)u(n-k) \]
% \[e(n) = d(n) - y(n) \]
% \[w(k) = w(k) + \mu e(n)u(n-k) \]

Where we use filter order = 64 and \(\mu = 0.01 \).

Note: This source program is the generic version; I/O configuration has
not been set up. User has to modify the main routine for specific
application.

Initial condition:
1) FM status bit should be equal to 0.
2) SIM status bit should be set to 1.
3) The current DP (data memory page pointer) should be page 0.
4) Data memory ONE should be 1.
5) Data memory U should be 327.

Chen, Chin-Chung February, 1989

DEFINE PARAMETERS

ORDER: .equ 64
LEAKY: .equ 7
PAGE0: .equ 0

DEFINE ADDRESSES OF BUFFER AND COEFFICIENTS

IO: .usect "buffer", ORDER-1
IN: .usect "buffer", 1
WV: .usect "coeffs", ORDER

RESERVE ADDRESSES FOR PARAMETERS

DI: .usect "parameters", 1
Y: .usect "parameters", 1
ERR: .usect "parameters", 1
ONE: .usect "parameters", 1

U: .usect "parameters", 1
ERROR: .usect "parameters", 1

PERFORM THE ADAPTIVE FILTER

.text

ESTIMATE THE SIGNAL Y

\[LARP \ AR3 \]
\[CMPF \] ; Configure BO as program memory
\[MPPK \ 0 \] ; Clear the P register
\[LAC \ ONE, 15 \] ; Using rounding
\[URLK \ AR3, DN \] ; Point to the oldest sample
\[FIR \ RPTK \ ORDER-1 \] ; Repeat N times
\[MACD \ Mn+i, 0, 0K \] ; Estimate Y(n)
\[CHFD \] ; Configure BO as data memory
\[APAC \] ; Store the filter output
\[SACH \ Y \]

COMPUTE THE ERROR

\[NEG \] ; ACC = - Y(n)
\[ADDR \ D \]
\[SACH \ ERR \] ; ERR(n) = D(n) - Y(n)

UPDATE THE WEIGHTS

\[LT \ ERR \] ; T = ERR(n)
\[MPPY \ U \]
\[PAC \] ; P = U + ERR(n)
\[ADD \ ONE, 15 \] ; Round the result
\[SACH \ ERF \] ; ERF = U + ERR(n)

\[LARK \ AR1, ORDER+1 \] ; Set up counter
\[URLK \ AR2, NN \] ; Point to the coefficients
\[URLK \ AR3, DN+1 \] ; Point to the data sample
\[LT \ ERR \] ; T register = U + ERR(n)
\[MPPY \ +, AR2 \]
\[P = U + ERR(n) * X(n-k) \]

\[ADAPT \ IARL \ *, AR3 \] ; Load ADCH with M(n) & round
\[MPPYA \ +, AR2 \] ; M(n+1) = M(n) + P
\[SUB \ *, LEAKY \]
\[SACH \ *, 0, AR1 \] ; Store M(n+1)
\[BANZ \ ADAPT, -, AR2 \]

FINISH .end
TL30 - Adaptive transversal filter with Leaky LMS algorithm using the TMS320C30

Algorithm:

\[y(n) = \text{SUM} w(k)\times x(n-k) \text{ for } k=0,1,2,\ldots,63 \]

\[e(n) = d(n) - y(n) \]

\[u(k) = r\times u(k) + w(n)\times x(n-k) \text{ for } k=0,1,2,\ldots,63 \]

Where we use filter order = 64, \(r = 0.995 \) and \(\mu = 0.01 \).

Chen, Chein-Chung, March 1989

PERFORM ADAPTIVE FILTER

order .set 64

mu_leaky .set 0.01005 ; \(\mu / \text{leaky} \)

leaky .set 0.995

INITIALIZE POINTERS AND ARRAYS

.text

begin

.set $LBD, \text{order}, R0$; Set up circular buffer

LDP @input, @R0 ; Set data page

LDI @in_addr, @R0 ; Set pointer for x[n]

LDI @in_addr+@R1 ; Set pointer for u[n]

LDA @adr, @R2 ; Set pointer for r[n]

LDF 0,0,R0 ; R0 = 0.0

RPTS order-1

STF R0, @R0 add+(1) ; x[i] = 0

STF R0, @R1 add+(1) ; u[i] = 0

LDI @in_addr, @R6 ; Set pointer for input ports

LDI @out_addr, @R7 ; Set pointer for output ports

input:

LDF @adr, @R7 ; Input d[n]

LDF @adr+1, @R6 ; Input x[n]

STF R6, @R0 ; Insert x[n] to buffer

.text

begin

.set $LBD, \text{order}, R0$; Set up circular buffer

LDP @input, @R0 ; Set data page

LDI @in_addr, @R0 ; Set pointer for x[n]

LDI @in_addr+@R1 ; Set pointer for u[n]

LDA @adr, @R2 ; Set pointer for r[n]

LDF 0,0,R0 ; R0 = 0.0

RPTS order-1

STF R0, @R0 add+(1) ; x[i] = 0

STF R0, @R1 add+(1) ; u[i] = 0

LDI @in_addr, @R6 ; Set pointer for input ports

LDI @out_addr, @R7 ; Set pointer for output ports

input:

LDF @adr, @R7 ; Input d[n]

LDF @adr+1, @R6 ; Input x[n]

STF R6, @R0 ; Insert x[n] to buffer

.text

define constants

\[x[n] \]

.usect "buffer", order

.usect "coeffs", order

.usect "vars", 1

.usect "inds", 1

.usect "x[n]", 1

.usect "u[n]", 1

.usect "r", 1

.usect "r", 1

cinit .sect "cinit"

.word 7, in_addr

.word 00400000

.word 00400200

.word x[n]

.word w

.float mu_leaky

.float leaky

.word r

.end
BLMS

Algorithm:

- $y(n) = \sum w(k)x(n-k) \quad k=0,1,2,\ldots,N-1$
- $w(0) = d(n) - y(n)$
- $w(k) = w(k) + \alpha e(n)x(n-k) \quad k=0,1,2,\ldots,N-1$

Where we use filter order N

Note: This subroutine performs Adaptive Filter using the LMS Algorithm. There are some initial conditions to meet before calling it.

Initial conditions:

1. Data memory D should be equal to 1.
2. Data memory U should be equal to MU (US format).
3. PM status bit should be equal to 01.
4. SIM status bit should be set to logic 1.
5. OVM status bit should be set to 1.
6. The current DP (data memory page pointer) should be page 0.

p.s.
1. The return current auxiliary register will be $AR2$.
2. $AR1$ and $AR3$ have been used in this subroutine.

Chen, Chin-Shung February, 1989

Define and Refer Symbols

- .global LMS,ORDER,U,D,ONE,Y,ERR,XIN,W
- .reserve ADDRESS FOR PARAMETER
- SAVE1: .uset "parameters",1
- SAVE2: .uset "parameters",1
- SAVE3: .uset "parameters",1
- ERRF: .uset "parameters",1
- PERFORM THE ADAPTIVE FILTER

- ESTIMATE THE SIGNAL Y

LMS

- LARP AR3
- SAR AR1,SAVE1
- SAR AR2,SAVE2
- SAR AR3,SAVE3
- CHIF
- MFPK O
- LAC ONE,15
- LRLK AR3,00
- REPTK ORDER-1
- MACD WN+OF600H+e
- CHIFD
- APAC
- SACH Y
- STORE the filter output

Compute THE ERROR

- NEG
- ADDH D
- SACH ERR
- ERR(n) = D(n) - Y(n)

Update THE WEIGHTS

- LT ERR
- MFE U
- PAC
- ADD ONE,15
- SACH ERRF
- ERRF = U + ERR(n)

- LARK AR1,ORDER-1
- LRLK AR2,WN
- LRLK AR3,WN+1
- LT ERRF
- T register = U + ERR(n)
- P = U + ERR(n) + X(n-1)
- ADAPT
- ZALR *.*,AR3
- MFA E-*,AR2
- MFA E-*,AR2
- SACH +/-,AR1
- BANZ ADAPT,E-*,AR2
- LAR AR1,SAVE1
- LAR AR2,SAVE2
- LAR AR3,SAVE3
- RESTORE register AR1
- RESTORE register AR2
- RESTORE register AR3

Set current register

Save register AR1

Save register AR2

Save register AR3

Configure BO as program memory

Clear the P register

Using rounding

Point to the oldest sample

Repeat N times

Estimate Y(n)

Configure BO as data memory

Appendix H1: Assembly Subroutine of Transversal Structure with TMS320C25
Appendix H2. Linker Command File for Assembly Main Program Calling a TMS320C25 Adaptive LMS Transversal Filter Subroutine
This is the initial boot routine for TMS320C30 adaptive filter programs.

This module performs the following actions:

1. Allocates and initializes the system stack.
2. Performs auto-initialization, which copies section "const" data from AROM to DATA RAM.
3. Prepare to start the user's assembly program.

STACK_SIZE .set 40h ; Size of system stack
FP .set AR3 ; Frame pointer

RESET .sect "vectors"

.allocate space for the system stack. Initialize the first words in .text to point to the stack and initialization tables.

stack .usect ".stack", STACK_SIZE
.text

stack_addr .word stack ; Address of stack
init_addr .word init ; Address of init tables

.adap_init:

; Set up the initial stack pointer
LDP stack_addr ; Get page of stored address
LDB @stack_addr, SP ; Load the address into SP
LDB SP, FP ; And into FP too

; Do autoinitialization
LDP init_addr ; Get page of stored address
LDB @init_addr, AR0 ; Get address of init tables
CMP1 -1, AR0 ; If ROM model, skip init
BEC done ; If Z, nothing to do
LDB @AR0++, R1 ; Get first count
BEC done ; If Z, nothing to do
LDB @AR0++, AR1 ; Get dest address
LDB @AR0++, RO ; Get first word
SUBI 1, R1 ; Count - 1

done:

; Move next count into R1
; If there is more, repeat
; Get next dest address
; Get next first word
; Count - 1

Done:

BR begin

.end
BT30 - TMS320C30 adaptive transversal filter with
LMS algorithm assembly subroutine.

Algorithm:

\[y(n) = \sum w(k) \cdot x(n-k) \quad k=0,1,2,\ldots,N-1 \]

\[e(n) = d(n) - y(n) \]
\[w(k) = w(k) + u \cdot e(n) \cdot x(n-k) \quad k=0,1,2,\ldots,N-1 \]

Where we use filter order \(N \) and \(u = 0.01 \).

Initial condition:

1) \(\text{ARO} \) and \(\text{ARI} \) should point to \(x[0] \) and \(w[0] \).
2) Data memory \(u \) should contain step size.
3) Data memory order should contain \(N-2 \), where \(N \) is filter order.
4) Data memories \(d, y, \) and \(e \) should be defined in caller routine.

Chen, Chein-Chung March, 1989

Appendix H4. Assembly Subroutine of Transversal Structure with the TMS320C30
/* ADAPT.CMD - Command file for linking TMS320C30 Adaptive Filter Programs */

/*

Description: This file is a sample command file that can be used
for linking adaptive filter assembly programs.

All the adaptive filter programs have to link with the
ADAPINIT.ASM file to do the auto-initialization.

Notes: When using the small (default) memory model, be sure
that the ENTIRE .bss section fits within a single page.

To satisfy this, .bss must be smaller than 64K words and
must not cross any 64K boundaries.

*/

/* SPECIFY THE SYSTEM MEMORY MAP */

MEMORY

 .VECS org = 0 len = 0x00

 .ROM: org = 0x00 len = 0x7e+40

 .RAM0: org = 0x009000 len = 0x200 /* RAM block 0 */

 ..STACK: org = 0x009000 len = 0x40 /* System stack */

 .RAM1: org = 0x009000 len = 0x30 /* RAM block 1 */

 ..WARG: org = 0x009040 len = 0x1040 /* WARS block - ROM + 4K or EXT */

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

SECTIONS

 .vector: (.VECS) /* Interrupt vectors */

 .text: (.ROM) /* Code */

 .consts: (.ROM) /* Initialization tables */

 .stack: (.STACK) /* System stack */

 .vars: (.WARG) /* Memory for variables */

 .buffer: (.RAM) /* Memory for data buffer */

 .coeff: (.RAM) /* Memory for filter coefficients */

 .gains align(2): (.RAM) /* Memory for lattice filter gains */

Appendix H5. Linker Command/file for Assembly Main Program

Calling the TMS320C30 Adaptive LMS Transversal Filter Subroutine

Algorithm:

\[
N-1
y(n) = \sum w(k)x(n-k) \quad k=0,1,2,...,N-1
\]

\[
e(n) = d(n) - y(n)
\]

\[
w(k) = w(k) + \mu e(n)x(n-k) \quad k=0,1,2,...,N-1
\]

Where we use filter order = N

Usage: lms(n,m,d,x,y,e)

n - order of filter
m - convergence factor
d - desired signal
x - input signal
y - addr of output signal
e - addr of error signal

Note: Data memory 0200h 0200h+M-1 & 0300h 0300h+M-1 are reserved.

Chen, Chien-Chung February, 1989

**

def _lms

RESERVE ADDRESSES FOR PARAMETERS

DST0: .usect "parameters",1
DST1: .usect "parameters",1
SAVE1: .usect "parameters",1
SAVE2: .usect "parameters",1
SAVE3: .usect "parameters",1
SAVE4: .usect "parameters",1
ORDER: .usect "parameters",1
X: .usect "parameters",1
U: .usect "parameters",1
Y: .usect "parameters",1
ERR: .usect "parameters",1
ERRF: .usect "parameters",1
ADRSLT: .usect "parameters",1

DEFINE ADDRESSES OF BUFFER AND COEFFICIENTS

COEFFP: .equ 0400h
COEFFB: .equ 0200h
FRSTAP: .equ 0300h

**

PERFORM THE ADAPTIVE FILTER

**

text

.lms
SAR AR1,SAVE1
SAR AR2,SAVE2
SAR AR3,SAVE3
SAR AR4,SAVE4
SST DST0
SST1 DST1

GET THE ADAPTIVE FILTER PARAMETERS

SPN 1 ; Set P register shift mode
SDM 0 ; Set sign extension mode
SDDM 0 ; Set overflow mode
LDSP 0 ; Set data page = 0
MAR e- ; Set pointer for getting parameter
LAC e- ; ACC = N
SUBK 1
SAKL ORDER ; ORDER = N - 1
ADLK FRSTAP
SAKL ADRSLT ; Store address of last tap
LAC e- ; Get and store the MU
LAC e- ; Get and store the D
SAKL D
LAC e-,0,AR3
URLK AR3,FRSTAP
SAKL e ; Insert newest sample

ESTIMATE THE SIGNAL Y

CHFP ; Configure BO as program memory
MPK 0 ; Clear the P register
LALK 1,15 ; Using rounding
LAR AR3,ADRSLT ; Point to the oldest sample
FIR RTP ORDER ; Repeat N times
MACD COEFFP,e- ; Estimate Y(n)
CHFD ; Configure BO as data memory
APAC
SACH Y ; Store the filter output

COUPLE THE ERROR

NEG
ADDH D ; ACC = - Y(n)
UPDATE THE WEIGHTS

LT ERR ; T = ERR
MPY U ; P = U * ERR

ARL 1,15 ; Round the result
SACH ERR ; ERR = U * ERR

LAR AM, ORDER ; Set up counter
LNLX AR2, COEFFS ; Point to the coefficients
LAR AR3, ARBLST ; Point to the data sample
MAR + ;

LT ERR ; T register = U * ERR
MPY +, AR2 ; P = U * ERR(n) * z[n-1]

ADAPT
LNLX +, AR3 ; Load ACH with AR3, AR & round
MPY +, AR2 ; W0, err1 = W0, a + P
SACH +,0, AR4 ; Store W0, err1

SACH +,0, AR4

STORE THE Y AND ERR

LAR AR2, +, AR2 ; Get the address of Y (in MAIN)
LAC Y
SACL +,0, AR3 ; Store Y
LAR AR2, +, AR2 ; Get the address of ERR (in MAIN)
LAC ERR
SACL +,0, AR3 ; Store ERR

RESTORE THE REGISTERS

LIST D0T0
LIST D0T1
LAR AR1, SANE1
LAR AR2, SANE2
LAR AR3, SANE3
LAR AR4, SANE4

FINISH RET

.end
Algorithm:

\[y(n) = \text{SUM} w(k) x(n-k) \quad k=0,1,2, \ldots, N-1 \]

where we use filter order \(N \) and \(\mu = 0.01 \).

Usage: tls(n,mu,d,lm,ks,by,be)
- \(n \) - order of filter
- \(\mu \) - convergence factor
- \(d \) - desired signal
- \(lm \) - filter coefficients
- \(ks \) - input signal buffer
- \(by \) - addr of output signal
- \(be \) - addr of error signal

Chen, Chien-Chung March, 1989

```
.global .tls
set AR3
.perform adaptive filter
.text
.text
set #
PUSH FP
LDI SP,FP
PUSH AR0
PUSH AR1
PUSH AR2
PUSH R1
PUSH R2
PUSH R2
PUSH R4
PUSH R6
PUSH R7

get filter parameters

LDI +FP(2),R4 ; Get filter order
LDI +FP(6),AR0 ; Get pointer for x
LDI +FP(5),AR1 ; Get pointer for w
SUBI 2,R4 ; Set loop counter

compute filter output y(n)

LDI 0.0,R2 ; R2 = 0.0
MPYF3 @AR0++,1,R1
MPTS R4
MPYF3 @AR0++,1,R1
ADD3 R1,R2,R2 ; y(n) = w1.x1
ADD F R1,R2 ; Include last result

compute error signal e(n) and store y(n) and e(n)

LDI +FP(2),AR2 ; Get y(n) address
SUBF3 R2,+FP(1),R7 ; e(n) = d(n) - y(n)

STF R2,R4,R2 ; Send out y(n)
LDI +FP(3),AR2 ; Get e(n) address
STF R7,R4,R2 ; Send out e(n)

update weights w1 and shift x1

MPYF +FP(2),R7 ; R7 = e(n) * u
MPYF3 @AR0++,1,R7,R1 ; R1 = e(n) * u * x(n-w1)
LDI R4,RC ; Initialize repeat counter
RPTB LMS
MPYF3 @AR0++,1,R7,R1
ADD3 +AR1(1),R1,R2 ; R2 = w1(n) + e(n) * u * x(n-i)
LDI @AR0++,+AR0(1) ; Get x(n+i-w1)
STF R6,AR0(1) ; Shift x1
LMS
ADD F +AR1(1),R1,R2 ; R2 = w1(n) + e(n) * u * x(n-i)
STF R2,AR1 ; Update last w

POP R7
POP R6
POP R4
POP R2
POP R2
POP R1
POP R1
POP AR2
POP AR1
POP AR0
POP FP
NRTS
.end
```